US4461736A - Method of producing a dam for a communication cable - Google Patents
Method of producing a dam for a communication cable Download PDFInfo
- Publication number
- US4461736A US4461736A US06/336,364 US33636481A US4461736A US 4461736 A US4461736 A US 4461736A US 33636481 A US33636481 A US 33636481A US 4461736 A US4461736 A US 4461736A
- Authority
- US
- United States
- Prior art keywords
- resin
- mold
- gaps
- sheath
- transmission members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004891 communication Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000011347 resin Substances 0.000 claims abstract description 145
- 229920005989 resin Polymers 0.000 claims abstract description 145
- 230000005540 biological transmission Effects 0.000 claims abstract description 25
- 238000005187 foaming Methods 0.000 claims abstract description 18
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 239000006071 cream Substances 0.000 claims description 9
- 239000012948 isocyanate Substances 0.000 claims description 7
- 150000002513 isocyanates Chemical class 0.000 claims description 7
- 239000004604 Blowing Agent Substances 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 claims description 4
- 239000004088 foaming agent Substances 0.000 claims 1
- 239000004020 conductor Substances 0.000 description 16
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 13
- 239000004848 polyfunctional curative Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000012212 insulator Substances 0.000 description 10
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 9
- -1 polyethylene Polymers 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 238000005382 thermal cycling Methods 0.000 description 7
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 7
- ARSRBNBHOADGJU-UHFFFAOYSA-N 7,12-dimethyltetraphene Chemical compound C1=CC2=CC=CC=C2C2=C1C(C)=C(C=CC=C1)C1=C2C ARSRBNBHOADGJU-UHFFFAOYSA-N 0.000 description 5
- VFZRZRDOXPRTSC-UHFFFAOYSA-N DMBA Natural products COC1=CC(OC)=CC(C=O)=C1 VFZRZRDOXPRTSC-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- GSCCALZHGUWNJW-UHFFFAOYSA-N N-Cyclohexyl-N-methylcyclohexanamine Chemical compound C1CCCCC1N(C)C1CCCCC1 GSCCALZHGUWNJW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/22—Sheathing; Armouring; Screening; Applying other protective layers
- H01B13/221—Sheathing; Armouring; Screening; Applying other protective layers filling-up interstices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/12—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G1/00—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
- H02G1/14—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for joining or terminating cables
- H02G1/145—Moulds
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G15/00—Cable fittings
- H02G15/003—Filling materials, e.g. solid or fluid insulation
Definitions
- This invention relates to a method of producing a dam for a communication cable, and more particularly to a method of forming a gas-tight or water-tight dam by filling a portion of the communication cable with resin.
- dams for communication cables have been formed at the actual sites where the communication cables are laid.
- the environment for operation varies widely at the actual sites, it is difficult to form the dams reliably in their gas or water tightness. Therefore, of late, dams have been formed at the portion or portions of the communication cables in factories where the enviroment for operation is better controlled. In this case, the products have been taken up on drums in the form of communication cable having a dam provided therein.
- a communication cable having a dam In order to make such a communication cable having a dam provided therein, exposed portions of insulated conductors of the communication cable which are formed by stripping the sheath (and which may be connected portions of the insulated conductors) are covered with a mold which is placed between the ends of the sheath portions on both sides of the exposed portions of the insulated conductors. Resin is injected into the mold so that the gaps or interstices among the insulated conductors are filled with the resin. Thereafter, the resin is cured so as to form a dam in the communication cable.
- the resin for the dam may be polyethylene, epoxy resin, urethane resin and so on.
- urethane resin since urethane resin generates less heat than epoxy resin on curing, it can be cured at a higher speed, but it has a problem of gas-tightness because it has no adhesion to polyethylene from which the insulators for the conductors are made.
- self-curing resin is used as the dam resin.
- the self-curing resin is foamed in a mold after being injected while it is still not foamed.
- This resin is cured under a high pressure of the resin in the mold, which is caused by the fact that a viscosity or fluidity resistance of the resin is increased as it progresses to be cured when the resin intrudes into the gaps between transmission members (such as insulated conductors) within a sheath by its volume expansion on foaming the resin.
