US4207864A - Damper - Google Patents

Damper Download PDF

Info

Publication number
US4207864A
US4207864A US05/913,605 US91360578A US4207864A US 4207864 A US4207864 A US 4207864A US 91360578 A US91360578 A US 91360578A US 4207864 A US4207864 A US 4207864A
Authority
US
United States
Prior art keywords
damper
blade
frame
duct
damper blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/913,605
Inventor
George A. Fischer
Robert A. Walter
Albert S. Melilli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US05/913,605 priority Critical patent/US4207864A/en
Priority to NL7903119A priority patent/NL187651C/en
Priority to NZ19027279A priority patent/NZ190272A/en
Priority to GB7918458A priority patent/GB2022781B/en
Priority to IT2315379A priority patent/IT1121309B/en
Priority to JP54070168A priority patent/JPS5914656B2/en
Priority to NO791897A priority patent/NO791897L/en
Priority to FR7914702A priority patent/FR2428192A1/en
Application granted granted Critical
Publication of US4207864A publication Critical patent/US4207864A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/165Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with a plurality of closure members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87265Dividing into parallel flow paths with recombining
    • Y10T137/8741With common operator
    • Y10T137/87442Rotary valve
    • Y10T137/87467Axes of rotation parallel
    • Y10T137/87483Adjacent plate valves counter rotate

Definitions

  • This invention relates to the control of fluid flow through a conduit and, in particular, relates to the control of hot gas through a relatively large conduit.
  • a combined cycle power plant is one in which a gas turbine and a steam turbine are combined to produce electricity.
  • the connecting link between the two is a heat recovery steam generator (HRSG) wherein there is a heat transfer relationship between the hot gas turbine exhaust gas and the steam turbine feedwater which is converted to steam.
  • HRSG heat recovery steam generator
  • the exhaust end of the gas turbine is connected by a conduit with the HRSG and gas flow between the two is controlled by a so called isolation damper.
  • isolation damper There are times when it is desirable to isolate the HRSG from the hot exhaust gas and for this purpose there is provided a bypass stack which will exhaust the hot gas to the atmosphere. Gas flow through the bypass stack is controlled by a bypass damper.
  • the frame which contains the damper blade is also subject to thermal deformation which may cause the frame sides to bow inwardly resulting in an interference with the blade and/or cause the structure to fail at corner joints or to twist. Differential expansion between the frame and adjacent ductwork can lead to distress and leakage at the frame flanges.
  • the invention is a damper blade and frame wherein the damper blade is rotatably secured within the frame.
  • the damper blade is constructed of a central support member and two blade halves.
  • the central support member is a box beam having a number of gas inlet and outlet ports included on its "hot" surfaces whereby the box beam is nearly equally heated throughout.
  • the blades are formed in two equal sections or blade halves.
  • Each blade half is a fabricated single metal sheet having a plurality of substantially wedge-like sections formed therein. These wedge-like sections stiffen the blade without adding weight or thickness to the cross section of the material and hence thermal uniformity is maintained throughout.
  • the frame is fabricated with thermal insulation included on its interior surfaces.
  • the thermal insulation comprises self-contained insulation packages including a stainless steel outer shell and insulation enclosed therein which is fastened to the interior surfaces of the frame. This insulates the frame from the hot exhaust gas and thereby minimizes thermal distortion.
  • spring seals are provided so that any clearances caused by thermal distortion about the periphery of the damper blade are compensated for by spring seals which follow the movement of the damper blade.
  • FIG. 1 is an isometric drawing of a damper frame having two damper blades rotatably supported therein.
  • FIG. 2 is a plan view of a damper blade.
  • FIG. 3 is an elevation view of the damper blade.
  • FIG. 4 is a side elevation view of the damper blade.
  • FIG. 5 is an isometric view of a wedge section of the damper blade.
  • FIG. 6 is an enlarged detailed view of a portion of the frame including a sealing ledge, a spring seal, and insulation according to the present invention.
  • the present invention is designed for but not limited to an application in combined cycle power plants.
  • the invention will be found in the hot gas conduit interconnecting a gas turbine with the HRSG. Another and companion application for the invention would occur at the bypass duct. The respective location of these elements is illustrated in U.S. Pat. No. 3,934,553 assigned to the assignee of the present invention.
  • a frame 11 according to the present invention is comprised of a plurality of channel sections 13 which may be assembled together to form a rectangle.
  • the frame is fairly massive and may have dimensions on the order of 24' by 12'.
  • the frame may be inserted across the respective hot gas conduits for the purpose of controlling the flow of hot gas through the conduit.
  • the frame may be built into the conduit or may be a free standing structure.
  • each blade may be mounted on a pair of stub shafts (not shown) which are extended into the frame through openings 17 in the frame. This obviously is not the only way of mounting the blades into the frame but it is believed to be one expedient method. The details of this construction are not shown since they are believed to be obvious to one of ordinary skill in the art and do not constitute a point of novelty.
  • each of the two blades there is a cross member 21 which serves to stiffen the frame while also providing a landing for the corresponding end of each damper blade.
  • This scheme could be carried into any arrangement wherein there is more than one damper blade. In the instance where there is but one damper blade the cross member is not needed.
  • the blade open in opposed fashion giving a more uniform flow distribution than would be the case with parallel opening blades which force the gas flow to one side.
  • the opposed opening blades give finer throttling control.
  • the sealing ledge 23 disposed on the interior surfaces of the frame.
  • the sealing ledge may comprise an angle member which is attached to the frame and cross-member should there be a cross-member present. Further details of the sealing arrangement claimed as part of this invention will be disclosed in the following paragraphs.
  • the damper blade is comprised of a central support member 31 to which are attached to blade halves 15A and 15B.
  • the central support member is a hollow box beam which further includes a pipe section 33 welded into each end.
  • the pipe section is adapted to receive the stub shafts when the blade is assembled to the frame.
  • the box beam is also formed with a plurality of gas ports 35 which admit gas to the inside of the box beam to minimize temperature differences throughout the blades.
  • the gas ports are formed in the surfaces of the box beam which face the hot gas when the damper is closed.
  • the outer surfaces of the box beam not facing the hot gas may be insulated to obtain still lower temperature differences in the box beam.
  • each blade half is comprised of a continuous single thickness of metal sheet and includes a plurality of substantially wedge-like section 39 formed in the single sheet.
  • the wedge-shaped sections provide stiffness to the damper blade without adding weight or thickness to the cross section.
  • the resulting structure will be heated uniformly by the hot exhaust gas and thus minimize the occurrence of warping.
  • FIG. 5 the manner in which each damper blade is formed with the wedge-like section is as follows.
  • Each wedge section may be formed from plate stock of predetermined dimensions by bending the stock so as to form an inclined upper surface 39A and tapered sidewalls 39B which may be bowed slightly outwardly from top to bottom. Adjacent the sidewalls are flat sections 39C which interconnect the wedge sections.
  • a plurality of wedge sections are then welded to each other and to the box beam.
  • An angle member is welded to each blade half at the tip so that after assembly a continuous flat surface is formed about the periphery of the blade.
  • insulation packages 41 are disposed adjacent the interior surfaces of the frame 11. These insulation packages include commercially available high temperature thermal insulation 43 in batt or block form which is protected by a stainless steel wrapper 45. These insulation packages are affixed to the interior surfaces of the frame by any convenient method as for example using bolts 47, nuts 49 and spacer pipes 51. A plurality of insulation packages may be used along the length of the frame sides so that spaces may be provided between the packages at convenient intervals to allow for thermal expansion.
  • Sealing means take the form of a sealing ledge 23 which extends inwardly from the interior surfaces of the frame to which a spring member may be affixed.
  • the sealing ledge comprises a structural angle having one leg extending inwardly towards its respective blade edge.
  • the sealing means further includes a spring member 51 which is formed so as to bend around the sealing ledge.
  • the spring member may be attached to the sealing ledge by a nut and bolt combination 53.
  • the spring member 51 is formed so as to follow the blade tip.
  • the free end of the blade tip is formed with a hook 55 which engages the sealing ledge when the blade is open. This allows the blade to warp slightly and move away from the sealing ledge a given amount without breaking contact between the seal and blade tip thereby resulting in leakage.
  • the hooked end 55 of the spring member 51 will engage the sealing ledge so as to prevent flutter of the spring member.
  • the seal member and sealing ledge may be slotted or made in segments to allow for thermal expansion. This engagement also prevents debris from lodging under the spring member and impairing its action.
  • the invention presents an improved damper and damper frame assembly having special application to hot gas control.
  • the interior surfaces of the frame are insulated from the hot gases by means of insulation packages which are affixed to the interior surfaces.
  • the blades themselves are formed from a box beam and blade half construction wherein the box beam provides a central support structure which is strong yet thermally compatible with each blade half.
  • the box beam is hollow and includes a plurality of openings on the hot gas side so as to minimize thermal differences and bowing of the box beam.
  • the outer surfaces of the box beam not facing the hot gas may be insulated to obtain still lower temperature differences in the box beam.
  • Each blade half is made by joining together a plurality of geometrically shaped sections.
  • Each geometric section is formed from a single sheet of metal thereby providing stiffness to the blade without substantially affecting the thermal response of the cross section.
  • the interior surface of the frame includes a sealing ledge which cooperates with the periphery of the damper blade to form a tight seal.
  • spring members are used to further increase the effectiveness of the seal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)
  • Air Supply (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The field of this invention is fluid flow control through large conduits. In particular, this invention is contemplated for use in a combined cycle power plant wherein gas turbine exhaust gas is either sent through a heat recovery steam generator (HRSG) or diverted to the atmosphere. The invention is a damper and frame assembly believed to be well suited to the purpose of channeling the hot exhaust gas within the context of a combined cycle power plant either as an isolation damper to the HRSG or a bypass damper to the exhaust stack. One key consideration is the thermal relationship between the damper blade and its adjacent frame and provision is made to provide a damper blade that will not warp and a frame wherein thermal growth and distortion are limited.

Description

BACKGROUND OF THE INVENTION
This invention relates to the control of fluid flow through a conduit and, in particular, relates to the control of hot gas through a relatively large conduit.
A combined cycle power plant is one in which a gas turbine and a steam turbine are combined to produce electricity. The connecting link between the two is a heat recovery steam generator (HRSG) wherein there is a heat transfer relationship between the hot gas turbine exhaust gas and the steam turbine feedwater which is converted to steam. The exhaust end of the gas turbine is connected by a conduit with the HRSG and gas flow between the two is controlled by a so called isolation damper. There are times when it is desirable to isolate the HRSG from the hot exhaust gas and for this purpose there is provided a bypass stack which will exhaust the hot gas to the atmosphere. Gas flow through the bypass stack is controlled by a bypass damper. This arrangement is clearly shown in U.S. Pat. No. 3,934,553 for a "Combined Wall Burner and Flame Holder for HRSG" and assigned to the assignee of the present invention.
Two basic and related problems associated with HRSG dampers are addressed in this application. One problem is warping and other forms of thermal distortion which may be found in both the frame and damper blade. Another related and corollary problem is leakage through the damper. In the prior art it has been found necessary to reinforce damper blades with heavy rib struts to provide for stiffness of the blade. The damper blade is a relatively thin metal sheet whereas the ribs are relatively heavy leading to unequal relative thermal expansions. Another problem is that only one side of the damper blade is heated when the damper is closed. Unequal heating and unequal masses can result in thermal deformation and warp which substantially increases gas leakage and can lead to damper blade cracking so that replacement or repair is necessary.
The frame which contains the damper blade is also subject to thermal deformation which may cause the frame sides to bow inwardly resulting in an interference with the blade and/or cause the structure to fail at corner joints or to twist. Differential expansion between the frame and adjacent ductwork can lead to distress and leakage at the frame flanges.
In designing the damper structure for near zero flow; i.e., a complete blocking of flow when closed it is desirable to provide some margin for slight thermal deformation. This is provided in the present invention as will be more particularly pointed out in the following paragraphs.
BRIEF DESCRIPTION OF THE INVENTION
The invention is a damper blade and frame wherein the damper blade is rotatably secured within the frame. The damper blade is constructed of a central support member and two blade halves. The central support member is a box beam having a number of gas inlet and outlet ports included on its "hot" surfaces whereby the box beam is nearly equally heated throughout.
The blades are formed in two equal sections or blade halves. Each blade half is a fabricated single metal sheet having a plurality of substantially wedge-like sections formed therein. These wedge-like sections stiffen the blade without adding weight or thickness to the cross section of the material and hence thermal uniformity is maintained throughout.
In conjunction with the invention, the frame is fabricated with thermal insulation included on its interior surfaces. The thermal insulation comprises self-contained insulation packages including a stainless steel outer shell and insulation enclosed therein which is fastened to the interior surfaces of the frame. This insulates the frame from the hot exhaust gas and thereby minimizes thermal distortion. Finally, spring seals are provided so that any clearances caused by thermal distortion about the periphery of the damper blade are compensated for by spring seals which follow the movement of the damper blade.
OBJECTS OF THE INVENTION
It is one object of the present invention to provide a damper blade and frame having improved leakage control characteristics.
It is another object of the present invention to provide a damper blade which is less susceptible to thermal distortion and warping.
It is another object of the invention to provide a damper frame which is less susceptible to thermal distortion.
It is still another object of the present invention to provide improved sealing means in conjunction with the damper blade and the frame.
Other objects and advantages will become apparent from the following description of the invention and the novel features will be particularly pointed out hereinafter in the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an isometric drawing of a damper frame having two damper blades rotatably supported therein.
FIG. 2 is a plan view of a damper blade.
FIG. 3 is an elevation view of the damper blade.
FIG. 4 is a side elevation view of the damper blade.
FIG. 5 is an isometric view of a wedge section of the damper blade.
FIG. 6 is an enlarged detailed view of a portion of the frame including a sealing ledge, a spring seal, and insulation according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is designed for but not limited to an application in combined cycle power plants. The invention will be found in the hot gas conduit interconnecting a gas turbine with the HRSG. Another and companion application for the invention would occur at the bypass duct. The respective location of these elements is illustrated in U.S. Pat. No. 3,934,553 assigned to the assignee of the present invention.
A frame 11 according to the present invention is comprised of a plurality of channel sections 13 which may be assembled together to form a rectangle. The frame is fairly massive and may have dimensions on the order of 24' by 12'. The frame may be inserted across the respective hot gas conduits for the purpose of controlling the flow of hot gas through the conduit. The frame may be built into the conduit or may be a free standing structure.
As shown in FIG. 1, there are two damper blades 15 rotatably mounted within the frame. While two damper blades are shown for purposes of illustration it is clear that one blade or more than two blades would fall within the scope of the present invention. Each blade may be mounted on a pair of stub shafts (not shown) which are extended into the frame through openings 17 in the frame. This obviously is not the only way of mounting the blades into the frame but it is believed to be one expedient method. The details of this construction are not shown since they are believed to be obvious to one of ordinary skill in the art and do not constitute a point of novelty.
Between each of the two blades there is a cross member 21 which serves to stiffen the frame while also providing a landing for the corresponding end of each damper blade. This scheme could be carried into any arrangement wherein there is more than one damper blade. In the instance where there is but one damper blade the cross member is not needed. As a preferred mode of operation, the blade open in opposed fashion giving a more uniform flow distribution than would be the case with parallel opening blades which force the gas flow to one side. In addition, the opposed opening blades give finer throttling control.
To complete the description of the frame member, there is also a sealing ledge 23 disposed on the interior surfaces of the frame. Referring briefly to FIG. 6, the sealing ledge may comprise an angle member which is attached to the frame and cross-member should there be a cross-member present. Further details of the sealing arrangement claimed as part of this invention will be disclosed in the following paragraphs.
Reference is now directed to FIGS. 2, 3 and 4 which show various views of the damper blade 15. The damper blade is comprised of a central support member 31 to which are attached to blade halves 15A and 15B. The central support member is a hollow box beam which further includes a pipe section 33 welded into each end. The pipe section is adapted to receive the stub shafts when the blade is assembled to the frame. The box beam is also formed with a plurality of gas ports 35 which admit gas to the inside of the box beam to minimize temperature differences throughout the blades. The gas ports are formed in the surfaces of the box beam which face the hot gas when the damper is closed. In addition, the outer surfaces of the box beam not facing the hot gas may be insulated to obtain still lower temperature differences in the box beam.
A key aspect to the present invention is the formation of each blade half. Each blade half is comprised of a continuous single thickness of metal sheet and includes a plurality of substantially wedge-like section 39 formed in the single sheet. The wedge-shaped sections provide stiffness to the damper blade without adding weight or thickness to the cross section. The resulting structure will be heated uniformly by the hot exhaust gas and thus minimize the occurrence of warping. Referring to FIG. 5, the manner in which each damper blade is formed with the wedge-like section is as follows. Each wedge section may be formed from plate stock of predetermined dimensions by bending the stock so as to form an inclined upper surface 39A and tapered sidewalls 39B which may be bowed slightly outwardly from top to bottom. Adjacent the sidewalls are flat sections 39C which interconnect the wedge sections. A plurality of wedge sections are then welded to each other and to the box beam. An angle member is welded to each blade half at the tip so that after assembly a continuous flat surface is formed about the periphery of the blade.
Referring now to FIG. 6 in more complete detail, insulation packages 41 are disposed adjacent the interior surfaces of the frame 11. These insulation packages include commercially available high temperature thermal insulation 43 in batt or block form which is protected by a stainless steel wrapper 45. These insulation packages are affixed to the interior surfaces of the frame by any convenient method as for example using bolts 47, nuts 49 and spacer pipes 51. A plurality of insulation packages may be used along the length of the frame sides so that spaces may be provided between the packages at convenient intervals to allow for thermal expansion.
Sealing means take the form of a sealing ledge 23 which extends inwardly from the interior surfaces of the frame to which a spring member may be affixed. In one preferred embodiment the sealing ledge comprises a structural angle having one leg extending inwardly towards its respective blade edge. The sealing means further includes a spring member 51 which is formed so as to bend around the sealing ledge. The spring member may be attached to the sealing ledge by a nut and bolt combination 53. The spring member 51 is formed so as to follow the blade tip. The free end of the blade tip is formed with a hook 55 which engages the sealing ledge when the blade is open. This allows the blade to warp slightly and move away from the sealing ledge a given amount without breaking contact between the seal and blade tip thereby resulting in leakage. When the blade 15 is drawn away from the spring member 51 as it is opened the hooked end 55 of the spring member 51 will engage the sealing ledge so as to prevent flutter of the spring member. The seal member and sealing ledge may be slotted or made in segments to allow for thermal expansion. This engagement also prevents debris from lodging under the spring member and impairing its action.
In summation the invention presents an improved damper and damper frame assembly having special application to hot gas control. The interior surfaces of the frame are insulated from the hot gases by means of insulation packages which are affixed to the interior surfaces. The blades themselves are formed from a box beam and blade half construction wherein the box beam provides a central support structure which is strong yet thermally compatible with each blade half. The box beam is hollow and includes a plurality of openings on the hot gas side so as to minimize thermal differences and bowing of the box beam. In addition the outer surfaces of the box beam not facing the hot gas may be insulated to obtain still lower temperature differences in the box beam. Each blade half is made by joining together a plurality of geometrically shaped sections. Each geometric section is formed from a single sheet of metal thereby providing stiffness to the blade without substantially affecting the thermal response of the cross section. The interior surface of the frame includes a sealing ledge which cooperates with the periphery of the damper blade to form a tight seal. In addition, spring members are used to further increase the effectiveness of the seal.
While there has been shown what is considered at present to be the preferred embodiments of the invention, other modifications may occur to those skilled in the art. Such modifications may include the use of more than two damper blades within a damper frame or the inclusion of spring members on the blade tip surfaces rather than on the sealing ledge surface. It is intended to cover, in the appended claims, all such modifications which fall within the true spirit and scope of the invention.

Claims (8)

What is claimed is:
1. A damper device for alternatively blocking the flow of a gas through a duct comprising:
a damper blade rotatably positioned across the duct, said damper blade including a central support member having attached thereto a pair of oppositely extending blade halves; each blade half being a continuous metal sheet having geometrically shaped corrugations formed therein;
a plurality of gas ports formed in the gas exposed side of said central support member; and,
an angle member attached at the free end of each blade half whereby a continuous flat sealing surface is formed at the end of each blade.
2. A damper device for alternatively blocking the flow of a hot gas through a large duct comprising:
a damper frame adapted to be positioned across the duct;
a damper blade rotatably mounted within said frame, said damper blade including a central support member having a pair of oppositely extending blade halves attached thereto; each blade half being a single metal sheet having wedge shaped corrugations formed therein;
an angle member attached at the free end of each blade half whereby a continuous flat sealing surface is formed at the end of each blade; and,
a sealing ledge positioned around the interior surfaces of said frame for engaging the perimeter of said damper blade when the damper blade is in the blocking position.
3. A damper device for alternatively blocking the flow of a hot gas through a duct comprising:
a frame adapted to be positioned across the duct;
a damper blade rotatably secured within said frame, said damper blade including a central support member and a pair of oppositely extending blade halves; each damper blade half being comprised of a continuous metal sheet having a plurality of substantially hollow wedge-like sections formed therein; and,
a sealing ledge positioned around the interior surfaces of said frame for engaging the perimeter of said damper blade when the damper blade is in the blocking position.
4. The damper device recited in claim 2 wherein the damper frame is a rectangular structure comprising:
a plurality of channel sections formed into a rectangle; and,
heat insulation attached to the interior surfaces of said frame.
5. The damper device recited in claim 4 wherein the heat insulation comprises a plurality of separate spaced apart heat insulation packages attached to the interior surfaces of said frame each heat insulation package including:
heat insulation filling; and,
a stainless steel cover encapsulating the heat insulation filling.
6. The damper device recited in claim 2 further comprising:
a spring seal attached to the sealing ledge and biased in the damper open direction.
7. The damper device recited in claim 4 further comprising:
a hook end at the free end of said spring seal said hook end adapted to engage the sealing ledge when the damper blade is out of contact with the spring seal.
8. A damper device for alternatively blocking the flow of a hot gas through a duct comprising:
a damper frame positioned in said duct and including a plurality of structural sections assembled together to form a rectangular support;
heat insulation mounted on said damper frame to protect said damper frame from said hot gas;
at least one damper blade rotatably mounted within said damper frame, said damper blade including a central support member having a pair of oppositely extending blade halves attached thereto; each blade half being a single metal sheet having geometrically shaped sections included therein;
a plurality of gas ports formed in the central support member on the hot gas side of said damper blade; and,
a sealing ledge positioned around the interior surfaces of said frame for engaging the perimeter of said damper blade when the damper blade is in the blocking position.
US05/913,605 1978-06-08 1978-06-08 Damper Expired - Lifetime US4207864A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US05/913,605 US4207864A (en) 1978-06-08 1978-06-08 Damper
NL7903119A NL187651C (en) 1978-06-08 1979-04-20 VALVE DEVICE FOR SHUTDOWN THE FLOW OF A HOT GAS THROUGH A PIPE.
NZ19027279A NZ190272A (en) 1978-06-08 1979-04-24 Damper and frame assembly damper blade halves comprise continuous metal sheet having plurality of hollow sections
GB7918458A GB2022781B (en) 1978-06-08 1979-05-25 Control damper for hot gases
IT2315379A IT1121309B (en) 1978-06-08 1979-05-31 HINGE VALVE FOR USE IN FLUID DUCTS
JP54070168A JPS5914656B2 (en) 1978-06-08 1979-06-06 damper device
NO791897A NO791897L (en) 1978-06-08 1979-06-07 DAMP.
FR7914702A FR2428192A1 (en) 1978-06-08 1979-06-08 HOT GAS ORDER REGISTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/913,605 US4207864A (en) 1978-06-08 1978-06-08 Damper

Publications (1)

Publication Number Publication Date
US4207864A true US4207864A (en) 1980-06-17

Family

ID=25433436

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/913,605 Expired - Lifetime US4207864A (en) 1978-06-08 1978-06-08 Damper

Country Status (8)

Country Link
US (1) US4207864A (en)
JP (1) JPS5914656B2 (en)
FR (1) FR2428192A1 (en)
GB (1) GB2022781B (en)
IT (1) IT1121309B (en)
NL (1) NL187651C (en)
NO (1) NO791897L (en)
NZ (1) NZ190272A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042493A2 (en) * 1980-06-19 1981-12-30 PKS-Engineering GmbH & Co. KG Swivelling damper
JPS57501491A (en) * 1980-10-09 1982-08-19
US4858517A (en) * 1988-06-08 1989-08-22 Rick Coker Fire damper kit
US5054379A (en) * 1989-07-03 1991-10-08 H. Krantz Gmbh & Co. Air release box
US5120021A (en) * 1989-06-15 1992-06-09 Grovag Grossventiltechnik Ag Isolators
US5167252A (en) * 1991-01-29 1992-12-01 W. R. Grace & Co. Conn. High temperature control damper with sealing flange
US6071188A (en) * 1997-04-30 2000-06-06 Bristol-Myers Squibb Company Damper and exhaust system that maintains constant air discharge velocity
WO2002032554A1 (en) * 2000-10-16 2002-04-25 Alstom (Switzerland)Ltd. Curved blade by-pass damper with flow control
US6442924B1 (en) 2000-06-13 2002-09-03 General Electric Company Optimized steam turbine peaking cycles utilizing steam bypass and related process
US20090124191A1 (en) * 2007-11-09 2009-05-14 Van Becelaere Robert M Stack damper
US20090145104A1 (en) * 2007-12-10 2009-06-11 General Electric Company Combined cycle power plant with reserves capability
US20090199558A1 (en) * 2008-02-11 2009-08-13 General Electric Company Exhaust stacks and power generation systems for increasing gas turbine power output
US20110146292A1 (en) * 2009-12-23 2011-06-23 General Electric Company Method for starting a turbomachine
EP2339132A2 (en) 2009-12-23 2011-06-29 General Electric Company Method of starting a power plant machine and method of using a starting system
EP2339148A2 (en) 2009-12-23 2011-06-29 General Electric Company Method and system for controlling a fuel flow to a turbomachine
US20170034948A1 (en) * 2015-07-28 2017-02-02 Lsis Co., Ltd. Cabinet for electric device having cooling structure
US9719377B2 (en) 2013-08-15 2017-08-01 Ansaldo Energia Ip Uk Limited Operation of gas turbine power plant with carbon dioxide separation
US20170234572A1 (en) * 2014-09-08 2017-08-17 Fusion Hvac Pty Limited Diffuser module
US20180310762A1 (en) * 2014-12-18 2018-11-01 Weber-Stephen Products Llc Fuel efficient grill for direct and indirect cooking
US20220025786A1 (en) * 2020-07-23 2022-01-27 General Electric Company Exhaust control damper system for dual cycle power plant
US20220178536A1 (en) * 2019-03-28 2022-06-09 Chengguo Ma Heat Exchange Flue and Heat Exchange Device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821507A (en) * 1987-05-29 1989-04-18 Bachmann Industries, Inc. Gas flow diverter
DE3940381A1 (en) * 1989-12-06 1991-06-13 Pks Engineering Duct for gas turbine exhaust gases - consists of outer and inner wall, insulating layer and cover plates and rails
GB9324697D0 (en) * 1993-12-01 1994-01-19 Goodwin R Int Ltd Plates for wafer check valves
AU710388B2 (en) * 1996-04-10 1999-09-16 Murray Joseph Hall Improvements to damper (chimney)
JP6032491B2 (en) * 2013-04-26 2016-11-30 豊田合成株式会社 Damper opening and closing device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2148713A (en) * 1937-02-17 1939-02-28 Jay L Roof Damper
US2966169A (en) * 1958-06-19 1960-12-27 Clark B Reece Combined insulation trim and damper positioning means for ducts
US3007673A (en) * 1960-06-15 1961-11-07 Stephen J Paxton Heating duct damper
US3228389A (en) * 1963-09-30 1966-01-11 Thermo Technical Dev Ltd Dampers
US3313226A (en) * 1964-09-30 1967-04-11 American Warming Ventilation Blade mounting means for air control apparatus
US3464341A (en) * 1967-10-18 1969-09-02 Russell L Dobrin Damper construction for ventilator duct
US3525328A (en) * 1968-07-16 1970-08-25 Forney Eng Co Damper floating side rail bar
US3525327A (en) * 1968-07-16 1970-08-25 Forney Eng Co Damper blade for high differential temperature service
US3547152A (en) * 1968-11-21 1970-12-15 Pacific Air Products Pressure sealed damper
US3602165A (en) * 1969-11-10 1971-08-31 American Air Filter Co Damper assembly
US3698429A (en) * 1970-02-06 1972-10-17 Thermo Technical Dev Ltd Gas tight isolators and valves
US3749115A (en) * 1971-12-29 1973-07-31 Combustion Eng Damper apparatus with fluid seal
US3805884A (en) * 1973-01-08 1974-04-23 Vogt H Machine Co Inc Damper means for controlling the flow of gas to a heat exchanger
US3894481A (en) * 1972-04-03 1975-07-15 American Warming Ventilation Multi-blade damper
US3963070A (en) * 1975-02-18 1976-06-15 American Warming And Ventilating Inc. Condition controlling air flow damper
US3996845A (en) * 1975-07-16 1976-12-14 Anemostat Products Division, Dynamics Corporation Of America Air handling grille and method of making the same
US4022246A (en) * 1975-04-25 1977-05-10 Forney International, Inc. Damper assembly for closing a duct for hot gases
US4027654A (en) * 1975-12-04 1977-06-07 American Air Filter Company, Inc. Damper assembly for high temperature or corrosive gases
US4077432A (en) * 1977-01-05 1978-03-07 Mosser Industries, Inc. Purged valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1073459A (en) * 1965-02-16 1967-06-28 Johnson Service Co Mutiple blade dampers
JPS4828166A (en) * 1971-08-17 1973-04-13
JPS4949223A (en) * 1972-09-14 1974-05-13
PH13860A (en) * 1973-05-07 1980-10-22 Hartnett Holdings Pty Ltd Louvers having adjustable angle blades

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2148713A (en) * 1937-02-17 1939-02-28 Jay L Roof Damper
US2966169A (en) * 1958-06-19 1960-12-27 Clark B Reece Combined insulation trim and damper positioning means for ducts
US3007673A (en) * 1960-06-15 1961-11-07 Stephen J Paxton Heating duct damper
US3228389A (en) * 1963-09-30 1966-01-11 Thermo Technical Dev Ltd Dampers
US3313226A (en) * 1964-09-30 1967-04-11 American Warming Ventilation Blade mounting means for air control apparatus
US3464341A (en) * 1967-10-18 1969-09-02 Russell L Dobrin Damper construction for ventilator duct
US3525328A (en) * 1968-07-16 1970-08-25 Forney Eng Co Damper floating side rail bar
US3525327A (en) * 1968-07-16 1970-08-25 Forney Eng Co Damper blade for high differential temperature service
US3547152A (en) * 1968-11-21 1970-12-15 Pacific Air Products Pressure sealed damper
US3602165A (en) * 1969-11-10 1971-08-31 American Air Filter Co Damper assembly
US3698429A (en) * 1970-02-06 1972-10-17 Thermo Technical Dev Ltd Gas tight isolators and valves
US3749115A (en) * 1971-12-29 1973-07-31 Combustion Eng Damper apparatus with fluid seal
US3894481A (en) * 1972-04-03 1975-07-15 American Warming Ventilation Multi-blade damper
US3805884A (en) * 1973-01-08 1974-04-23 Vogt H Machine Co Inc Damper means for controlling the flow of gas to a heat exchanger
US3963070A (en) * 1975-02-18 1976-06-15 American Warming And Ventilating Inc. Condition controlling air flow damper
US4022246A (en) * 1975-04-25 1977-05-10 Forney International, Inc. Damper assembly for closing a duct for hot gases
US3996845A (en) * 1975-07-16 1976-12-14 Anemostat Products Division, Dynamics Corporation Of America Air handling grille and method of making the same
US4027654A (en) * 1975-12-04 1977-06-07 American Air Filter Company, Inc. Damper assembly for high temperature or corrosive gases
US4077432A (en) * 1977-01-05 1978-03-07 Mosser Industries, Inc. Purged valve

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042493A2 (en) * 1980-06-19 1981-12-30 PKS-Engineering GmbH & Co. KG Swivelling damper
EP0042493A3 (en) * 1980-06-19 1983-02-16 Pks-Engineering Gmbh & Co. Kg Swivelling damper
JPS57501491A (en) * 1980-10-09 1982-08-19
US4858517A (en) * 1988-06-08 1989-08-22 Rick Coker Fire damper kit
US5120021A (en) * 1989-06-15 1992-06-09 Grovag Grossventiltechnik Ag Isolators
US5054379A (en) * 1989-07-03 1991-10-08 H. Krantz Gmbh & Co. Air release box
US5167252A (en) * 1991-01-29 1992-12-01 W. R. Grace & Co. Conn. High temperature control damper with sealing flange
US6071188A (en) * 1997-04-30 2000-06-06 Bristol-Myers Squibb Company Damper and exhaust system that maintains constant air discharge velocity
US6442924B1 (en) 2000-06-13 2002-09-03 General Electric Company Optimized steam turbine peaking cycles utilizing steam bypass and related process
WO2002032554A1 (en) * 2000-10-16 2002-04-25 Alstom (Switzerland)Ltd. Curved blade by-pass damper with flow control
US20090124191A1 (en) * 2007-11-09 2009-05-14 Van Becelaere Robert M Stack damper
US20090145104A1 (en) * 2007-12-10 2009-06-11 General Electric Company Combined cycle power plant with reserves capability
US20090199558A1 (en) * 2008-02-11 2009-08-13 General Electric Company Exhaust stacks and power generation systems for increasing gas turbine power output
US7707818B2 (en) 2008-02-11 2010-05-04 General Electric Company Exhaust stacks and power generation systems for increasing gas turbine power output
US20110146292A1 (en) * 2009-12-23 2011-06-23 General Electric Company Method for starting a turbomachine
EP2339132A2 (en) 2009-12-23 2011-06-29 General Electric Company Method of starting a power plant machine and method of using a starting system
EP2339148A2 (en) 2009-12-23 2011-06-29 General Electric Company Method and system for controlling a fuel flow to a turbomachine
EP2339127A2 (en) 2009-12-23 2011-06-29 General Electric Company Method for starting a turbomachine
US9719377B2 (en) 2013-08-15 2017-08-01 Ansaldo Energia Ip Uk Limited Operation of gas turbine power plant with carbon dioxide separation
US20170234572A1 (en) * 2014-09-08 2017-08-17 Fusion Hvac Pty Limited Diffuser module
US20180310762A1 (en) * 2014-12-18 2018-11-01 Weber-Stephen Products Llc Fuel efficient grill for direct and indirect cooking
US10758084B2 (en) * 2014-12-18 2020-09-01 Weber-Stephen Products Llc Fuel efficient grill for direct and indirect cooking
US20170034948A1 (en) * 2015-07-28 2017-02-02 Lsis Co., Ltd. Cabinet for electric device having cooling structure
US20220178536A1 (en) * 2019-03-28 2022-06-09 Chengguo Ma Heat Exchange Flue and Heat Exchange Device
US20220025786A1 (en) * 2020-07-23 2022-01-27 General Electric Company Exhaust control damper system for dual cycle power plant

Also Published As

Publication number Publication date
GB2022781B (en) 1982-12-15
NO791897L (en) 1979-12-11
FR2428192B1 (en) 1985-05-03
NL187651C (en) 1991-12-02
NZ190272A (en) 1982-09-07
JPS5512393A (en) 1980-01-28
JPS5914656B2 (en) 1984-04-05
IT1121309B (en) 1986-04-02
GB2022781A (en) 1979-12-19
IT7923153A0 (en) 1979-05-31
NL187651B (en) 1991-07-01
NL7903119A (en) 1979-12-11
FR2428192A1 (en) 1980-01-04

Similar Documents

Publication Publication Date Title
US4207864A (en) Damper
CA2692350C (en) Shop-assembled solar receiver heat exchanger
EP0383855A4 (en) Dampers with leaf spring seals
US4246872A (en) Heat exchanger tube support
US4095534A (en) Damper with curved extension plates for wide range flow control
GB2114728A (en) A heat exchanger suspension system
US3231015A (en) Graphite-plate heat exchange apparatus
US3746083A (en) Heat-exchanger
US5658024A (en) Expansion joint with a sloped cavity and improved fabric clamping
KR830001108B1 (en) Damper
GB2343643A (en) Heat exchanger
US5386676A (en) Adjustable packed panel joint end cover
US4269655A (en) Device for concentration of mineral acids, particularly sulphuric acid
US4263259A (en) Hatch and hatch cover for thermal regeneration apparatus
US4433644A (en) Steam boilers
JPS6086394A (en) Heat exchanger
JPH04340001A (en) Boiler
US3254704A (en) Bottom supported air heater
EP0421288B1 (en) Insulation in a low-pressure turbine plant
JPS6391494A (en) Device for supporting heat exchanger
GB2272507A (en) Basket for heat exchanger plate elements and element pack assembly with seals
JPH0714461B2 (en) Denitration equipment
JPH045848Y2 (en)
JPS61213501A (en) Moisture separating reheater
SU1663327A1 (en) Gas duct cover