US5015519A - Molded article with partial metal plating and a process for producing such article - Google Patents
Molded article with partial metal plating and a process for producing such article Download PDFInfo
- Publication number
- US5015519A US5015519A US07/422,174 US42217489A US5015519A US 5015519 A US5015519 A US 5015519A US 42217489 A US42217489 A US 42217489A US 5015519 A US5015519 A US 5015519A
- Authority
- US
- United States
- Prior art keywords
- molded article
- plated
- catalyst
- primary
- protrusions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 32
- 239000002184 metal Substances 0.000 title claims abstract description 32
- 238000007747 plating Methods 0.000 title claims description 32
- 239000003054 catalyst Substances 0.000 claims abstract description 56
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000000465 moulding Methods 0.000 claims abstract description 16
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 12
- 238000007788 roughening Methods 0.000 claims abstract description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052737 gold Inorganic materials 0.000 claims abstract description 6
- 239000010931 gold Substances 0.000 claims abstract description 6
- 239000004033 plastic Substances 0.000 claims description 24
- 229920003023 plastic Polymers 0.000 claims description 24
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 229920005989 resin Polymers 0.000 claims description 8
- 239000011347 resin Substances 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 239000000945 filler Substances 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 4
- 239000004695 Polyether sulfone Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229920006393 polyether sulfone Polymers 0.000 claims description 4
- -1 polyphenylene Polymers 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 3
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 claims description 3
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 3
- 239000004973 liquid crystal related substance Substances 0.000 claims description 3
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 claims description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims 2
- 229920002647 polyamide Polymers 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 abstract description 13
- 239000000463 material Substances 0.000 description 11
- 239000012777 electrically insulating material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000010970 precious metal Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PZZYQPZGQPZBDN-UHFFFAOYSA-N aluminium silicate Chemical compound O=[Al]O[Si](=O)O[Al]=O PZZYQPZGQPZBDN-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- BIVUUOPIAYRCAP-UHFFFAOYSA-N aminoazanium;chloride Chemical compound Cl.NN BIVUUOPIAYRCAP-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
- H05K3/182—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/72—Encapsulating inserts having non-encapsulated projections, e.g. extremities or terminal portions of electrical components
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1608—Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
- C23C18/1641—Organic substrates, e.g. resin, plastic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1872—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
- C23C18/1875—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
- C23C18/1879—Use of metal, e.g. activation, sensitisation with noble metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1872—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
- C23C18/1886—Multistep pretreatment
- C23C18/1893—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/22—Roughening, e.g. by etching
- C23C18/24—Roughening, e.g. by etching using acid aqueous solutions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/285—Sensitising or activating with tin based compound or composition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
- H05K3/182—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
- H05K3/184—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2791/00—Shaping characteristics in general
- B29C2791/001—Shaping in several steps
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0183—Dielectric layers
- H05K2201/0187—Dielectric layers with regions of different dielectrics in the same layer, e.g. in a printed capacitor for locally changing the dielectric properties
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09009—Substrate related
- H05K2201/09118—Moulded substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/14—Related to the order of processing steps
- H05K2203/1407—Applying catalyst before applying plating resist
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/14—Related to the order of processing steps
- H05K2203/1476—Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0014—Shaping of the substrate, e.g. by moulding
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0017—Etching of the substrate by chemical or physical means
- H05K3/0023—Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/901—Printed circuit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24917—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31—Surface property or characteristic of web, sheet or block
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31533—Of polythioether
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31681—Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31728—Next to second layer of polyamide
Definitions
- the present invention relates to a molded article with partial metal plating and to a process for the production of such molded article such as a circuit board, connector, etc.
- the first process for production includes a molding process of the molded articles, an adhesion promotion process and an adherent metal plating process.
- an alternate two shot injection molding is used.
- the first portion of the molded article equipped with a circuit pattern is molded using a first electrically insulating material
- the supporting structure is formed around the circuit pattern using a second electrically insulating material.
- Polyethersulfone with catalyst is used as the first electrically insulating material for forming the molded article, and the appropriate catalyst for filler material is palladium catalyst scattered on powdered aluminium silicate.
- the catalyst mixed in the electrically insulating material is catalytic for the material for electroless metal plating to be conducted in the adhesive metal plating.