- the dam resin injected into the mold is in the fluid state for substantial time, then it is introduced through the transmission member gaps into the sheath portions. This causes what is called “sinking" to be produced in the dam, and as a result, it is not able to produce the dam having a good gas-tightness.
- the dam resin is cured at higher speed so that it is cured before flowing into the gaps between the transmission members, then a good dam cannot be formed.
- the dam resin has to be allowed to flow and some degree into the transmission member gaps in the sheath portions.
- the length of the cable along which the dam resin flows into the sheath portions should not prevent the flexibility of the cable which is required near the dam, it may be about 20 to 80 mm although it depends on the type of the cable. Meanwhile, if the dam resin is allowed to flow into the sheath portions, then the amount of the resin in the mold decreases so that there remains the problem of "sinking" as aforementioned.
- this invention there is essentially used as a dam resin, self-curing resin which is fluid when injected into a mold, but cured while it is foamed after injected into the mold.
- a dam resin self-curing resin which is fluid when injected into a mold, but cured while it is foamed after injected into the mold.
- the amount of resin flowing into the gaps in the sheath portions can be made up for by its volume expansion which occurs when it is foamed. But, it is difficult to assure the adhesion between the insulators for the transmission members and the dam resin only by foaming it.
- the rate at which the resin is foamed and cured is so determined that it progresses to be foamed and cured when the resin injected into the mold intrudes into the gaps between the transmission members within the sheath portions.
- the dam resin is tightly forced against the surfaces of the insulators for the transmission members.
- the tightness between the insulators for the transmission members and the dam resin is assured by curing it on the condition of forcing it against the surfaces of the insulators. Also, if the rate at which the resin is foamed and cured is determined as aforementioned, the length of the cable along which the resin intrudes into the sheath portions is preferably shorter.
- the dam resin should be one which is foamed and cured in a relatively shorter time after injected into the mold. It may be a two-component resin system consisting of resin such as urethane resin including blowing agent such as Freon, a registered trademark of E. I. DuPont de Nemours & Co. and the like and hardener, for example. As the resin is combined with the hardener, the curing reaction generates heat, which foams the resin by vaporizing the blowing agent. The rate at which the resin is foamed and cured may be controlled by adjusting the amount of catalyst included in the resin.
- cream-time means is the period after the two components are mixed until the resin exhibits a creamy state to begin to be foamed by the reaction heat. At the time when the resin begins to be foamed, since the volume of the resin begins to be increased, it can be confirmed visually through a suitable glass container.
- the rate at which the resin used is foamed and cured being indicated by the cream-time, it may be 20 to 60 seconds and preferably 30 to 45 seconds. If the cream-time is less than 20 seconds, then the foaming and curing rate is too high to fully diffuse the resin into the conductor gaps in the mold. Thus, it will be noted that the gas-tight dam cannot be formed. On the other hand, if the cream-time is more than 60 seconds, then the foaming and curing rate is too low so that the length of the cable along which the resin intrudes into the sheath portions becomes longer and so that it is difficult to increase the foaming pressure of the resin in the mold.
- the resin which is foamed and cured in a substantially shorter time When the curing rate is high, there is a problem of dissolving the conductor insulators caused by the curing. This can be avoided by suitably selecting the type of resin used.
- the preferable resin used in the invention is one which selfcures on reaction of isocyanate with a compound having reactive hydrogen and is foamed by vaporizing the blowing agent of Freon by the heat on curing reaction.
- water and Freon may be industrially used as the blowing agent.
- the water is used for utilizing the property of reacting with the hardener of isocyanate to generate carbon dioxide gas while Freon is used for utilizing the property of being vaporized by the heat accompanied by urethane curing reaction.
- Freon is used for utilizing the property of being vaporized by the heat accompanied by urethane curing reaction. Comparing the two, water foaming is unfavorable in view of the following points. Since the hardener of isocyanate reacts with both water and polyol, when the resin is foamed by reacting water with isocyanate before urethane becomes viscous liquid as the urethane curing reaction progresses to a certain degree, the foams are removed out of the urethane and/or communicate with each other.
- urethane reaction should be made earlier than water reaction. But, since urethane is cured, but not foamed if the urethane reaction progresses too much, a cure control agent having a strong virulence such as an organic mercury should be used to control the viscosity of urethane. Also, the products formed by water reaction has a mold removing property poorer than those formed by Freon reaction. On the other hand, in the Freon foaming, since Freon is not vaporized as long as the resin reacts to a certain degree to become a viscous liquid, the reaction and foaming can be more easily controlled.
- a gas-tight dam can be produced in a much shorter time and an interference for dam resin is not required to be provided at the sheath ends or can be more simplified, with the result that the productivity can be advantageously much improved.
- a simple interference may be provided if necessary.
- a thin rod, swab (rod having a cotton head) or the like may be inserted into the gap.
- foaming urethane resin there is used foaming urethane resin, it should be noted that the resin to be used is never limited thereto, and may be another resin so long as it has the same property as the foaming urethane resin.
- FIG. 1 is a cross sectional view of a dam which is in the course of being produced it in accordance with the method of the invention.
- a sheath 3 is stripped at the portion of the cable where the dam is formed to expose transmission members 4 thereto.
- the exposed portions of the transmission members 4 are untwisted if necessary to ease resin to be introduced into gaps between the transmission members. If the cable has only a few pairs, the operation of untwisting will not be required.
- the portions of the cable where the dam is to be formed are covered with a mold 5.
- the mold 5 may be composed of metal and longitudinally divided into two halves. The mold 5 is mounted at both ends on the portions of the sheath 3 so as to tightly engage them.
- a resin injection port 6 is provided at the center of the mold 5.
- Resin to form the dam is injected through the injection port 6 into the mold 5 where it is foamed and cured.
- the injection port 6 is closed by a cap 7 after the resin is injected.
- the mold 5 is separately divided and removed from the cable.
- the aforementioned operation was commonly made in connection with all of the examples and the comparisons described later.
- the communication cables used in the examples and the comparisons were a 800-pair polyethylene insulated, stalpeth sheathed cable having a conductor diameter of 0.4 mm. No interference was provided at the sheath portions in any of the examples and the comparisons.
- dams as had no variation in gas pressure, when 24 hours elapsed after a gas of 1 kg/cm 2 was enclosed at 23° C. in one of the cable portions on both sides of the dams, were considered to be accepted.
- thermal cycling test such dams as had no variation in gas pressure when they were subject to 100 thermal cycles of -20° to 60° C. every two cycles per day after gas of 1 kg/cm 2 was enclosed at 23° C. in one of the cable portions on both sides of the dams were considered to be accepted.
- dam resin two component urethane resin having the following formulation.
- the "cream-time" of the resin was 35 seconds. After two components were mixed with each other, they were injected into the mold 5 and after that the injection port 6 was closed by the cap 7.
- the rise-off time of the resin was 90 seconds, and as the mold was removed when 10 minutes elapsed after injection in view of the time for after-cure, it was found that the foaming and curing were completed.
- an adhesive plastic film of polyethylene was melted onto the surface of the portion of the sheath 3 within the mold in order to improve the adhesion between the sheath portion and the resin.
- the dams were broken up and the length of the cable portion along which the resin intruded into the sheath portion was 30 to 50 mm when measured. Since the length L along which the sheath 3 was covered with the resin was 60 mm, such intrusion length will not hinder the flexibility of the cable portions adjacent to the dams.
- the density of the resin foamed and cured within the mold was 1.05 g/cm 3 when measured. Since the density of the resin when freely foamed is 0.68 g/cm 3 , it will be noted that the resin foamed within the mold was cured while it is compressed or pressurized.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Processing Of Terminals (AREA)
- Gas Or Oil Filled Cable Accessories (AREA)
- Manufacturing Of Electric Cables (AREA)
- Organic Insulating Materials (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4939380A JPS56156616A (en) | 1980-04-15 | 1980-04-15 | Method of manufacturing dam for communication cable |
Publications (1)
Publication Number | Publication Date |
---|---|
US4461736A true US4461736A (en) | 1984-07-24 |
Family
ID=12829778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/336,364 Expired - Lifetime US4461736A (en) | 1980-04-15 | 1981-04-14 | Method of producing a dam for a communication cable |
Country Status (4)
Country | Link |
---|---|
US (1) | US4461736A (enrdf_load_stackoverflow) |
EP (1) | EP0050158B1 (enrdf_load_stackoverflow) |
JP (1) | JPS56156616A (enrdf_load_stackoverflow) |
WO (1) | WO1981003085A1 (enrdf_load_stackoverflow) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4648919A (en) * | 1984-09-18 | 1987-03-10 | Raychem Corp. | Protection of cable splice |
US4755020A (en) * | 1983-11-08 | 1988-07-05 | Andrew Corporation | Gas-blocked optical fiber cable unit |
EP0470396A3 (en) * | 1990-08-07 | 1992-07-08 | Kabelwerke Reinshagen Gmbh | Mould |
US5131688A (en) * | 1990-12-28 | 1992-07-21 | Coupling Systems, Inc. | Pipe insulator and method for making same |
US5168124A (en) * | 1990-03-28 | 1992-12-01 | Yazaki Corporation | Waterproof seal construction for wire harness |
US5536904A (en) * | 1993-05-24 | 1996-07-16 | Sumitomo Wiring Systems, Ltd. | Waterproof construction of wire |
US5560882A (en) * | 1992-08-07 | 1996-10-01 | Alcatel Cable | Method of overmolding an underwater cable equipment |
US6027679A (en) * | 1997-08-29 | 2000-02-22 | Lear Automotive Dearborn, Inc. | Method for securing a wire harness to a surface |
US20040170819A1 (en) * | 2000-06-14 | 2004-09-02 | Boyer Thomas D. | Encapsulation using microcellular foamed materials |
US20050266155A1 (en) * | 2002-09-12 | 2005-12-01 | Utilx Corporation | Apparatus and method for injecting fluid into a cable having fibrous insulation |
US20080136120A1 (en) * | 2003-03-18 | 2008-06-12 | Cooper Industries, Llc. | Sealing fitting with expanding material |
US20100140877A1 (en) * | 2006-11-15 | 2010-06-10 | Kimleigh George Montague Pratley | Method for forming a seal on conductors of an electrical cable |
TWI401853B (enrdf_load_stackoverflow) * | 2009-06-09 | 2013-07-11 | ||
CN103907161A (zh) * | 2011-10-28 | 2014-07-02 | 矢崎总业株式会社 | 芯线中的防水结构和防水方法 |
US20150228381A1 (en) * | 2012-09-18 | 2015-08-13 | Leoni Bordnetz-Systeme Gmbh | Method for producing a cable harness and cable harness |
US20160089823A1 (en) * | 2014-09-30 | 2016-03-31 | Hitachi Metals, Ltd. | Producing method for cable with resin mold |
US20170154706A1 (en) * | 2015-11-26 | 2017-06-01 | Sumitomo Wiring Systems, Ltd. | Electrically conducting path |
TWI626663B (zh) * | 2016-12-28 | 2018-06-11 | 光泰電線電纜有限公司 | 適用於電機防漏電防漏水電線製造方法 |
US10978222B2 (en) | 2017-07-26 | 2021-04-13 | Autonetworks Technologies, Ltd. | Insulated electric wire |
US11024446B2 (en) * | 2017-07-26 | 2021-06-01 | Autonetworks Technologies, Ltd. | Production method for insulated electric wire and insulated electric wire |
US11145441B2 (en) * | 2019-04-02 | 2021-10-12 | Crompton Technology Group, Ltd. | Electrical isolator |
US12136504B2 (en) * | 2022-05-05 | 2024-11-05 | Dsm&T Company Inc. | Moisture resistant seal for electrical cable assemblies |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0145307A3 (en) * | 1983-11-14 | 1985-08-28 | RAYCHEM CORPORATION (a California corporation) | Cable blocking |
GB9519287D0 (en) * | 1995-09-21 | 1995-11-22 | Sicame Electrical Dev Ltd | Electrical conductor enclosing apparatus |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2320506A (en) * | 1939-03-04 | 1943-06-01 | Okonitecallender Cable Company | Method of forming dams |
US2957038A (en) * | 1959-03-02 | 1960-10-18 | Bell Telephone Labor Inc | Plugging of plastic insulated cable |
US3427393A (en) * | 1966-11-03 | 1969-02-11 | Gen Cable Corp | Gastight plugs for communication cables |
DE1956497A1 (de) * | 1968-11-05 | 1970-06-11 | Minnesota Mining & Mfg | Verbessertes Verfahren und Massen fuer Kabelbloecke |
US3582533A (en) * | 1969-09-16 | 1971-06-01 | Ite Imperial Corp | Underground transmission system employing bare conductors supported by electrical insulating foam |
US3710440A (en) * | 1970-01-16 | 1973-01-16 | Phelps Dodge Copper Prod | Manufacture of coaxial cable |
DE2328633A1 (de) * | 1972-06-08 | 1974-01-03 | Int Standard Electric Corp | Verfahren zur herstellung einer gassperre in der muffe eines fernsprechkabels |
US3872233A (en) * | 1972-11-14 | 1975-03-18 | Cit Alcatel | Sealed connection device for a cable |
US3955043A (en) * | 1974-04-11 | 1976-05-04 | General Electric Company | High voltage cable splice using foam insulation with thick integral skin in highly stressed regions |
US3992569A (en) * | 1975-02-11 | 1976-11-16 | Hexcel Corporation | Protective cable enclosure, cable assembly including the same, and method of encapsulating a cable in a protective enclosure |
JPS5347509A (en) * | 1976-10-07 | 1978-04-28 | Mitsubishi Chem Ind | Ammonium nitrate composition for explosive |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2038844A5 (en) * | 1969-03-31 | 1971-01-08 | Thomson Csf | Heavy duty electric cable with fe or al - outer conductor sheathed in plastics foam |
JPS4829114B1 (enrdf_load_stackoverflow) * | 1969-05-08 | 1973-09-07 |
-
1980
- 1980-04-15 JP JP4939380A patent/JPS56156616A/ja active Granted
-
1981
- 1981-04-14 WO PCT/JP1981/000088 patent/WO1981003085A1/ja active IP Right Grant
- 1981-04-14 US US06/336,364 patent/US4461736A/en not_active Expired - Lifetime
- 1981-04-14 EP EP81900952A patent/EP0050158B1/en not_active Expired
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2320506A (en) * | 1939-03-04 | 1943-06-01 | Okonitecallender Cable Company | Method of forming dams |
US2957038A (en) * | 1959-03-02 | 1960-10-18 | Bell Telephone Labor Inc | Plugging of plastic insulated cable |
US3427393A (en) * | 1966-11-03 | 1969-02-11 | Gen Cable Corp | Gastight plugs for communication cables |
DE1956497A1 (de) * | 1968-11-05 | 1970-06-11 | Minnesota Mining & Mfg | Verbessertes Verfahren und Massen fuer Kabelbloecke |
US3582533A (en) * | 1969-09-16 | 1971-06-01 | Ite Imperial Corp | Underground transmission system employing bare conductors supported by electrical insulating foam |
US3710440A (en) * | 1970-01-16 | 1973-01-16 | Phelps Dodge Copper Prod | Manufacture of coaxial cable |
DE2328633A1 (de) * | 1972-06-08 | 1974-01-03 | Int Standard Electric Corp | Verfahren zur herstellung einer gassperre in der muffe eines fernsprechkabels |
GB1348749A (en) * | 1972-06-08 | 1974-03-20 | Standard Telephones Cables Ltd | Gas blocks for electric cable joints and terminations |
JPS4961691A (enrdf_load_stackoverflow) * | 1972-06-08 | 1974-06-14 | ||
US3872233A (en) * | 1972-11-14 | 1975-03-18 | Cit Alcatel | Sealed connection device for a cable |
US3955043A (en) * | 1974-04-11 | 1976-05-04 | General Electric Company | High voltage cable splice using foam insulation with thick integral skin in highly stressed regions |
US3992569A (en) * | 1975-02-11 | 1976-11-16 | Hexcel Corporation | Protective cable enclosure, cable assembly including the same, and method of encapsulating a cable in a protective enclosure |
JPS5347509A (en) * | 1976-10-07 | 1978-04-28 | Mitsubishi Chem Ind | Ammonium nitrate composition for explosive |
Non-Patent Citations (4)
Title |
---|
Bender, Rene J., Handbook of Foamed Plastics, Libertyville, Ill., Lake Publishing Corp., © 1965, p. 166. |
Bender, Rene J., Handbook of Foamed Plastics, Libertyville, Ill., Lake Publishing Corp., 1965, p. 166. * |
Masterson, J. B., "Pressure Dams in Communication Cables", in Wire & Wire Products, May 1970, pp. 61-65. |
Masterson, J. B., Pressure Dams in Communication Cables , in Wire & Wire Products, May 1970, pp. 61 65. * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4755020A (en) * | 1983-11-08 | 1988-07-05 | Andrew Corporation | Gas-blocked optical fiber cable unit |
US4648919A (en) * | 1984-09-18 | 1987-03-10 | Raychem Corp. | Protection of cable splice |
US5168124A (en) * | 1990-03-28 | 1992-12-01 | Yazaki Corporation | Waterproof seal construction for wire harness |
EP0470396A3 (en) * | 1990-08-07 | 1992-07-08 | Kabelwerke Reinshagen Gmbh | Mould |
US5131688A (en) * | 1990-12-28 | 1992-07-21 | Coupling Systems, Inc. | Pipe insulator and method for making same |
US5560882A (en) * | 1992-08-07 | 1996-10-01 | Alcatel Cable | Method of overmolding an underwater cable equipment |
US5536904A (en) * | 1993-05-24 | 1996-07-16 | Sumitomo Wiring Systems, Ltd. | Waterproof construction of wire |
US6027679A (en) * | 1997-08-29 | 2000-02-22 | Lear Automotive Dearborn, Inc. | Method for securing a wire harness to a surface |
US20040170819A1 (en) * | 2000-06-14 | 2004-09-02 | Boyer Thomas D. | Encapsulation using microcellular foamed materials |
US20050266155A1 (en) * | 2002-09-12 | 2005-12-01 | Utilx Corporation | Apparatus and method for injecting fluid into a cable having fibrous insulation |
US20080136120A1 (en) * | 2003-03-18 | 2008-06-12 | Cooper Industries, Llc. | Sealing fitting with expanding material |
US20100140877A1 (en) * | 2006-11-15 | 2010-06-10 | Kimleigh George Montague Pratley | Method for forming a seal on conductors of an electrical cable |
US9252586B2 (en) * | 2006-11-15 | 2016-02-02 | Pratley Investments (Propietary) Limited | Method for forming a seal on conductors of an electrical cable |
TWI401853B (enrdf_load_stackoverflow) * | 2009-06-09 | 2013-07-11 | ||
US20140299353A1 (en) * | 2011-10-28 | 2014-10-09 | Yazaki Corporation | Waterproofing Structure and Waterproofing Method in Core Wire |
CN103907161A (zh) * | 2011-10-28 | 2014-07-02 | 矢崎总业株式会社 | 芯线中的防水结构和防水方法 |
US9437349B2 (en) * | 2011-10-28 | 2016-09-06 | Yazaki Corporation | Waterproofing structure and waterproofing method in core wire |
US9666338B2 (en) * | 2012-09-18 | 2017-05-30 | Leoni Bordnetz-Systeme Gmbh | Method for producing a cable harness and cable harness |
US20150228381A1 (en) * | 2012-09-18 | 2015-08-13 | Leoni Bordnetz-Systeme Gmbh | Method for producing a cable harness and cable harness |
US10046492B2 (en) * | 2014-09-30 | 2018-08-14 | Hitachi Metals, Ltd. | Producing method for cable with resin mold |
US20160089823A1 (en) * | 2014-09-30 | 2016-03-31 | Hitachi Metals, Ltd. | Producing method for cable with resin mold |
US20170154706A1 (en) * | 2015-11-26 | 2017-06-01 | Sumitomo Wiring Systems, Ltd. | Electrically conducting path |
US9972417B2 (en) * | 2015-11-26 | 2018-05-15 | Sumitomo Wiring Systems, Ltd. | Electrically conducting path |
TWI626663B (zh) * | 2016-12-28 | 2018-06-11 | 光泰電線電纜有限公司 | 適用於電機防漏電防漏水電線製造方法 |
US10978222B2 (en) | 2017-07-26 | 2021-04-13 | Autonetworks Technologies, Ltd. | Insulated electric wire |
US11024446B2 (en) * | 2017-07-26 | 2021-06-01 | Autonetworks Technologies, Ltd. | Production method for insulated electric wire and insulated electric wire |
US11348704B2 (en) * | 2017-07-26 | 2022-05-31 | Autonetworks Technologies, Ltd. | Production method for insulated electric wire and insulated electric wire |
US20220254547A1 (en) * | 2017-07-26 | 2022-08-11 | Autonetworks Technologies, Ltd. | Production method for insulated electric wire and insulated electric wire |
US11657928B2 (en) * | 2017-07-26 | 2023-05-23 | Autonetworks Technologies, Ltd. | Production method for insulated electric wire and insulated electric wire |
US11145441B2 (en) * | 2019-04-02 | 2021-10-12 | Crompton Technology Group, Ltd. | Electrical isolator |
US12136504B2 (en) * | 2022-05-05 | 2024-11-05 | Dsm&T Company Inc. | Moisture resistant seal for electrical cable assemblies |
Also Published As
Publication number | Publication date |
---|---|
WO1981003085A1 (en) | 1981-10-29 |
JPS56156616A (en) | 1981-12-03 |
EP0050158A4 (en) | 1983-02-14 |
EP0050158B1 (en) | 1986-09-24 |
EP0050158A1 (en) | 1982-04-28 |
JPH0119204B2 (enrdf_load_stackoverflow) | 1989-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4461736A (en) | Method of producing a dam for a communication cable | |
US4670069A (en) | Protection of cable splice | |
US3879575A (en) | Encapsulating compound and closure | |
US4392014A (en) | Telephone cable splices | |
US3789099A (en) | Methods of manufacturing waterproof cable | |
KR20010109284A (ko) | 접합 케이스용 엔드 시일 조립체 | |
CA1074486A (en) | Polyurethane composition having easy re-entry property | |
US4029626A (en) | Polyurethane composition having easy-reentry property | |
US3876487A (en) | Apparatus for manufacturing waterproof cable | |
US3558801A (en) | Waterproof electrical cable and method of making same | |
ITTO940281A1 (it) | Procedimento per la sigillatura di un connettore elettrico e connettore cosi' ottenuto | |
FI59499C (fi) | Foerfarande foer framstaellning av en i laengdriktningen vattentaet telekommunikationskabel och enligt foerfarandet framstaelld i laengdriktningen vattentaet telekommunikationskabel | |
CA1213698A (en) | Water blocking compounds for cables | |
US4106961A (en) | Method of manufacturing a longitudinally watertight telecommunication cable | |
EP0183778B1 (en) | Forced encapsulation means | |
EP0062992B1 (en) | Telephone cable splices | |
IE34792L (en) | Jointing and terminating electric cables | |
EP0115220B1 (en) | A process for producing a pressuretight cable termination | |
JPH0128588Y2 (enrdf_load_stackoverflow) | ||
CA1059847A (en) | Method of and apparatus for sealing a cable core with waterproofing compound | |
JPH0454927B2 (enrdf_load_stackoverflow) | ||
JPH0797889B2 (ja) | 自動車用ワイヤハ−ネスの封止構造体 | |
DE2328633A1 (de) | Verfahren zur herstellung einer gassperre in der muffe eines fernsprechkabels | |
JPS5822163Y2 (ja) | 光フアイバケ−ブルのガスダム | |
GB1169797A (en) | Telecommunication Cable having Plastics-Insulated Cores and method of producing such a Cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FURUKAWA ELECTRIC CO. LTD. 6-1, MARUNOUCHI 2-CHOME Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TAKAGI, SEIJI;REEL/FRAME:003993/0286 Effective date: 19811203 Owner name: FURUKAWA ELECTRIC CO. LTD.,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKAGI, SEIJI;REEL/FRAME:003993/0286 Effective date: 19811203 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |