US3926565A - Apparatus for cleaning exhaust gases - Google Patents

Apparatus for cleaning exhaust gases Download PDF

Info

Publication number
US3926565A
US3926565A US450518A US45051874A US3926565A US 3926565 A US3926565 A US 3926565A US 450518 A US450518 A US 450518A US 45051874 A US45051874 A US 45051874A US 3926565 A US3926565 A US 3926565A
Authority
US
United States
Prior art keywords
housing
monolith
bridge means
exhaust gas
discharge opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US450518A
Inventor
Gerhard Birtigh
Horst Parbel
Heinrich Sauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Application granted granted Critical
Publication of US3926565A publication Critical patent/US3926565A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2842Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration specially adapted for monolithic supports, e.g. of honeycomb type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/022Exhaust treating devices having provisions not otherwise provided for for cooling the device using air

Definitions

  • An apparatus for cleaning an exhaust gas comprising an elongated housing capable: of receiving a catalyst monolith, said housing provided at one end with an exhaust gas entry opening, and provided at the other end with an exhaust gas discharge opening, at least two bridges spaced apart within said housing and attached to said housing, at least one supporting rod for said monolith, said rod secured to one of said bridges and movably mounted on another of said bridges, a monolith catalyst having flow channels and at least one bore for receiving said at least one supporting rod, said bore being provided in the direction of said flow channels, andvari elastic intermediate layer surrounding said at least" one supporting rod, said catalyst held on said rods by said layer being under pressure.
  • FIG. 1 A first figure.
  • FIG. 2 FIG. 3
  • This invention relates to an apparatus for cleaning exhaust gases,-such as exhaust gases from an internal combustion engine.
  • the apparatus When the apparatus includes a monolithmade of 1 ceramic material, it must be anchored in the metal housing. Constructions have been known in which the monolith is puttied in with cement.
  • One disadvantage of this method of construction is that the cement is under aheavy load and can break as a result of mechanical shock or as a result of the combustion gases emerging from theengine cylinders in a sequence of high impluses. To these causes of failure must'be added the differing thermal expansion properties of the ceramic and metal. In the case of high temperatures, the metal housing can be lifted from the rigidly puttied ceramic core because of the differing thermal expansion properties.
  • the monolith is forced into position by an elastic mass between the housing and body.
  • This mass must be kept under a pressure sufficiently high to hold the monolith firmly in place, despite the considerably greater thermal expansion properties of the metal housing at high temperatures.
  • the steel jacket of the housing can expand to such an extent, that the prestressed ceramic monolith weakens. This results in the monolith no longer being firmly anchored in the housing.
  • the apparatus should be capable of withstanding mechanical shock and the sequence of high impluses of combustion gases which emerge from the cylinders of an internal combustion engine. Furthermore, the apparatus should be less susceptible to failure because of the different thermal expansion properties of the ceramic material comprising the catalyst and the metallic housing which holds the catalyst.
  • This invention aids in overcoming the disadvantages associated with prior art devices by providing an apparatus for cleaning an exhaust gas in which the apparatus comprises an elongated housing capable of receiving a catalyst monolith, and further in which the housing is provided at one end thereof with an exhaust gas entry opening and at the other end thereof with an exhaust gas discharge opening. At least two bridge means are spaced apart from each other within the housing, and each is attached to the housing. There is also provided at least one supporting rod for the monolith. The sup porting rod is secured to one of the bridge means and shiftably mounted on another of the bridge means.
  • the apparatus includes a monolith catalyst positioned in the elongated housing.
  • the monolith catalyst has flow 2 channels and at least one bore for receiving the supporting rod.
  • the bore is provided in a direction substantially parallel to the direction of flow of gases through the flow channels.
  • An elastic, intermediate layer surrounding each supporting rod is also provided.
  • the catalyst is held inposition on the supporting rod by the layer being under pressure.
  • one bridge means is positioned near the gas entry opening and another of the bridge means is positioned near the gas discharge opening, and one end of at least one rod is attached to the bridge means near the gas entry opening while the other end of the rod is shiftably mounted on the bridge means near the gas discharge opening.
  • a space exists between the housing and the-monolith, and sealing means are provided in this space.
  • the sealing means comprises a gasket or a labyrinth packing.
  • the space between the housing and the monolith is less than about one-half of the diameter of a flow channel in the monolith.
  • the elastic, intermediate layer between the supporting rod and the monolith is advantageous because it effectively dampens the sequence of shocks caused by the pulses of exhaust gases emanating from the engine.
  • the intermediate layer can consist of any kind of temperature resistant, resilient material.
  • the elastic, intermediate layer is a web of wire, rock wool, asbestos wool, spun glass or silica-alumina (e.g. fiberfrax).
  • the housing can be provided with a heat insulating jacket or with cooling ribs or cooling vanes. Generally, the cooling ribs or vanes will be on the outside of the housing.
  • FIG. 1 is a cross-section of an exhaust gas cleaning apparatus according to this invention
  • l I FIGS. 2, 3 and 4 depict preferred embodiments involving thespace between the housing and the catalyst monolith.
  • FIG. 5 depicts a housing having a circular cross-section taken along 5- 5 of FIG. 1
  • FIG. 6 depicts an embodiment alternative to FIG. 5.
  • FIG. 1 The holding arrangement depicted in FIG. 1 avoids the disadvantages of known exhaust gas cleaning de vices, while retaining the advantages associated with an elastic, intermediate layer between metal parts and a monolith ceramic.
  • a monolith l is held in position by a metal rod 2.
  • an elastic mass 3 e.g. fiberfrax fibers
  • Elastic mass 3 is held in position by the frictional forces on the metal rod and on the monolith.
  • the metal rod 2 is securely attached to housing 6, which is of substantially cylindrical shape, by means of bridges 4 and 5.
  • Housing 6 is provided with an exhaust gas inlet opening 7 and an exhaust gas discharge opening 8.
  • the rod 2 is fixedly secured to bridge 4. It is shiftably mounted in bridge 5.
  • the pressure thrust of the exhaust gases are absorbed by not only the elastic, intermediate layer 3, but also by the elasticity of the metal rod 2 and flexibility of the bridge. Since the ceramic monolith exhibits only slight thermal expansion, the contact pressure between the rod and monolith does not decrease even in the case of high operating temperatures. Furthermore, loosening of the connection between metal and ceramic which occurs in prior art devices, cannot occur in the device of this invention.
  • the cross-section thereof can be arbitrarily selected.
  • a housing having a substantially round cross-section is shown.
  • a single supporting rod is generally sufficient.
  • FIG. 6 a housing 6 having an elongated cross-section is depicted, and two supporting rods 2 are shown.
  • like numerals have like meanings.
  • the sealing means between the housing 6 and the monolith 1 can be freely selected.
  • a labyrinth such as that depicted in FIG. 2, as well as a gasket, such as that depicted in FIG. 3, can be employed.
  • the sealing means can be continuous or discontinuous (i.e. having openings therein for the passage of gases). The arrangement for holding the sealing means in position will be apparent to persons skilled in the art.
  • the outside surface of the monolith can still serve as an effective catalytic surface. During operation, good heat transmission can be provided in order to avoid overheating of the catalyst.
  • a large portion of the reaction heat can be transmittedthrough the wall of the housing. Cooling effects can be enhanced by providing cooling vanes or ribs on the housing.
  • This invention has several advantageous features. First of all, the adverse effects of mechanical shock are minimized because of the method of construction of the apparatus of this invention. Furthermore, the sequence of rapid impulses of exhaust gases from an internal combustion engine can be absorbed by the device of this invention without damage to the monolith or apparatus. Additionally, since the ceramic monolith is not in direct contact with a metallic surface, the differences in thermal expansion properties for the ceramics and metals is not troublesome.
  • An apparatus for cleaning an exhaust gas comprising an elongated metal housing capable of receiving a catalyst ceramic monolith, said housing provided at one end with an exhaust gas entry opening, and provided at the other end with an exhaust gas discharge opening, at least two bridge means spaced apart within said housing and attached to said housing, at least one supporting rod for said monolith, said rod secured to one of said bridge means and movably mounted on another of said bridge means, a ceramic monolith catalyst element having flow channels for conveying the exhaust gas from the entry opening to the discharge opening and at least one bore for receiving said at least one support rod and the largest cross-sectional dimension of said ceramic being smaller than the adjacent respective internal cross-sectional dimension of said housing to form a space therebetween, said bore being provided in the direction of said flow channels, and an elastic, intermediate layer surrounding said at least one supporting rod and held thereon by said layer being under pressure.
  • said elastic, intermediate layer is a web of wire, spun glass, alumina-silica fibers, rock wool or asbestos wool.
  • sealing means comprises a gasket or a labyrinth.
  • sealing means comprising a gasket or a labyrinth are provided in said space.
  • asbestos wool spun glass or alumina-silica fibers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An apparatus for cleaning an exhaust gas comprising an elongated housing capable of receiving a catalyst monolith, said housing provided at one end with an exhaust gas entry opening, and provided at the other end with an exhaust gas discharge opening, at least two bridges spaced apart within said housing and attached to said housing, at least one supporting rod for said monolith, said rod secured to one of said bridges and movably mounted on another of said bridges, a monolith catalyst having flow channels and at least one bore for receiving said at least one supporting rod, said bore being provided in the direction of said flow channels, and an elastic intermediate layer surrounding said at least one supporting rod, said catalyst held on said rods by said layer being under pressure. The apparatus is especially useful for cleaning exhaust gases from internal combustion engines.

Description

United States Patent [1 1 Birtigh et a1.
[ Dec. 16, 1975 APPARATUS FOR CLEANING EXHAUST GASES [75] Inventors: Gerhard Birtigh, Frankfurt; Horst Parbel, Gelnhausen; Heinrich Sauer, Grossauheim, all of Germany [22] Filed: Mar. 12, 1974 [21] Appl. No.1 450,518
[30] Foreign Application Priority Data Mar. 16, 1974 Germany 2313156 [52] US. Cl. 23/288 FC [51] Int. Cl. 1301.] 8/02; B01J 35/04; FOlN 3/15 [58] Field of Search 23/288 FC,288 F [56] References Cited UNITED STATES PATENTS 1,932,927 10/1933 Fischer 23/288 FC UX 3,124,930 3/1964 Powers 23/288 FC UX 3,211,534 10/1965 Ridgway 23/288 FC UX 3,248,188 4/1966 Chute 23/288 FC UX 3,362,783 1/1968 Leak 23/288 FC X 3,492,098 l/l970 DePalma et a1 23/288 FC UX 3,558,286 1/1971 Gourdine 23/288 F 3,692,497 9/1972 Keith et a1. 23/288 FC 3,773,894 11/1973 Bernstein et al 23/288 FC UX 3,798,006 3/1974 Balluff 23/288 FC Primary Examiner-Morris O. Wolk Assistant Examiner-Michael S. Marcus Attorney, Agent, or Firm-Browne, Beveridge, DeGrandi & Kline 57 ABSTRACT An apparatus for cleaning an exhaust gas comprising an elongated housing capable: of receiving a catalyst monolith, said housing provided at one end with an exhaust gas entry opening, and provided at the other end with an exhaust gas discharge opening, at least two bridges spaced apart within said housing and attached to said housing, at least one supporting rod for said monolith, said rod secured to one of said bridges and movably mounted on another of said bridges, a monolith catalyst having flow channels and at least one bore for receiving said at least one supporting rod, said bore being provided in the direction of said flow channels, andvari elastic intermediate layer surrounding said at least" one supporting rod, said catalyst held on said rods by said layer being under pressure. The apparatus is especially useful for cleaning exhaust gases from internal combustion engines.
U.S. Patent Dec. 16, 1975 3,926,565
I um I:
FIG. 1
FIG. 2 FIG. 3
6 1 CAPILLARY 2 DIAMETER .FIG.5
FIG.6
APPARATUS FOR CLEANING EXHAUST GASES This invention relates to an apparatus for cleaning exhaust gases,-such as exhaust gases from an internal combustion engine.
When the apparatus includes a monolithmade of 1 ceramic material, it must be anchored in the metal housing. Constructions have been known in which the monolith is puttied in with cement. One disadvantage of this method of construction is that the cement is under aheavy load and can break as a result of mechanical shock or as a result of the combustion gases emerging from theengine cylinders in a sequence of high impluses. To these causes of failure must'be added the differing thermal expansion properties of the ceramic and metal. In the case of high temperatures, the metal housing can be lifted from the rigidly puttied ceramic core because of the differing thermal expansion properties.
In other known methods of construction, the monolith is forced into position by an elastic mass between the housing and body. This mass must be kept under a pressure sufficiently high to hold the monolith firmly in place, despite the considerably greater thermal expansion properties of the metal housing at high temperatures. With prolonged operating times, the steel jacket of the housing can expand to such an extent, that the prestressed ceramic monolith weakens. This results in the monolith no longer being firmly anchored in the housing.
Accordingly, there exists a need in the art for an apparatus for cleaning exhaust gases which will aid in overcoming the previous problems. The apparatus should be capable of withstanding mechanical shock and the sequence of high impluses of combustion gases which emerge from the cylinders of an internal combustion engine. Furthermore, the apparatus should be less susceptible to failure because of the different thermal expansion properties of the ceramic material comprising the catalyst and the metallic housing which holds the catalyst.
This invention aids in overcoming the disadvantages associated with prior art devices by providing an apparatus for cleaning an exhaust gas in which the apparatus comprises an elongated housing capable of receiving a catalyst monolith, and further in which the housing is provided at one end thereof with an exhaust gas entry opening and at the other end thereof with an exhaust gas discharge opening. At least two bridge means are spaced apart from each other within the housing, and each is attached to the housing. There is also provided at least one supporting rod for the monolith. The sup porting rod is secured to one of the bridge means and shiftably mounted on another of the bridge means. The apparatus includes a monolith catalyst positioned in the elongated housing. The monolith catalyst has flow 2 channels and at least one bore for receiving the supporting rod. The bore is provided in a direction substantially parallel to the direction of flow of gases through the flow channels. An elastic, intermediate layer surrounding each supporting rod is also provided. The catalyst is held inposition on the supporting rod by the layer being under pressure. Preferably, one bridge means is positioned near the gas entry opening and another of the bridge means is positioned near the gas discharge opening, and one end of at least one rod is attached to the bridge means near the gas entry opening while the other end of the rod is shiftably mounted on the bridge means near the gas discharge opening.
In a further embodiment, a space exists between the housing and the-monolith, and sealing means are provided in this space. Preferably,the sealing means comprises a gasket or a labyrinth packing. In a preferred embodiment, the space between the housing and the monolith is less than about one-half of the diameter of a flow channel in the monolith.
The elastic, intermediate layer between the supporting rod and the monolith is advantageous because it effectively dampens the sequence of shocks caused by the pulses of exhaust gases emanating from the engine.
The intermediate layer can consist of any kind of temperature resistant, resilient material. Preferably, the elastic, intermediate layer is a web of wire, rock wool, asbestos wool, spun glass or silica-alumina (e.g. fiberfrax). The housing can be provided with a heat insulating jacket or with cooling ribs or cooling vanes. Generally, the cooling ribs or vanes will be on the outside of the housing.
This invention will be explained in greaterdetail with reference to the drawing in which:
FIG. 1 is a cross-section of an exhaust gas cleaning apparatus according to this invention, and l I FIGS. 2, 3 and 4 depict preferred embodiments involving thespace between the housing and the catalyst monolith.
FIG. 5 depicts a housing having a circular cross-section taken along 5- 5 of FIG. 1
FIG. 6 depicts an embodiment alternative to FIG. 5.
The holding arrangement depicted in FIG. 1 avoids the disadvantages of known exhaust gas cleaning de vices, while retaining the advantages associated with an elastic, intermediate layer between metal parts and a monolith ceramic. Referring to FIG. 1, a monolith l is held in position by a metal rod 2. Between the monolith 1 and rod 2 is an elastic mass 3 (e.g. fiberfrax fibers) under pressure. Elastic mass 3 is held in position by the frictional forces on the metal rod and on the monolith. The metal rod 2 is securely attached to housing 6, which is of substantially cylindrical shape, by means of bridges 4 and 5. Housing 6 is provided with an exhaust gas inlet opening 7 and an exhaust gas discharge opening 8. The rod 2 is fixedly secured to bridge 4. It is shiftably mounted in bridge 5. The pressure thrust of the exhaust gases are absorbed by not only the elastic, intermediate layer 3, but also by the elasticity of the metal rod 2 and flexibility of the bridge. Since the ceramic monolith exhibits only slight thermal expansion, the contact pressure between the rod and monolith does not decrease even in the case of high operating temperatures. Furthermore, loosening of the connection between metal and ceramic which occurs in prior art devices, cannot occur in the device of this invention.
Since the metal housing 6 does not perform any holding functions, the cross-section thereof can be arbitrarily selected. For example, in FIG. 5, a housing having a substantially round cross-section is shown. When housings having round crosssections are employed, a single supporting rod is generally sufficient. In FIG. 6, a housing 6 having an elongated cross-section is depicted, and two supporting rods 2 are shown. In the foregoing Figs, like numerals have like meanings.
The sealing means between the housing 6 and the monolith 1 can be freely selected. A labyrinth, such as that depicted in FIG. 2, as well as a gasket, such as that depicted in FIG. 3, can be employed. The sealing means can be continuous or discontinuous (i.e. having openings therein for the passage of gases). The arrangement for holding the sealing means in position will be apparent to persons skilled in the art.
It is particularly advantageous to fit the monolith in the housing with little clearance between these two elements since the entire catalyst volume can be effectively utilized. An adequate seal can be achieved when the distance between the catalyst and housing is less than about one-half the diameter of the flow channels in the monolith. This is depicted in FIG. 4.
The outside surface of the monolith can still serve as an effective catalytic surface. During operation, good heat transmission can be provided in order to avoid overheating of the catalyst. In the present invention, in which the monolith is positioned in the metal housing without insulation, a large portion of the reaction heat can be transmittedthrough the wall of the housing. Cooling effects can be enhanced by providing cooling vanes or ribs on the housing.
This invention has several advantageous features. First of all, the adverse effects of mechanical shock are minimized because of the method of construction of the apparatus of this invention. Furthermore, the sequence of rapid impulses of exhaust gases from an internal combustion engine can be absorbed by the device of this invention without damage to the monolith or apparatus. Additionally, since the ceramic monolith is not in direct contact with a metallic surface, the differences in thermal expansion properties for the ceramics and metals is not troublesome.
What is claimed is:
1. An apparatus for cleaning an exhaust gas comprising an elongated metal housing capable of receiving a catalyst ceramic monolith, said housing provided at one end with an exhaust gas entry opening, and provided at the other end with an exhaust gas discharge opening, at least two bridge means spaced apart within said housing and attached to said housing, at least one supporting rod for said monolith, said rod secured to one of said bridge means and movably mounted on another of said bridge means, a ceramic monolith catalyst element having flow channels for conveying the exhaust gas from the entry opening to the discharge opening and at least one bore for receiving said at least one support rod and the largest cross-sectional dimension of said ceramic being smaller than the adjacent respective internal cross-sectional dimension of said housing to form a space therebetween, said bore being provided in the direction of said flow channels, and an elastic, intermediate layer surrounding said at least one supporting rod and held thereon by said layer being under pressure.
2. An apparatus according to claim 1 in which one of said bridge means is positioned near said gas entry opening and one of said bridge means is positioned near said gas discharge opening.
3. An apparatus according to claim 1 in which said elastic, intermediate layer is a web of wire, spun glass, alumina-silica fibers, rock wool or asbestos wool.
4. An apparatus according to claim 1 in which sealing means are provided in said space between said housing and said monolith.
5. An apparatus according to claim 4 in which said sealing means comprises a gasket or a labyrinth.
6. An apparatus according to claim 4 in which the flow channels of the monolith are of substantially equal diameter and said space is less than about one-half of the diameter of a flow channel.
7. An apparatus according to claim 1 in which one of said bridge means is positioned near said gas entry opening and another of said bridge means is positioned near said gas discharge opening, and one end of at least one of said rods is attached to the bridge means near said gas entry opening and the other end of said rod is movably mounted on the bridge means near said gas discharge opening.
8. apparatus according to claim 7 in which sealing means comprising a gasket or a labyrinth are provided in said space.
9. An apparatus according to claim 8 in which said elastic, intermediate layer is a web of wire, rock wool,
asbestos wool, spun glass or alumina-silica fibers.

Claims (9)

1. AN APPARATUS FOR CLEANING AND EXHAUST GAS COMPRISING AN ELONGATED METAL HOUSING CAPABLE OF RECEIVING A CATALYST CERAMIC MONOLITH, SAID HOUSING PROVIDED AT ONE END WITH AN EXHAUST GAS ENTRY OPENING, AND PROVIDED AT THE OTHER END WITH AN EXHAUST GAS DISCHARGE OPENING, AT LEAST TWO BRIDGE MEANS SPACED APART WITHIN SAID HOUSING AND ATTACHED TO SAID HOUSING, AT LEAST ONE SUPPORTING ROD FOR SAID NONOLITH, SAID ROD SECURED TO ONE OF SAID BRIDGE MEANS AND MOVABLY MOUNTED ON ANOTHER OF SAID BRIDGE MEANS, A CERAMIC MONOLITH CATALYST ELEMENT HAVING FLOW CHANNELS FOR CONVEYING THE EXHAUST GAS FROM THE ENTRY OPENING TO THE DISCHARGE OPENING AND AT LEAST ONE BORE FOR RECEIVING SAID AT LEAST ONE SUPPORT ROD AND THE LARGEST CROSS-SECTIONAL DIMENSION OF SAID CERAMIC BEING SMALLER THAN THE ADJACENT RESPECTIVE INTERNAL CROSS SECTIONAL DIMENSION OF SAID HOUSING TO FORM A SPACE THEREBETWEEN, SAID BORE BEING PROVIDED IN THE DIRECTION OF SAID FLOW CHANNELS, AND AN ELASTIC, INTERMEDIATE LAYER SURROUNDING SAID AT LEAST ONE SUPPORTING ROD AND HELD THEREON BY SAID LAYER BEING UNDER PRESSURE.
2. An apparatus according to claim 1 in which one of said bridge means is positioned near said gas entry opening and one of said bridge means is positioned near said gas discharge opening.
3. An apparatus according to claim 1 in which said elastic, intermediate layer is a web of wire, spun glass, alumina-silica fibers, rock wool or asbestos wool.
4. An apparatus according to claim 1 in which sealing means are provided in said space between said housing and said monolith.
5. An apparatus according to claim 4 in which said sealing means comprises a gasket or a labyrinth.
6. An apparatus according to claim 4 in which the flow channels of the monolith are of substantially equal diameter and said space is less than about one-half of the diameter of a flow channel.
7. An apparatus according to claim 1 in which one of said bridge means is positioned near said gas entry opening and another of said bridge means is positioned near said gas discharge opening, and one end of at least one of said rods is attached to the bridge means near said gas entry opening and the other end of said rod is movably mounted on the bridge means near said gas discharge opening.
8. An apparatus according to claim 7 in which sealing means comprising a gasket or a labyrinth are provided in said space.
9. An apparatus according to claim 8 in which said elastic, intermediate layer is a web of wire, rock wool, asbestos wool, spun glass or alumina-silica fibers.
US450518A 1973-03-16 1974-03-12 Apparatus for cleaning exhaust gases Expired - Lifetime US3926565A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2313156A DE2313156A1 (en) 1973-03-16 1973-03-16 EXHAUST GAS PURIFICATION DEVICE

Publications (1)

Publication Number Publication Date
US3926565A true US3926565A (en) 1975-12-16

Family

ID=5874982

Family Applications (1)

Application Number Title Priority Date Filing Date
US450518A Expired - Lifetime US3926565A (en) 1973-03-16 1974-03-12 Apparatus for cleaning exhaust gases

Country Status (6)

Country Link
US (1) US3926565A (en)
JP (1) JPS5069420A (en)
DE (1) DE2313156A1 (en)
FR (1) FR2221619B1 (en)
GB (1) GB1442089A (en)
SE (1) SE397992B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462812A (en) * 1982-12-08 1984-07-31 General Motors Corporation Ceramic monolith particulate trap including filter support
US4592899A (en) * 1984-12-26 1986-06-03 Texaco Inc. Smoke filter with frangible supported filter bed
US4617176A (en) * 1984-09-13 1986-10-14 Minnesota Mining And Manufacturing Company Catalytic converter for automotive exhaust system
WO1999056064A1 (en) * 1998-04-30 1999-11-04 Catalytica Combustion Systems, Inc. Support structures for a catalyst
US20020110501A1 (en) * 2000-11-13 2002-08-15 John Barnes Thermally tolerant support structure for a catalytic combustion catalyst
US20070049723A1 (en) * 2005-08-24 2007-03-01 General Electric Company Method of producing polycarbonate articles by rotation molding and rotation molded articles made by the method
US20080176013A1 (en) * 2006-04-20 2008-07-24 Ibiden Co., Ltd. Honeycomb structure, method for manufacturing the same, and casing
CN102027213A (en) * 2007-12-06 2011-04-20 排放控制技术德国(奥格斯堡)有限公司 Exhaust gas treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1575526A (en) * 1976-12-01 1980-09-24 Ti Silencers Ltd Containers for catalysts for exhaust emission control

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1932927A (en) * 1931-04-20 1933-10-31 Frederick C Fischer Device for converting carbon monoxide
US3124930A (en) * 1964-03-17 Exhaust system
US3211534A (en) * 1963-12-19 1965-10-12 Trw Inc Exhaust control apparatus
US3248188A (en) * 1963-07-22 1966-04-26 Continental Motors Corp Flame arrester
US3362783A (en) * 1963-12-23 1968-01-09 Texaco Inc Treatment of exhaust gases
US3492098A (en) * 1965-12-01 1970-01-27 Universal Oil Prod Co Multiple section catalyst unit
US3558286A (en) * 1969-01-13 1971-01-26 Gourdine Systems Inc Electrogasdynamic precipitator with catalytic reaction
US3692497A (en) * 1971-05-20 1972-09-19 Engelhard Min & Chem Catalytic exhaust gas treatment apparatus
US3773894A (en) * 1971-07-22 1973-11-20 Exxon Nitrogen oxide conversion using reinforced nickel-copper catalysts
US3798006A (en) * 1971-12-14 1974-03-19 Tenneco Inc Catalytic converter for exhuast gases

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE98733C (en) *
US1824078A (en) * 1929-01-23 1931-09-22 Frederick C Fischer Device for removing carbon monoxide from exhaust gases

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124930A (en) * 1964-03-17 Exhaust system
US1932927A (en) * 1931-04-20 1933-10-31 Frederick C Fischer Device for converting carbon monoxide
US3248188A (en) * 1963-07-22 1966-04-26 Continental Motors Corp Flame arrester
US3211534A (en) * 1963-12-19 1965-10-12 Trw Inc Exhaust control apparatus
US3362783A (en) * 1963-12-23 1968-01-09 Texaco Inc Treatment of exhaust gases
US3492098A (en) * 1965-12-01 1970-01-27 Universal Oil Prod Co Multiple section catalyst unit
US3558286A (en) * 1969-01-13 1971-01-26 Gourdine Systems Inc Electrogasdynamic precipitator with catalytic reaction
US3692497A (en) * 1971-05-20 1972-09-19 Engelhard Min & Chem Catalytic exhaust gas treatment apparatus
US3773894A (en) * 1971-07-22 1973-11-20 Exxon Nitrogen oxide conversion using reinforced nickel-copper catalysts
US3798006A (en) * 1971-12-14 1974-03-19 Tenneco Inc Catalytic converter for exhuast gases

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462812A (en) * 1982-12-08 1984-07-31 General Motors Corporation Ceramic monolith particulate trap including filter support
US4617176A (en) * 1984-09-13 1986-10-14 Minnesota Mining And Manufacturing Company Catalytic converter for automotive exhaust system
US4592899A (en) * 1984-12-26 1986-06-03 Texaco Inc. Smoke filter with frangible supported filter bed
WO1999056064A1 (en) * 1998-04-30 1999-11-04 Catalytica Combustion Systems, Inc. Support structures for a catalyst
US20020110501A1 (en) * 2000-11-13 2002-08-15 John Barnes Thermally tolerant support structure for a catalytic combustion catalyst
US7163666B2 (en) 2000-11-13 2007-01-16 Kawasaki Jukogyo Kabushiki Kaisha Thermally tolerant support structure for a catalytic combustion catalyst
US20070049723A1 (en) * 2005-08-24 2007-03-01 General Electric Company Method of producing polycarbonate articles by rotation molding and rotation molded articles made by the method
US7309755B2 (en) 2005-08-24 2007-12-18 General Electric Company Method of producing polycarbonate articles by rotation molding and rotation molded articles made by the method
US20080176013A1 (en) * 2006-04-20 2008-07-24 Ibiden Co., Ltd. Honeycomb structure, method for manufacturing the same, and casing
CN102027213A (en) * 2007-12-06 2011-04-20 排放控制技术德国(奥格斯堡)有限公司 Exhaust gas treatment device

Also Published As

Publication number Publication date
FR2221619B1 (en) 1977-06-17
SE397992B (en) 1977-11-28
JPS5069420A (en) 1975-06-10
FR2221619A1 (en) 1974-10-11
DE2313156A1 (en) 1974-09-19
GB1442089A (en) 1976-07-07

Similar Documents

Publication Publication Date Title
US3852042A (en) Catalytic converter with exhaust gas modulating chamber for preventing damage to catalyst substrate
US3945803A (en) Elastic support for a ceramic monolithic catalyzer body
US4142864A (en) Catalytic apparatus
US4269807A (en) Catalytic converter mounting arrangement for reducing bypass leakage
US3926565A (en) Apparatus for cleaning exhaust gases
JP3294036B2 (en) Honeycomb catalytic converter
US4328187A (en) Elastic suspension for a monolithic catalyzer body in an exhaust gas cleaning device
US6159430A (en) Catalytic converter
US4343074A (en) Method of making a catalytic converter
KR920007886B1 (en) Catalytic converter for automotive exhaust system
US4143117A (en) Elastic mounting for a catalytic converter in an internal combustion engine
US3817714A (en) Catalytic converter
US3861881A (en) Catalyst converter with monolithic element
US3891396A (en) Elastic holder for ceramic monolithic catalyst bodies
US4043761A (en) Catalytic converter having resilient monolith-mounting means
DE3667693D1 (en) EXHAUST SYSTEM FOR MOTOR VEHICLES AND THE LIKE.
US3947252A (en) Elastic suspension or support for a ceramic monolithic catalyzer body
US6491878B1 (en) Catalytic converter for use in an internal combustion engine
IT1241664B (en) DEVICE FOR THE CATALYTIC, OR SIMILAR, DECONTAMINATION OF THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE WITH TWO EXHAUST GAS TREATMENT BODIES AND AN INTERPOSED PROTECTIVE RING
US3963445A (en) Exhaust emission control device of the catalyst type
US3937617A (en) Catalytic converter for automotive internal combustion engine
US4115071A (en) Catalytic converter having improved supporting members for monolithic catalyst
RU99100095A (en) HEAT PROTECTIVE SCREEN, IN PARTICULAR FOR CONSTRUCTION ELEMENTS OF GAS-TURBINE UNITS
KR102364131B1 (en) Tubular combustion chamber with ceramic cladding
US3938232A (en) Method of manufacturing catalyst type exhaust gas purifier