- the desirable second electrically insulating material to be selected for the supporting structure is polyethersulfone (without a catalyst).
- the surfaces of the molded article are made micro porous and hydrophilic and the catalyst on the surface part of the circuit pattern and hole walls are exposed. Accordingly, all the flat, smooth and glittering surfaces of the molded article are matted. Further, in the metal plating process, the molded article is passed through the vapor of dichloromethane, and the matted hydrophilic surfaces of the support structure will be made flat, smooth and hydrophobic so that they can endure the metal plating from outside and once again will be returned to the metal plating solution. The reason why these kinds of processes are required is to avoid non-uniform dispersal of the palladium catalyst, and avoid having the surface layers of the circuit pattern from becoming rich with the resin portion such that the catalytic function of the surfaces are not brought into full play.
- the molded articles are formed by a two shot process, where not only the first electrically insulating material to be used in the first shot process for forming the circuit pattern, but also the second electrically insulating material to be used in the second shot molding process for molding the support structure are selected from a material having no catalyst.
- the molded articles are treated with etching solution for adhesion promotion, then catalyst for metal plating is added and further is activated for electroless metal plating, and then non-adhesive catalyst is washed away from the support structure, and finally the circuit pattern is subjected to copper plating using a solution for electroless copper plating.
- the first problem in the production process of the former case is that palladium catalyst is mixed into the first electrically insulating material for forming the circuit pattern. Palladium is an expensive precious metal. It needs to be mixed in a large quantity in order to cause it to conduct as a catalytic function for electroless metal plating, and accordingly, economical production is difficult.
- the second problem is that the former case makes the production process complicated and deteriorates the working efficiency, since a process for making the matted surfaces flat and smooth is needed in the metal plating process in addition to the need of the process to make a mat on all the smooth surfaces of the articles in order to expose the catalyst.
- the problem in the production process of the latter case is that it requires work to wash away with spray the catalyst adhered to the portions other than the circuit pattern, that is to say, all the surfaces of the support structure, after activation of the molded articles but before electroless copper plating. It is time-consuming to ensure the removal of the catalyst. Especially, the work to wash away the catalyst adhering to the surface of the border portion of the circuit pattern and support structure takes a great deal of time, labor, and expense and is practically difficult. When the removal of the catalyst is incomplete in the molded articles, for instance, in the circuit boards, portions other than the circuit portions will be sure to get metal plated, and the insulation of these portions is not secured. Therefore, they will not function as circuit boards.
- the present invention relates to a first process of molding a primary molded article, conducting a pre-treatment of the primary molded article by adding a catalyst such as palladium, gold, silver, platinum, etc. after roughening of the surfaces of the primary molded article, forming a secondary molded article using plastic material and a mold on the base of the pre-treated primary molded article where portions of the primary molded article to be plated with metal are exposed, and plating the secondary molded article with metal.
- a catalyst such as palladium, gold, silver, platinum, etc.
- the present invention also relates to a second process of molding a primary molded article having an outer surface and protrusions extending from the outer surface, roughening the outer surface and protrusions of the primary molded article, not adding a catalyst to the outer surfaces and protrusions of the primary molded article after roughening, molding a secondary molded article having an outer surface about the non-catalytically-treated primary molded article such that surfaces of the protrusions are exposed, treating the outer surface of the secondary molded article and exposed protrusion surfaces of the primary molded article with a catalyst such as palladium, gold, silver, platinum, etc., washing the outer surface of the secondary molded article to remove the catalyst from the outer surface of the secondary molded article but not from the exposed protrusion surfaces of the primary molded article, and then plating the exposed protrusion surfaces of the primary molded article with metal.
- a catalyst such as palladium, gold, silver, platinum, etc.
- plastics such as polyamide resin, polyphenylene sulfide resin and liquid crystal resin
- ceramics etc.
- the plastics material includes not only single plastics material, but also those mixed with well-known fillers such as glass fiber, potassium titanate fiber, and so on.
- the catalyst treatment mentioned above can be done using conventionally known processes. When the surfaces of the primary molded article in the first process above and the secondary molded article in the second process above are soiled with mold removing agent or fatty substance after forming of the primary or secondary molded article, it is advisable to remove the fat.
