US3926565A - Apparatus for cleaning exhaust gases - Google Patents
Apparatus for cleaning exhaust gases Download PDFInfo
- Publication number
- US3926565A US3926565A US450518A US45051874A US3926565A US 3926565 A US3926565 A US 3926565A US 450518 A US450518 A US 450518A US 45051874 A US45051874 A US 45051874A US 3926565 A US3926565 A US 3926565A
- Authority
- US
- United States
- Prior art keywords
- housing
- monolith
- bridge means
- exhaust gas
- discharge opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2839—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
- F01N3/2842—Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration specially adapted for monolithic supports, e.g. of honeycomb type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/02—Exhaust treating devices having provisions not otherwise provided for for cooling the device
- F01N2260/022—Exhaust treating devices having provisions not otherwise provided for for cooling the device using air
Definitions
- An apparatus for cleaning an exhaust gas comprising an elongated housing capable: of receiving a catalyst monolith, said housing provided at one end with an exhaust gas entry opening, and provided at the other end with an exhaust gas discharge opening, at least two bridges spaced apart within said housing and attached to said housing, at least one supporting rod for said monolith, said rod secured to one of said bridges and movably mounted on another of said bridges, a monolith catalyst having flow channels and at least one bore for receiving said at least one supporting rod, said bore being provided in the direction of said flow channels, andvari elastic intermediate layer surrounding said at least" one supporting rod, said catalyst held on said rods by said layer being under pressure.
- FIG. 1 A first figure.
- FIG. 2 FIG. 3
- This invention relates to an apparatus for cleaning exhaust gases,-such as exhaust gases from an internal combustion engine.
- the apparatus When the apparatus includes a monolithmade of 1 ceramic material, it must be anchored in the metal housing. Constructions have been known in which the monolith is puttied in with cement.
- One disadvantage of this method of construction is that the cement is under aheavy load and can break as a result of mechanical shock or as a result of the combustion gases emerging from theengine cylinders in a sequence of high impluses. To these causes of failure must'be added the differing thermal expansion properties of the ceramic and metal. In the case of high temperatures, the metal housing can be lifted from the rigidly puttied ceramic core because of the differing thermal expansion properties.
- the monolith is forced into position by an elastic mass between the housing and body.
- This mass must be kept under a pressure sufficiently high to hold the monolith firmly in place, despite the considerably greater thermal expansion properties of the metal housing at high temperatures.
- the steel jacket of the housing can expand to such an extent, that the prestressed ceramic monolith weakens. This results in the monolith no longer being firmly anchored in the housing.
- the apparatus should be capable of withstanding mechanical shock and the sequence of high impluses of combustion gases which emerge from the cylinders of an internal combustion engine. Furthermore, the apparatus should be less susceptible to failure because of the different thermal expansion properties of the ceramic material comprising the catalyst and the metallic housing which holds the catalyst.
- This invention aids in overcoming the disadvantages associated with prior art devices by providing an apparatus for cleaning an exhaust gas in which the apparatus comprises an elongated housing capable of receiving a catalyst monolith, and further in which the housing is provided at one end thereof with an exhaust gas entry opening and at the other end thereof with an exhaust gas discharge opening. At least two bridge means are spaced apart from each other within the housing, and each is attached to the housing. There is also provided at least one supporting rod for the monolith. The sup porting rod is secured to one of the bridge means and shiftably mounted on another of the bridge means.
- the apparatus includes a monolith catalyst positioned in the elongated housing.
- the monolith catalyst has flow 2 channels and at least one bore for receiving the supporting rod.
- the bore is provided in a direction substantially parallel to the direction of flow of gases through the flow channels.
- An elastic, intermediate layer surrounding each supporting rod is also provided.
- the catalyst is held inposition on the supporting rod by the layer being under pressure.
- one bridge means is positioned near the gas entry opening and another of the bridge means is positioned near the gas discharge opening, and one end of at least one rod is attached to the bridge means near the gas entry opening while the other end of the rod is shiftably mounted on the bridge means near the gas discharge opening.
- a space exists between the housing and the-monolith, and sealing means are provided in this space.
- the sealing means comprises a gasket or a labyrinth packing.
- the space between the housing and the monolith is less than about one-half of the diameter of a flow channel in the monolith.
- the elastic, intermediate layer between the supporting rod and the monolith is advantageous because it effectively dampens the sequence of shocks caused by the pulses of exhaust gases emanating from the engine.
- the intermediate layer can consist of any kind of temperature resistant, resilient material.
- the elastic, intermediate layer is a web of wire, rock wool, asbestos wool, spun glass or silica-alumina (e.g. fiberfrax).
- the housing can be provided with a heat insulating jacket or with cooling ribs or cooling vanes. Generally, the cooling ribs or vanes will be on the outside of the housing.
- FIG. 1 is a cross-section of an exhaust gas cleaning apparatus according to this invention
- l I FIGS. 2, 3 and 4 depict preferred embodiments involving thespace between the housing and the catalyst monolith.
- FIG. 5 depicts a housing having a circular cross-section taken along 5- 5 of FIG. 1
- FIG. 6 depicts an embodiment alternative to FIG. 5.
- FIG. 1 The holding arrangement depicted in FIG. 1 avoids the disadvantages of known exhaust gas cleaning de vices, while retaining the advantages associated with an elastic, intermediate layer between metal parts and a monolith ceramic.
- a monolith l is held in position by a metal rod 2.
- an elastic mass 3 e.g. fiberfrax fibers
- Elastic mass 3 is held in position by the frictional forces on the metal rod and on the monolith.
- the metal rod 2 is securely attached to housing 6, which is of substantially cylindrical shape, by means of bridges 4 and 5.
- Housing 6 is provided with an exhaust gas inlet opening 7 and an exhaust gas discharge opening 8.
- the rod 2 is fixedly secured to bridge 4. It is shiftably mounted in bridge 5.
- the pressure thrust of the exhaust gases are absorbed by not only the elastic, intermediate layer 3, but also by the elasticity of the metal rod 2 and flexibility of the bridge. Since the ceramic monolith exhibits only slight thermal expansion, the contact pressure between the rod and monolith does not decrease even in the case of high operating temperatures. Furthermore, loosening of the connection between metal and ceramic which occurs in prior art devices, cannot occur in the device of this invention.
- the cross-section thereof can be arbitrarily selected.
- a housing having a substantially round cross-section is shown.
- a single supporting rod is generally sufficient.
- FIG. 6 a housing 6 having an elongated cross-section is depicted, and two supporting rods 2 are shown.
- like numerals have like meanings.
- the sealing means between the housing 6 and the monolith 1 can be freely selected.
- a labyrinth such as that depicted in FIG. 2, as well as a gasket, such as that depicted in FIG. 3, can be employed.
- the sealing means can be continuous or discontinuous (i.e. having openings therein for the passage of gases). The arrangement for holding the sealing means in position will be apparent to persons skilled in the art.
- the outside surface of the monolith can still serve as an effective catalytic surface. During operation, good heat transmission can be provided in order to avoid overheating of the catalyst.
- a large portion of the reaction heat can be transmittedthrough the wall of the housing. Cooling effects can be enhanced by providing cooling vanes or ribs on the housing.
- This invention has several advantageous features. First of all, the adverse effects of mechanical shock are minimized because of the method of construction of the apparatus of this invention. Furthermore, the sequence of rapid impulses of exhaust gases from an internal combustion engine can be absorbed by the device of this invention without damage to the monolith or apparatus. Additionally, since the ceramic monolith is not in direct contact with a metallic surface, the differences in thermal expansion properties for the ceramics and metals is not troublesome.
- An apparatus for cleaning an exhaust gas comprising an elongated metal housing capable of receiving a catalyst ceramic monolith, said housing provided at one end with an exhaust gas entry opening, and provided at the other end with an exhaust gas discharge opening, at least two bridge means spaced apart within said housing and attached to said housing, at least one supporting rod for said monolith, said rod secured to one of said bridge means and movably mounted on another of said bridge means, a ceramic monolith catalyst element having flow channels for conveying the exhaust gas from the entry opening to the discharge opening and at least one bore for receiving said at least one support rod and the largest cross-sectional dimension of said ceramic being smaller than the adjacent respective internal cross-sectional dimension of said housing to form a space therebetween, said bore being provided in the direction of said flow channels, and an elastic, intermediate layer surrounding said at least one supporting rod and held thereon by said layer being under pressure.
- said elastic, intermediate layer is a web of wire, spun glass, alumina-silica fibers, rock wool or asbestos wool.
- sealing means comprises a gasket or a labyrinth.
- sealing means comprising a gasket or a labyrinth are provided in said space.
- asbestos wool spun glass or alumina-silica fibers.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2313156A DE2313156A1 (de) | 1973-03-16 | 1973-03-16 | Abgasreinigungsvorrichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
US3926565A true US3926565A (en) | 1975-12-16 |
Family
ID=5874982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US450518A Expired - Lifetime US3926565A (en) | 1973-03-16 | 1974-03-12 | Apparatus for cleaning exhaust gases |
Country Status (6)
Country | Link |
---|---|
US (1) | US3926565A (enrdf_load_stackoverflow) |
JP (1) | JPS5069420A (enrdf_load_stackoverflow) |
DE (1) | DE2313156A1 (enrdf_load_stackoverflow) |
FR (1) | FR2221619B1 (enrdf_load_stackoverflow) |
GB (1) | GB1442089A (enrdf_load_stackoverflow) |
SE (1) | SE397992B (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462812A (en) * | 1982-12-08 | 1984-07-31 | General Motors Corporation | Ceramic monolith particulate trap including filter support |
US4592899A (en) * | 1984-12-26 | 1986-06-03 | Texaco Inc. | Smoke filter with frangible supported filter bed |
US4617176A (en) * | 1984-09-13 | 1986-10-14 | Minnesota Mining And Manufacturing Company | Catalytic converter for automotive exhaust system |
WO1999056064A1 (en) * | 1998-04-30 | 1999-11-04 | Catalytica Combustion Systems, Inc. | Support structures for a catalyst |
US20020110501A1 (en) * | 2000-11-13 | 2002-08-15 | John Barnes | Thermally tolerant support structure for a catalytic combustion catalyst |
US20070049723A1 (en) * | 2005-08-24 | 2007-03-01 | General Electric Company | Method of producing polycarbonate articles by rotation molding and rotation molded articles made by the method |
US20080176013A1 (en) * | 2006-04-20 | 2008-07-24 | Ibiden Co., Ltd. | Honeycomb structure, method for manufacturing the same, and casing |
CN102027213A (zh) * | 2007-12-06 | 2011-04-20 | 排放控制技术德国(奥格斯堡)有限公司 | 排气处理装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1575526A (en) * | 1976-12-01 | 1980-09-24 | Ti Silencers Ltd | Containers for catalysts for exhaust emission control |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1932927A (en) * | 1931-04-20 | 1933-10-31 | Frederick C Fischer | Device for converting carbon monoxide |
US3124930A (en) * | 1964-03-17 | Exhaust system | ||
US3211534A (en) * | 1963-12-19 | 1965-10-12 | Trw Inc | Exhaust control apparatus |
US3248188A (en) * | 1963-07-22 | 1966-04-26 | Continental Motors Corp | Flame arrester |
US3362783A (en) * | 1963-12-23 | 1968-01-09 | Texaco Inc | Treatment of exhaust gases |
US3492098A (en) * | 1965-12-01 | 1970-01-27 | Universal Oil Prod Co | Multiple section catalyst unit |
US3558286A (en) * | 1969-01-13 | 1971-01-26 | Gourdine Systems Inc | Electrogasdynamic precipitator with catalytic reaction |
US3692497A (en) * | 1971-05-20 | 1972-09-19 | Engelhard Min & Chem | Catalytic exhaust gas treatment apparatus |
US3773894A (en) * | 1971-07-22 | 1973-11-20 | Exxon | Nitrogen oxide conversion using reinforced nickel-copper catalysts |
US3798006A (en) * | 1971-12-14 | 1974-03-19 | Tenneco Inc | Catalytic converter for exhuast gases |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE98733C (enrdf_load_stackoverflow) * | ||||
US1824078A (en) * | 1929-01-23 | 1931-09-22 | Frederick C Fischer | Device for removing carbon monoxide from exhaust gases |
-
1973
- 1973-03-16 DE DE2313156A patent/DE2313156A1/de active Pending
-
1974
- 1974-03-12 US US450518A patent/US3926565A/en not_active Expired - Lifetime
- 1974-03-13 GB GB1116274A patent/GB1442089A/en not_active Expired
- 1974-03-13 JP JP49028978A patent/JPS5069420A/ja active Pending
- 1974-03-15 FR FR7408850A patent/FR2221619B1/fr not_active Expired
- 1974-03-15 SE SE7403532A patent/SE397992B/xx unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3124930A (en) * | 1964-03-17 | Exhaust system | ||
US1932927A (en) * | 1931-04-20 | 1933-10-31 | Frederick C Fischer | Device for converting carbon monoxide |
US3248188A (en) * | 1963-07-22 | 1966-04-26 | Continental Motors Corp | Flame arrester |
US3211534A (en) * | 1963-12-19 | 1965-10-12 | Trw Inc | Exhaust control apparatus |
US3362783A (en) * | 1963-12-23 | 1968-01-09 | Texaco Inc | Treatment of exhaust gases |
US3492098A (en) * | 1965-12-01 | 1970-01-27 | Universal Oil Prod Co | Multiple section catalyst unit |
US3558286A (en) * | 1969-01-13 | 1971-01-26 | Gourdine Systems Inc | Electrogasdynamic precipitator with catalytic reaction |
US3692497A (en) * | 1971-05-20 | 1972-09-19 | Engelhard Min & Chem | Catalytic exhaust gas treatment apparatus |
US3773894A (en) * | 1971-07-22 | 1973-11-20 | Exxon | Nitrogen oxide conversion using reinforced nickel-copper catalysts |
US3798006A (en) * | 1971-12-14 | 1974-03-19 | Tenneco Inc | Catalytic converter for exhuast gases |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462812A (en) * | 1982-12-08 | 1984-07-31 | General Motors Corporation | Ceramic monolith particulate trap including filter support |
US4617176A (en) * | 1984-09-13 | 1986-10-14 | Minnesota Mining And Manufacturing Company | Catalytic converter for automotive exhaust system |
US4592899A (en) * | 1984-12-26 | 1986-06-03 | Texaco Inc. | Smoke filter with frangible supported filter bed |
WO1999056064A1 (en) * | 1998-04-30 | 1999-11-04 | Catalytica Combustion Systems, Inc. | Support structures for a catalyst |
US20020110501A1 (en) * | 2000-11-13 | 2002-08-15 | John Barnes | Thermally tolerant support structure for a catalytic combustion catalyst |
US7163666B2 (en) | 2000-11-13 | 2007-01-16 | Kawasaki Jukogyo Kabushiki Kaisha | Thermally tolerant support structure for a catalytic combustion catalyst |
US20070049723A1 (en) * | 2005-08-24 | 2007-03-01 | General Electric Company | Method of producing polycarbonate articles by rotation molding and rotation molded articles made by the method |
US7309755B2 (en) | 2005-08-24 | 2007-12-18 | General Electric Company | Method of producing polycarbonate articles by rotation molding and rotation molded articles made by the method |
US20080176013A1 (en) * | 2006-04-20 | 2008-07-24 | Ibiden Co., Ltd. | Honeycomb structure, method for manufacturing the same, and casing |
CN102027213A (zh) * | 2007-12-06 | 2011-04-20 | 排放控制技术德国(奥格斯堡)有限公司 | 排气处理装置 |
Also Published As
Publication number | Publication date |
---|---|
FR2221619A1 (enrdf_load_stackoverflow) | 1974-10-11 |
SE397992B (sv) | 1977-11-28 |
JPS5069420A (enrdf_load_stackoverflow) | 1975-06-10 |
DE2313156A1 (de) | 1974-09-19 |
GB1442089A (en) | 1976-07-07 |
FR2221619B1 (enrdf_load_stackoverflow) | 1977-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3852042A (en) | Catalytic converter with exhaust gas modulating chamber for preventing damage to catalyst substrate | |
US3945803A (en) | Elastic support for a ceramic monolithic catalyzer body | |
US3912459A (en) | Catalytic converter | |
US4269807A (en) | Catalytic converter mounting arrangement for reducing bypass leakage | |
US3926565A (en) | Apparatus for cleaning exhaust gases | |
JP3294036B2 (ja) | ハニカム触媒コンバータ | |
US4328187A (en) | Elastic suspension for a monolithic catalyzer body in an exhaust gas cleaning device | |
US6159430A (en) | Catalytic converter | |
US4343074A (en) | Method of making a catalytic converter | |
KR920007886B1 (ko) | 자동차 배기장치의 접촉 콘버어터(converter) | |
US4143117A (en) | Elastic mounting for a catalytic converter in an internal combustion engine | |
US3817714A (en) | Catalytic converter | |
US3798006A (en) | Catalytic converter for exhuast gases | |
US3863445A (en) | Heat shields for exhaust system | |
US4101280A (en) | Apparatus for purification of waste from combustion engines | |
US3861881A (en) | Catalyst converter with monolithic element | |
US4043761A (en) | Catalytic converter having resilient monolith-mounting means | |
US3891396A (en) | Elastic holder for ceramic monolithic catalyst bodies | |
ATE48891T1 (de) | Auspuffanlage fuer kraftfahrzeuge und dergleichen. | |
US3947252A (en) | Elastic suspension or support for a ceramic monolithic catalyzer body | |
IT1241664B (it) | Dispositivo per le decontaminazione catalitica,o simili,dei gas di scarico di un motore a combustione interna con due corpi di trattamento dei gas di scarico e un anello protettivo interposto | |
US6491878B1 (en) | Catalytic converter for use in an internal combustion engine | |
US3963445A (en) | Exhaust emission control device of the catalyst type | |
US4163041A (en) | Support for elastically mounting a ceramic honeycomb catalyst | |
US3937617A (en) | Catalytic converter for automotive internal combustion engine |