- the fat can be removed by means of such organic solvents as methylethyl ketone, acetone, surface active agent, etc.
- etching solutions are used in the catalyst treatment process in order to improve the adhesion power of the plated metal.
- etching solutions as chromic acid/sulfuric acid, acidic ammonium fluoride/nitric acid and hydrofluoric acid/nitric acid are suitable.
- the manner of adding the catalyst can be selected as a practical matter from a catalyst ⁇ accelerator method and a sensitizing ⁇ activating method.
- the former is a method for separating palladium on the surface of the molded article by activating with an acid such as hydrochloric acid, sulfuric acid, etc. after submerging or dipping in a mixed catalytic solution of the family of tin and palladium.
- the latter is the method where, at first, a relatively strong reducing agent such as tin chloride, hypophosphorous acid, hydrazinium chloride, etc.
- the molded article is adsorbed on the surfaces of the molded article, and then the article is submerged or dipped in a catalytic solution that contains ions of precious metal such as gold and palladium and finally the precious metal is separated onto the surfaces of the molded article.
- a catalytic solution that contains ions of precious metal such as gold and palladium and finally the precious metal is separated onto the surfaces of the molded article.
- precious metal such as gold and palladium
- An object of this invention is thus to provide an efficient and economical mass production process for partially metal plated, molded articles which can function as circuit boards, connectors, etc., and which can also function as decorative articles.
- Another object of this invention is to achieve plating with a minimal quantity of precious metal by applying the catalyst only to the surfaces of the primary molded articles or the secondary molded article.
- a further object of this invention is to eliminate the necessity for washing away the catalyst and to improve production efficiency by using a mold for forming the secondary molded article where portions of the primary molded article bestowed with catalyst and to be metal plated are exposed.
- Another object of this invention is to make it possible to secure the complete insulation of portions other than the circuit portions in cases where the molded article is, for instance, a circuit board.
- Another object of the present invention is to provide a plastic molded article with a strong bond between a primary molded article and a secondary molded article while avoiding creating a gap between them even after a change of thermal environment, thus eliminating entry therebetween of metal plating electrolyte during the plating process, for example, or of cleaning liquid during the cleaning process, and avoiding aging problems resulting from the plating electrolyte or cleaning liquid entering any such potential gap, which otherwise reversely flows out while corroding the plated metal, or permitting moisture to enter such potential gap and deteriorating the quality of the product.
- Another object of the present invention is to expand the application of the plastic molded product, the molded article not only having a decoration application such as a button but also being functional as a plastic molded article, such as printed circuit boards and connectors, while reducing manufacturing costs and improving the quality thereof.
- FIG. 1 is a perspective view of a circuit board as a primary molded article
- FIG. 2 is a perspective view of a circuit board as a secondary molded article
- FIG. 3 is an enlarged sectional view taken along the line III--III in FIG. 2;
- FIG. 4 is a perspective view of a circuit board as a product having partial metal plating
- FIG. 5 is an enlarged sectional view taken along the line V--V in FIG. 4;
- FIG. 6 is another sectional view yet further enlarged taken along the line VI--VI in FIG. 4;
- FIG. 7 is a schematic view illustrating and comparing the first and second processes of the present invention described above.
- Board 1 as shown in FIG. 1 was molded as a primary molded article using a mold.
- a protruding pattern 1a was formed on the board.
- Etching was conducted by submerging or dipping the board 1 for 5 minutes in an etching solution composed of acidic ammonium fluoride/nitric acid, at a temperature of about 40° C., after subjecting the board 1 to a fat removing treatment.
- the board 1 was inserted into the cavity of the mold, then the cavity was filled with liquid plastic resin and the board 2 as the secondary molded article was formed as shown in FIG. 2. As shown in FIG. 3, the pattern 1a of the board 1 protrudes outwards in the board 2. After the board 2 was subjected to a fat removing treatment, electroless metal plating was conducted to a thickness of 20 ⁇ m. By doing so, the circuit board 3 was obtained as a molded plastic article, where only the pattern 1a of the outer surface of the board was plated with metal as shown in FIG. 4 and FIG. 5.
- thermoplastic resin mixture composed of 60 weight % of polyphenylene sulphide resin, 35 weight % of glass fibre and 5 weight % of potassium titrate fibre (Timos D made by Otsuka Chemical) was used as raw material for the circuit board.
- a circuit board 3 was produced in the same way as in Example 1. However, as raw material for the circuit board, a thermoplastic resin mixture composed of 70% of polyethersulphone resin and 30% of glass fibre was used.
- a molded article of this invention comprises a plastic primary molded article 1 whose entire surface is roughened, a plastic secondary molded product 2 which is joined integratedly with the plastic primary molded article in such a manner that only the particular part 1a of the primary molded product is exposed and metal-plated.
- the raw material used for the primary molded article is a material suitable for plating metal
- the secondary molding is processable even with the same type of plastic material without the need to select a special secondary molding material, e.g., material not easily metal-plated. Consequently, there is a great deal of freedom in selecting the plastic material for molding. Even if the thermal environment may change for the plastic molded article, gaps will not be easily created between the primary and the secondary molded articles.
- the durability of the molded article can be improved because plating electrolyte, moisture, etc. will not enter between the primary and secondary molded articles.
- a primary article 1 is molded with protrusions 1b, and the surface thereof roughened at 20, after which the primary molded article 1 is treated with a catalyst 30.
- a secondary article 2 is then molded about primary molded article 1, with protrusions 1a exposed, and the protrusions 1a are then metal-plated at 40.
- a primary article 1 is molded with protrusions 1b, the surface thereof roughened at 20, and a secondary article 2 is then molded about primary molded article 1, with protrusions 1a exposed, before any catalyst treatment.
- Catalyst 50 is then applied, by the methods already described, about the outer surfaces of secondary molded article 2 and the exposed surfaces of protrusions 1a.
- the outer surfaces of secondary molded article 2 are then washed with water to remove the catalyst.
- Catalyst 50 is removed from the entire surface of secondary molded article 2 by the washing, but catalyst 50 is not removed from the exposed surface of protrusions 1a. This is because since the exposed surface of protrusions 1a have been roughened, catalyst 50 is tightly adhered on the roughened surface.
- protrusion 1a is then metal-plated to finish the partially metal-plated molded product.
- This alternative process further improves the obtained product in comparison to conventional molded products. Specifically, when catalyst is disposed on the entire surface of the primary molded article and then the secondary article is molded thereabout, catalyst is trapped between the primary and secondary molded articles. This trapped catalyst may degrade over time if it is highly concentrated, thus adversely affecting the bond between the primary and secondary molded articles.
- the alternative process described above eliminates this potential drawback. Since catalyst is not applied at the interface between the primary and secondary molded articles, the bond therebetween is very strong due to the roughened surface of the primary molded article and the potentially deleterious effect of catalyst disposed therebetween is eliminated.
- the method of the invention is applicable to three-dimensional shapes, and is not limited only to plate shapes (two-dimensional form). Thus, the method is also applicable to products other than printed circuit boards and electronic parts. In addition, even where a filler such as glass fiber is mixed in the molding material in order to improve the heat resistance or strength, a product having partial plating can be manufactured at low cost and high yield with or without the filler.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Chemically Coating (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61273035A JPH0660416B2 (en) | 1986-11-18 | 1986-11-18 | Manufacturing method of plastic molded products |
JP61-273035 | 1986-11-18 |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/109,353 Continuation-In-Part US4812275A (en) | 1986-11-18 | 1987-10-15 | Process for the production of molded articles having partial metal plating |
US07/180,923 Continuation-In-Part US4908259A (en) | 1986-11-18 | 1988-04-13 | Molded article with partial metal plating and a process for producing such article |
Publications (1)
Publication Number | Publication Date |
---|---|
US5015519A true US5015519A (en) | 1991-05-14 |
Family
ID=17522258
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/109,353 Expired - Lifetime US4812275A (en) | 1986-11-18 | 1987-10-15 | Process for the production of molded articles having partial metal plating |
US07/422,174 Expired - Lifetime US5015519A (en) | 1986-11-18 | 1989-10-16 | Molded article with partial metal plating and a process for producing such article |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/109,353 Expired - Lifetime US4812275A (en) | 1986-11-18 | 1987-10-15 | Process for the production of molded articles having partial metal plating |
Country Status (2)
Country | Link |
---|---|
US (2) | US4812275A (en) |
JP (1) | JPH0660416B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5211803A (en) * | 1989-10-02 | 1993-05-18 | Phillips Petroleum Company | Producing metal patterns on a plastic surface |
US5230927A (en) * | 1989-02-16 | 1993-07-27 | Mitsubishi Gas Chemical Company, Inc. | Method for metal-plating resin molded articles and metal-plated resin molded articles |
US5986367A (en) * | 1996-03-29 | 1999-11-16 | Matsushita Electric Industrial Co., Ltd. | Motor mounting mechanism for a cylindrical vibration motor |
EP1020947A2 (en) * | 1998-12-22 | 2000-07-19 | Nokia Mobile Phones Ltd. | Method for manufacturing an antenna body for a phone and phone or handset having an internal antenna |
US6433728B1 (en) * | 1999-01-22 | 2002-08-13 | Lear Automotive Dearborn, Inc. | Integrally molded remote entry transmitter |
GB2345022B (en) * | 1998-12-23 | 2003-06-11 | Nokia Mobile Phones Ltd | Method for manufacturing an antenna body for a phone |
US20030181104A1 (en) * | 2001-12-28 | 2003-09-25 | Brunker David L. | Grouped element transmission channel link termination assemblies |
US20050176268A1 (en) * | 2003-03-14 | 2005-08-11 | Victor Zaderej | Grouped element transmission channel link with pedestal aspects |
US20070200554A1 (en) * | 2004-03-04 | 2007-08-30 | Tetsuo Yumoto | Solid or three-dimensional circuit board |
US20080318478A1 (en) * | 2007-05-02 | 2008-12-25 | Finisar Corporaton | Molded card edge connector for attachment with a printed circuit board |
EP2033756A1 (en) * | 2007-09-05 | 2009-03-11 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | A process for preparing a moulded product |
US20110094778A1 (en) * | 2009-10-27 | 2011-04-28 | Cheng-Po Yu | Circuit board and fabrication method thereof |
US8006075B2 (en) | 2009-05-21 | 2011-08-23 | Oracle America, Inc. | Dynamically allocated store queue for a multithreaded processor |
TWI417013B (en) * | 2010-05-14 | 2013-11-21 | Kuang Hong Prec Co Ltd | Stereo circuit device and manufacturing method thereof |
US20150194794A1 (en) * | 2012-07-12 | 2015-07-09 | Labinal, Llc | Load buss assembly and method of manufacturing the same |
US11802528B2 (en) | 2018-12-20 | 2023-10-31 | Vitesco Technologies GmbH | Fuel delivery assembly and fuel delivery unit |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0660416B2 (en) * | 1986-11-18 | 1994-08-10 | 三共化成株式会社 | Manufacturing method of plastic molded products |
US4908259A (en) * | 1986-11-18 | 1990-03-13 | Sankyo Kasei Kabushiki Kaisha | Molded article with partial metal plating and a process for producing such article |
JPH03197687A (en) * | 1989-12-26 | 1991-08-29 | Mitsubishi Gas Chem Co Inc | Pretreatment of molded resin product before metal plating |
US5198793A (en) * | 1991-07-30 | 1993-03-30 | Eaton Corporation | Electric control apparatus comprising integral electrical conductors plated on a two-shot molded plastic insulating housing |
JPH10180799A (en) * | 1996-12-24 | 1998-07-07 | Sankyo Kasei Co Ltd | Manufacture of electronic part and electronic part manufactured by this method |
US6015523A (en) * | 1997-12-18 | 2000-01-18 | Sankyo Kasei Kabushiki Kaisha | Process for producing electronic parts |
US6296897B1 (en) | 1998-08-12 | 2001-10-02 | International Business Machines Corporation | Process for reducing extraneous metal plating |
KR100495340B1 (en) * | 1999-12-21 | 2005-06-14 | 스미토모 쇼지 플라스틱 가부시키가이샤 | Method for partially plating on a base |
TW526689B (en) * | 2000-06-12 | 2003-04-01 | Bourns Inc | Molded electronic assembly |
FR2840550B1 (en) * | 2002-06-06 | 2004-08-27 | Framatome Connectors Int | METHOD FOR METALLIZING SUPPORTS OF PLASTIC MATERIAL |
FR2840761B1 (en) * | 2002-06-06 | 2004-08-27 | Framatome Connectors Int | PARTS OF METALLIC PLASTIC MATERIALS |
ATE350884T1 (en) * | 2002-07-18 | 2007-01-15 | Festo Ag & Co | INJECTION-MOLDED CONDUCTOR SUPPORT AND METHOD FOR THE PRODUCTION THEREOF |
US10737530B2 (en) * | 2015-05-14 | 2020-08-11 | Lacks Enterprises, Inc. | Two-shot molding for selectively metalizing parts |
CN118056333A (en) * | 2023-02-14 | 2024-05-17 | 歌尔股份有限公司 | Molded article for LDS antenna, antenna assembly, mobile device, method of manufacturing the antenna, and molding tool for molded article |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3259559A (en) * | 1962-08-22 | 1966-07-05 | Day Company | Method for electroless copper plating |
US3737339A (en) * | 1970-12-18 | 1973-06-05 | Richardson Co | Fabrication of printed circuit boards |
US3884704A (en) * | 1973-03-21 | 1975-05-20 | Macdermid Inc | Catalyst system for activating surfaces prior to electroless deposition |
JPS5371272A (en) * | 1976-12-07 | 1978-06-24 | Tokyo Shibaura Electric Co | Method of producing printed circuit board |
US4389771A (en) * | 1981-01-05 | 1983-06-28 | Western Electric Company, Incorporated | Treatment of a substrate surface to reduce solder sticking |
US4451505A (en) * | 1981-05-29 | 1984-05-29 | U.S. Philips Corporation | Method of producing printed circuit boards |
JPS60217695A (en) * | 1984-04-13 | 1985-10-31 | 株式会社日立製作所 | Method of treating before electroless plating and method of producing printed circuit board |
US4574031A (en) * | 1985-03-29 | 1986-03-04 | At&T Technologies, Inc. | Additive processing electroless metal plating using aqueous photoresist |
EP0192233A2 (en) * | 1985-02-22 | 1986-08-27 | AMP-AKZO CORPORATION (a Delaware corp.) | Molded metallized articles and processes for making the same |
US4615763A (en) * | 1985-01-02 | 1986-10-07 | International Business Machines Corporation | Roughening surface of a substrate |
US4812275A (en) * | 1986-11-18 | 1989-03-14 | Sankyo Kasei Kabushiki Kaisha | Process for the production of molded articles having partial metal plating |
US4908259A (en) * | 1986-11-18 | 1990-03-13 | Sankyo Kasei Kabushiki Kaisha | Molded article with partial metal plating and a process for producing such article |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5660768U (en) * | 1979-10-15 | 1981-05-23 | ||
JPS5716157A (en) * | 1980-07-02 | 1982-01-27 | Hitachi Ltd | Pretreating method for partial plating |
JPS57108138A (en) * | 1981-11-06 | 1982-07-06 | Yamashita Denki Kk | Partially plated plastic molded article |
-
1986
- 1986-11-18 JP JP61273035A patent/JPH0660416B2/en not_active Expired - Lifetime
-
1987
- 1987-10-15 US US07/109,353 patent/US4812275A/en not_active Expired - Lifetime
-
1989
- 1989-10-16 US US07/422,174 patent/US5015519A/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3259559A (en) * | 1962-08-22 | 1966-07-05 | Day Company | Method for electroless copper plating |
US3737339A (en) * | 1970-12-18 | 1973-06-05 | Richardson Co | Fabrication of printed circuit boards |
US3884704A (en) * | 1973-03-21 | 1975-05-20 | Macdermid Inc | Catalyst system for activating surfaces prior to electroless deposition |
JPS5371272A (en) * | 1976-12-07 | 1978-06-24 | Tokyo Shibaura Electric Co | Method of producing printed circuit board |
US4389771A (en) * | 1981-01-05 | 1983-06-28 | Western Electric Company, Incorporated | Treatment of a substrate surface to reduce solder sticking |
US4451505A (en) * | 1981-05-29 | 1984-05-29 | U.S. Philips Corporation | Method of producing printed circuit boards |
JPS60217695A (en) * | 1984-04-13 | 1985-10-31 | 株式会社日立製作所 | Method of treating before electroless plating and method of producing printed circuit board |
US4615763A (en) * | 1985-01-02 | 1986-10-07 | International Business Machines Corporation | Roughening surface of a substrate |
EP0192233A2 (en) * | 1985-02-22 | 1986-08-27 | AMP-AKZO CORPORATION (a Delaware corp.) | Molded metallized articles and processes for making the same |
US4574031A (en) * | 1985-03-29 | 1986-03-04 | At&T Technologies, Inc. | Additive processing electroless metal plating using aqueous photoresist |
US4812275A (en) * | 1986-11-18 | 1989-03-14 | Sankyo Kasei Kabushiki Kaisha | Process for the production of molded articles having partial metal plating |
US4908259A (en) * | 1986-11-18 | 1990-03-13 | Sankyo Kasei Kabushiki Kaisha | Molded article with partial metal plating and a process for producing such article |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5230927A (en) * | 1989-02-16 | 1993-07-27 | Mitsubishi Gas Chemical Company, Inc. | Method for metal-plating resin molded articles and metal-plated resin molded articles |
US5211803A (en) * | 1989-10-02 | 1993-05-18 | Phillips Petroleum Company | Producing metal patterns on a plastic surface |
US5986367A (en) * | 1996-03-29 | 1999-11-16 | Matsushita Electric Industrial Co., Ltd. | Motor mounting mechanism for a cylindrical vibration motor |
EP1020947A2 (en) * | 1998-12-22 | 2000-07-19 | Nokia Mobile Phones Ltd. | Method for manufacturing an antenna body for a phone and phone or handset having an internal antenna |
GB2345022B (en) * | 1998-12-23 | 2003-06-11 | Nokia Mobile Phones Ltd | Method for manufacturing an antenna body for a phone |
US6433728B1 (en) * | 1999-01-22 | 2002-08-13 | Lear Automotive Dearborn, Inc. | Integrally molded remote entry transmitter |
US20050092513A1 (en) * | 2001-12-28 | 2005-05-05 | Brunker David L. | Grouped element transmission channel link termination assemblies |
US20030181104A1 (en) * | 2001-12-28 | 2003-09-25 | Brunker David L. | Grouped element transmission channel link termination assemblies |
US20040113711A1 (en) * | 2001-12-28 | 2004-06-17 | Brunker David L. | Grouped element transmission channel link |
US6840810B2 (en) | 2001-12-28 | 2005-01-11 | Molex Incorporated | Grouped element transmission channel link termination assemblies |
US20030179050A1 (en) * | 2001-12-28 | 2003-09-25 | Brunker David L. | Grouped element transmission channel link with power delivery aspects |
US7160154B2 (en) | 2001-12-28 | 2007-01-09 | Molex Incorporated | Grouped element transmission channel link termination assemblies |
US20050250387A1 (en) * | 2001-12-28 | 2005-11-10 | Brunker David L | Grouped element transmission channel link termination assemblies |
US6976881B2 (en) | 2001-12-28 | 2005-12-20 | Molex Incorporated | Grouped element transmission channel link termination assemblies |
US7061342B2 (en) | 2001-12-28 | 2006-06-13 | Molex Incorporated | Differential transmission channel link for delivering high frequency signals and power |
US20050176268A1 (en) * | 2003-03-14 | 2005-08-11 | Victor Zaderej | Grouped element transmission channel link with pedestal aspects |
US7699672B2 (en) | 2003-03-14 | 2010-04-20 | Molex Incorporated | Grouped element transmission channel link with pedestal aspects |
US7273401B2 (en) | 2003-03-14 | 2007-09-25 | Molex Incorporated | Grouped element transmission channel link with pedestal aspects |
US20080102692A1 (en) * | 2003-03-14 | 2008-05-01 | Victor Zaderej | Grouped element transmission channel link with pedestal aspects |
US7753744B2 (en) | 2003-03-14 | 2010-07-13 | Molex Incorporated | Grouped element transmission channel link with pedestal aspects |
US20070200554A1 (en) * | 2004-03-04 | 2007-08-30 | Tetsuo Yumoto | Solid or three-dimensional circuit board |
US8528202B2 (en) | 2004-03-04 | 2013-09-10 | Sankyo Kasei Co., Ltd. | Method for manufacturing a three dimensional circuit board |
US20080318478A1 (en) * | 2007-05-02 | 2008-12-25 | Finisar Corporaton | Molded card edge connector for attachment with a printed circuit board |
US7789674B2 (en) * | 2007-05-02 | 2010-09-07 | Finisar Corporation | Molded card edge connector for attachment with a printed circuit board |
WO2009031894A1 (en) * | 2007-09-05 | 2009-03-12 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | A process for preparing a moulded product |
EP2033756A1 (en) * | 2007-09-05 | 2009-03-11 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | A process for preparing a moulded product |
US20100247907A1 (en) * | 2007-09-05 | 2010-09-30 | Roland Anthony Tacken | Process for preparing a moulded product |
US8006075B2 (en) | 2009-05-21 | 2011-08-23 | Oracle America, Inc. | Dynamically allocated store queue for a multithreaded processor |
US20110094778A1 (en) * | 2009-10-27 | 2011-04-28 | Cheng-Po Yu | Circuit board and fabrication method thereof |
TWI417013B (en) * | 2010-05-14 | 2013-11-21 | Kuang Hong Prec Co Ltd | Stereo circuit device and manufacturing method thereof |
US20150194794A1 (en) * | 2012-07-12 | 2015-07-09 | Labinal, Llc | Load buss assembly and method of manufacturing the same |
US9997895B2 (en) * | 2012-07-12 | 2018-06-12 | Labinal, Llc | Load buss assembly and method of manufacturing the same |
US11802528B2 (en) | 2018-12-20 | 2023-10-31 | Vitesco Technologies GmbH | Fuel delivery assembly and fuel delivery unit |
Also Published As
Publication number | Publication date |
---|---|
JPS63128181A (en) | 1988-05-31 |
US4812275A (en) | 1989-03-14 |
JPH0660416B2 (en) | 1994-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5015519A (en) | Molded article with partial metal plating and a process for producing such article | |
US4080513A (en) | Molded circuit board substrate | |
EP0192233B1 (en) | Molded metallized articles and processes for making the same | |
US4908259A (en) | Molded article with partial metal plating and a process for producing such article | |
US3522085A (en) | Article and method for making resistors in printed circuit board | |
US4812353A (en) | Process for the production of circuit board and the like | |
US4759952A (en) | Process for printed circuit board manufacture | |
US3346415A (en) | Flexible printed circuit wiring | |
EP0323685B1 (en) | Process for the production of molded articles having partial metal plating | |
JPH01207989A (en) | Plastic molded item | |
JP2603828B2 (en) | Manufacturing method of molded products such as circuit boards | |
JPH02294486A (en) | Electroless plating method | |
JP2693863B2 (en) | Method for manufacturing a three-dimensional molded product in which a plurality of independent three-dimensional conductive circuits are enclosed | |
EP2267184A1 (en) | A method for plating a copper interconnection circuit on the surface of a plastic device | |
JPH04338529A (en) | Manufacture of synthetic resin composite molded item | |
JPH07316825A (en) | Production of formed article of partially plated aromatic polyester liquid crystal polymer | |
JP2533322B2 (en) | Circuit board manufacturing method | |
JP2726992B2 (en) | Manufacturing method of molded products such as circuit boards | |
KR890001415B1 (en) | Printing circuit plate and method of it which has penol resin and two sides | |
JP2566559B2 (en) | Manufacturing method of printed wiring board | |
JPH1012994A (en) | Manufacture of molded product provided with conductive circuit | |
JPS63130778A (en) | Production of plastic molding | |
JPH08296047A (en) | Production of molded goods for circuit board and the like and molded goods | |
JP3087989B2 (en) | Circuit component manufacturing method | |
JPH10183361A (en) | Three-dimensionally molded circuit parts and their production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SANKYO KASEI KABUSHIKI KAISHA, A CORP. OF JAPAN, J Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:YUMOTO, TETSUO;REEL/FRAME:005160/0013 Effective date: 19891006 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |