US3918873A - Tabletting machines - Google Patents

Tabletting machines Download PDF

Info

Publication number
US3918873A
US3918873A US523143A US52314374A US3918873A US 3918873 A US3918873 A US 3918873A US 523143 A US523143 A US 523143A US 52314374 A US52314374 A US 52314374A US 3918873 A US3918873 A US 3918873A
Authority
US
United States
Prior art keywords
die
die table
punches
tabletting machine
dies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US523143A
Other languages
English (en)
Inventor
Jack Crossley
David Henry Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manesty Machines Ltd
Original Assignee
Manesty Machines Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manesty Machines Ltd filed Critical Manesty Machines Ltd
Application granted granted Critical
Publication of US3918873A publication Critical patent/US3918873A/en
Priority to US05/960,299 priority Critical patent/USRE30319E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/12Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with moulds on the circumference of a rotating drum

Definitions

  • ABSTRACT A tabletting machine having continuous cam tracks to operate the punches, and including means for in motion" adjustment of one of the cam tracks to control the dose of powdered material which is compressed by the punches in the dies to form the tablets and also the thickness of the tablets so produced.
  • a concave cylindrical die table is used, the punches operating radially with respect to the axis of rotation of the die table.
  • This invention relates to tabletting machines and concerns a tabletting machine of the kind (hereinafter referred to as a tabletting machine of the kind described) in which the powdered or granulated material to be tabletted is fed from a feed frame onto the surface of a rotating die table so as to fill dies in the die table and be compressed into a tablet in each die, between a pair of punches individual to the die, and which enter the die from opposite ends, one of the punches being subsequently withdrawn from the die and the other punch being pushed through the die to eject the tablet from the die.
  • a tabletting machine of the kind described usually employs individual stationary cams to operate the punches which rotate with the die table to engage the cams at set stations. This creates noise and wear problems, which increase with the speed of operation, due to the punches striking the cams.
  • Any proposal to provide a continuous cam track to operate the punches, in order to avoid this problem, has preferably to include means for adjusting the cam track to control the dose of powdered material which is compressed in order to form each tablet and preferably also, the thickness of the resulting tablet.
  • the dose of powdered material which is compressed in order to form each tablet is conventionally determined by an individual, so called, weight adjustment cam which predeterminedly positions one of the punches in each die at the die filling station.
  • This provides a variable volume measure of the powder to fill the die, since the die is always filled with powder to the level of the surface of the die table.
  • the thickness of the tablet is conventionally determined by the position of a compression roller cam which advances one of the punches in the die to compress the powder against the other punch and thereby form the tablet.
  • the thickness of the resulting tablet depends inter alia upon how far this punch is advanced by the compression roller. Another factor is the time interval during which the compression is applied.
  • the thickness of the tablet can be adjusted.
  • One object of the present invention is to provide a continuous camming arrangement for punches in a tab letting machine of the kind described which is readily adjustable to adjust the weight and preferably also the thickness of the tablets produced in the machine.
  • a tabletting machine of the kind described in which the punches are moved relative to the die table radially with respect to the axis of rotation of the die table, and corresponding ones of each pair of punches are moved under the control of radial deflec-
  • the hoop rotates with the die table in contact with the heads of said corresponding ones of said punches.
  • said corresponding ones of said punches are the radially outer ones of each pair of punches.
  • the abutments may comprise rolling means which roll in contact with the hoop, and preferably, such rolling means are freely rotatable so as to be driven only by contact with said flexible hoop.
  • said corresponding ones of said punches are moved under the control of said flexible hoop to eject the tablets from the dies.
  • two of the abutments may be adjustable radially with respect to the axis of rotation of the die table, one to adjust the weight of the tablets and the other to adjust the thickness of the tablets produced in the machine.
  • the other punch of each pair of punches may be moved by a circular cam track eccentrically disposed with respect to the axis of rotation of the die table.
  • a further object of the present invention is to provide a tabletting machine of the kind described having an improved feeding arrangement for feeding powder or granulated material to be tabletted from the surface of the die table into the dies.
  • a tabletting machine of the kind described comprising a die table presenting a concave cylindrical surface to receive the powdered or granulated material from the feed frame.
  • the powdered or granulated material moves from the surface of the die table into the dies with the assistance of centrifugal force to provide for centrifugally assisted feeding of the material into the dies.
  • the feed frame is arranged to feed the powdered or granulated material to be tabletted onto the surface of the die table to one side of the dies, to be carried round with the die table, stationary deflector means being provided to move such powdered or granulated material being carried round with the die table inside the feed frame, relative to the die table, over the dies to fill them.
  • FIG. 1 is a cross-section in a plane through the axis of rotation of a rotating turret of a machine according to the invention taken on line l1 in FIG. 2 and showing the die table, opposite pairs of punches, an opposite pair of dies associated with the punches, camming arrangements for operating the punches, the powder feeding arrangements and a tablet take-off arrangement;
  • FIG. 2 is a cross-section in the radial plane containing the long axes of the punches but showing the punches and the camming arrangements in elevation in the direction of arrow 2 in FIG. 1;
  • FIG. 3 is a diagrammatic developed view of the die table showing details of the powder feeding arrangements with a direction of turret rotation indicated by the arrow T.
  • the ma chine comprises a base cabinet 9 housing an infinitely variable speed motor connected to drive the turret 10 via a single stage reduction drive 12.
  • the turret 10 is mounted on the cabinet for rotation, about a horizontal axis 14, by means of bearings 18 and 20.
  • the turret is a body of revolution about its axis 14 and has the crosssectional shape indicated in FIG. 1.
  • Powdered or gran ulated material to be tabletted is fed from a feed frame generally indicated at 22, to a concave cylindrical surface 24 of a die table so as to fill the dies which open at one end generally in the surface 24.
  • the die table is formed by the inner surface of an annular flange portion 32 of the turret 10.
  • Two further annular flange portions 34 and 36 of the turret 10 have radial bores which guide the punches, two diametrically opposite pairs of which are generally indicated at 38.
  • the pairs of punches 38 are arranged with their long axes disposed radially with respect to the axis 14 in a common plane normal to the axis 14, the radially inner punches 40 sliding in the bores in the flange portion 34 and the radially outer punches sliding in the bores in the flange portion 36.
  • the heads 42 of the radially inner punches engage in a circular cam track formed between two freely rotatable, concentric circular parts 44 and 46 mounted on the cabinet, the concentric axes 48 of which are parallel to but offset from the axis 14.
  • the heads 50 of the radially outer punches are in en gagement with an encircling hoop 52 in the form of a flexible band of suitable material e.g. steel or bronze or again a plastics material which rotates with the die table about its own centre and which is constrained and guided by three abutments comprising respectively a pair of cylindrical rollers, 54, and single cylindrical rollers 56 and 58, so as to assume a non-circular, tri-lobe shape as seen in FIG. 2.
  • the rollers 54, 56 and 58 are each mounted on the cabinet for rotation about fixed axes co-incident with their cylindrical axes and parallel with the axis 14.
  • the punch heads 50 are held in engagement with the hoop 52 by a spring wire ring 60 which engages the underside of these punch heads and is confined between them and a retaining plate 62 which is bolted to and is carried round with the turret 10.
  • rollers 54, 56 and 58 roll in contact with the hoop 52 and two of the abutments formed by the pair of rollers, namely the roller 54 and the single roller 56, are adjustable towards and away from the axis 14, the rollers 54 to adjust the weight of the tablets to be formed in the dies 30 and the roller 56 to adjust the thickness of the tablets.
  • An overload spring (not shown) is provided to limit the pressure which can be exerted on a tablet by the roller 56.
  • a vertically adjustable powder hopper 60 feeds powder (or granules) into the feed frame 22, to one side of the ring of dies 30 (see particularly FIG. 3) where the neck of the powder hopper is indicated at 63, onto the surface 24 of the die table.
  • the feed frame 22 is composed of a number of vertical walls which at their lower edges have a radial clearance with respect to the surface 24, and a roofing wall.
  • an outer wall 64 having an intermediate portion 66 extending parallel with the ring of dies, and two end portions 68 and 70 extending towards and across the ring of dies, an intermediate wall 72 extending parallel with the wall portion 66 and on the same side of the ring of dies as that portion, which forms with the wall 64 a compartment 74 in the feed frame which receives the neck 63 of the powder hopper.
  • the compartment 74 is open at one end, as at 76, between one vertical edge of the wall 72 and the portion 68 0f the wall 64.
  • the feed frame further comprises two inner walls 78 and 80 disposed on the opposite side of the ring of dies and which co-operate with the wall 72 to constrain powder to move in the feed frame with the die table on the surface 24 thereof, and in a region over the dies.
  • the roofing wall 72A extends between the walls 72 and 80 in confronting relation to the surface 24.
  • the wall 72A is arcuate in form and is centred in the axis 48, whereby the height of the roofing wall above the surface 24 diminishes but the tips of the inner punches maintain a constant clearance with the wall as they pass over it.
  • the feed frame 22 occupies 160 of the circular arc circumscribed by the surface 24 as indicated on the angular scale marked along the top of FIG. 3 in 10 increments. Extending between the two ends of the feed frame, and so as to encompass the remainder of this arc, is a stationary part circular powder retaining band 82 which acts to retain surplus powder from the feed frame in a channel 84 formed in the turret between the flange portion 34 and the turret 10. Powder in the channel 84 rotates with the turret and is then held against the surface 14 of the die table by the action of centrifugal force. On entering the feed frame 22 this powder is deflected by the wall 78 so as to move over the dies to fill them. Any powder travelling under the lower edge of the wall 78 is likewise deflected by a seal ing strip or scraper 86 on the wall 80 which makes contact at its lower edge with the surface 24.
  • Powder is confined in the feed frame by further sealing strips or scrapers and 88 which also make contact at their lower edge with the surface 24.
  • the wall portion 68 and scraper 88 deflect excess powder back into the channel 84 as the powder leaves the feed frame. Deficiencies in the main powder stream re-entering the channel 84, due to dies having been filled, are made up by powder from the compartment 74 entering the stream through the gap 76 under the influence of the wall portion 68 and scraper 88.
  • An added function of the wall portion 70 is to act as a take off blade to guide tablets ejected from the dies into a stationary take-off chute 92.
  • angles are marked around the hoop 52 in correspondence with the angles marked along the top of FIG. 3.
  • the punch As the outer punch approaches and traverses the weight adjustment rollers 54, the punch is advanced to eject surplus powder from the die, the fill of powder in the die being finally scraped flat with the surface of the die table as the die passes out of the feed frame under the scraper 88.
  • the radial adjustment of the rollers 54 which may take place while the machine is in motion, controls the dose of powder in the die (and in each subsequent die which traverses the rollers 54) and therefore the weight of the tablet.
  • the pow der is contained, and pressed towards the dies, by the roofing wall 72A which comprises a wedging action on the powder and also prevents the powder contaminating the tips of the inner punches 40.
  • the outer punch After traversing the rollers 54, the outer punch is again partially withdrawn to prevent any spillage of the measured dose out of the die during entry of the inner punch into the die to compress the powder and form the tablet.
  • the inner punch is advanced to enter the die by the cam track 44, 46 as the die approaches and traverses the compression roller 56, as does the outer punch, and the point of maximum compression is reached as the outer punch traverses the roller 56.
  • the radial adjustment of the roller 56 which may take place while the machine is in motion, controls the thickness of the tablet which is formed.
  • the outer punch As the outer punch approaches and traverses the ejection roller the outer punch is advanced sufficiently to push the tablet right out of the die, as the punch traverses the ejection roller and the tablet is guided by the take-off chute.
  • the ejection roller may have a fixed position.
  • rollers 54, 56 and 58 are freely rotatable and are driven only by contact with the hoop 52.
  • the radial deflections of the hoop 52 control the movements of the outer punches as the turret rotates. Since the hoop is constrained by the rollers to assume a non-circular trilobe shape, each outer punch is withdrawn and advanced three times over ineach tablet forming rotation of the turret. This movement, which is a compromise in as far as it is really unnecessary to withdraw the punch after forming a tablet before again advancing the punch to eject the tablet, nevertheless allows the outer punches to be controlled by a continuous camming arrangement which is adjustable to alter both the weight and thickness of the tablets and this while the machine is in use. The speed of the machine can accordingly be increased without creating any significant noise or wear problems and, in this respect also, the centrifugal feeding of powder to the dies coupled with the feature of filling the dies from a stream of powder moving with the dies, assists.
  • the outer punch changes its direction of travel precisely at the weight adjusting station, ie the tip of the punch must be at a minimum radial distance from the turret axis 14 as it passes beneath the scraper 88.
  • the shape of the hoop 52 must be controlled in a manner such that a line tangent to it at the weight adjusting station is always at right angles to the radial line from the turret axis.
  • rollers 54 are equally spaced about the weight adjusting point and mounted on a common, radially adjustable slide thus ensuring that the rollers 54 are always at an equal radial distance from the turret axis 14 in all positions of adjustment.
  • each outer punch be withdrawn before again advancing to compress the fill material, because this helps to prevent any spillage of the measured dose of fill material from the die, but it is a disadvantage if the punch is withdrawn too far at this stage because air may then become trapped in the die during the compression step.
  • more than one abutment is adjustable radially with respect to the axis of rotation of the die table, to adjust the movement of the outer punches to set the machine to produce tablets of both different weight and different thickness
  • some limitation of the range of adjustment for a given flexible hoop diameter may be necessary, but this is not unacceptable since, in the final event many tabletting machines are continuously run on one product and adjustments are required only to correct the weight and the thickness of the product without necessarily altering them within any wide range.
  • the machine as described can be modified by the provision of six abutments to constrain and guide the flexible hoop for rotation about the axis of rotation of the turret, so that it assumes a six lobed shape.
  • Radially adjustable abutments would permit weight and thickness adjustments for each tablet formed in each half of each revolution.
  • the inner punches would be operated by a double eccentric, in this case formed, for example, by a flexible band passing around two rollers.
  • Two tablets per die, per revolution, may also be produced in a machine according to this invention employing four abutments constraining and guiding a flexible hoop for rotation about the axis of rotation of the turret, so that it assumes a four lobed shape.
  • a conventional tabletting machine of the kind described has a flat horizontally disposed die table. On such a conventional tabletting machine centrifugal force acts at right angles to the axis of the dies, resulting in tablets of uneven density when high speeds are used; i.e. the material is packed towards the outer wall of the die.
  • centrifugal force acts along the axis of the die and therefore produces tablets of uniform density irrespective of rotational speed.
  • the die is filled by the combined effects of a descending lower punch and gravity, which remains constant irrespective of rotational speed.
  • the die is filled by the combined effects of the descending outer punch and centrifugal force which increases with rotational speed.
  • rotational speed is limited by the maximum peripheral speed at which the punch heads can be successfully traversed over the fixed cam tracks considering the high pressures involved and the difficulties of lubrication.
  • the flexible outer cam track assumes an optimum shape at all degrees of adjustment and the outer punch heads remain in contact with it at all times.
  • the conventional tabletting machine is inherently noisy due to the fact that the fixed cam tracks are formed from segments which are contacted intermittently by the punch heads which are travelling at a considerable relative speed.
  • noise is reduced to a minimum as punch heads maintain unbroken contact with the cam tracks and relative movement is small.
  • precompression rollers are sometimes employed in an attempt to release entrapped air from the material before compression.
  • the precompression function is performed by centrifugal force which compacts the fill prior to the entry of the inner punch. After entry the inner and outer punches approach one another over a relatively long are allowing ample time for the release of air trapped between the already compacted fill and the inner punch.
  • the previously mentioned limitations on turret speed dictate that a multi-stage reduction be employed in the drive to the turret.
  • the higher turret speed permits the use of a single stage reduction drive from a variable speed motor.
  • considerable stripping down is required to gain access to some of the working parts (e.g. main turret bearings) making maintenance and cleaning major operations.
  • removal of a single cover gives im mediate access to all working parts and the complete turret may be very readily removed.
  • the axis of rotation of the turret has been described as extending horizontally, this axis of rotation could extend vertically, or at some intermediate angle.
  • the machine may be made double sided with a turret on each side, the turrets being rotated in common, on a common axis of rotation, and both turrets being served by common tablet weight and thickness adjustment controls.
  • the punches are arranged for movement relative to the die table, radially with respect to the axis of the die table,
  • a flexible hoop is provided which rotates with the die table and which is constrained and guided by abutments so as to assume a non-circular shape
  • c. means is provided for moving corresponding ones of each pair of punches under the control of radial deflections of said flexible hoop, one at least of said abutments being adjustable radially with respect to the axis of rotation of the die table thereby to adjust the movement of said corresponding ones of said punches.
  • a tabletting machine as claimed in claim 1 in which the hoop rotates with the die table in contact with the heads of said corresponding ones of said punches.
  • a tabletting machine as claimed in claim 1 in which said corresponding ones of said punches are the radially outer ones of each pair of punches.
  • a tabletting machine as claimed in claim 3 in which the heads of the radially outer ones of each pair of punches are held in engagement with the hoop by a spring wire ring engaging the underside of the heads, the ring being confined between the punch heads and a retaining plate carried round with the die table.
  • a tabletting machine as claimed in claim 1 in which the abutments comprise rolling means which roll in contact with the hoop.
  • a tabletting machine as claimed in claim 5 in which the rolling means are freely rotatable, so as to be driven only by contact with said flexible hoop.
  • a tabletting machine as claimed in claim 1 in which said corresponding ones of said punches are moved under the control of said flexible hoop to eject the tablets from the dies.
  • a tabletting machine as claimed in claim 7 in which two of the abutments are adjustable radially with respect to the axis of rotation of the die table, one to adjust the weight of the tablets and the other to adjust the thickness of the tablets produced in the machine.
  • a tabletting machine as claimed in claim 8 in which the abutment for adjusting the weight of the tablets comprises a pair of rollers of equal diameter and having their axes parallel to, and equi-spaced from, the axis of rotation of the die table in all positions of their adjustment.
  • a tabletting machine as claimed in claim 8 comprising not more than three of said abutments, and which includes a circular cam track eccentrically disposed with respect to the axis of rotation of the die table the other punch of each pair being moved by said circular cam track.
  • a tabletting machine as claimed in claim 10 in which the heads of said other punches engage in said circular cam track.
  • a tabletting machine as claimed in claim 10 in which the circular cam track is formed between two freely rotatable, concentric, circular parts.
  • a tabletting machine as claimed in claim 1 in which the axis of rotation of the die table is disposed at an angle to the vertical.
  • a tabletting machine as claimed in claim 13 in which the axis of rotation of the die table is disposed horizontally.
  • a tabletting machine as claimed in claim 1 in which the die table presents a concave cylindrical surface to receive the powdered or granulated material from the feed frame.
  • a tabletting machine as claimed in claim 15 in which the feed frame is arranged to feed the powdered or granulated material to be tabletted onto the surface of the die table, to one side of the dies, to be carried round with the die table, stationary deflector means being provided to move such powdered or granulated material being carried round with the die table inside the feed frame, relative to the die table, 'over the dies to fill them.
  • a tabletting machine as claimed in claim 16 in which stationary deflector means is provided to move excess powdered or granulated material deflected by said first said stationary deflector means and being carried round with said die table, inside the feed frame relative to the die table, to the other side of said dies, the excess material then leaving the feed frame and entering a part annular channel defined in part by the surface of the die table and in part by a stationary part circular powder retaining band, a still further stationary deflector means being provided to move powdered or granulated material carried round in said channel and re-entering the feed frame, back over the dies to fill them.
  • a tabletting machine as claimed in claim 16 in which the feed frame comprises an outer wall, an intermediate wall and an inner wall, the inner wall having a wall portion disposed generally in the plane of said powder retaining band, and on said other side of said dies, the intermediate wall being disposed on said one side of said dies and the outer wall having a portion disposed on the side of said intermediate wall remote from the dies, and a hopper for powdered or granulated material to be tabletted is arranged to supply fill material onto the surface of the die table between said outer wall portion and said intermediate wall, such material being deflected passed one end of said intermediate wall by said first said stationary deflector means and excess fill material being deflected passed one end of said inner wall by said second said stationary deflector means, said still further stationary deflector means deflecting surplus fill material re-entering the feed frame into the space between said inner wall portion and said intermediate wall.
  • a tabletting machine comprising a rotatable die table presenting a concave cylindrical surface, a stationary feed frame for feeding powdered or granulated material to be tabletted onto said surface, a ring of dies in the die table, the dies opening, at one end, in said surface to receive powdered or granulated material fed onto said surface by said feed frame, and for each die, a pair of punches individual to the die and rotatable with the die table, means for entering the punches into the die, from opposite ends of the die, thereby to compress powdered or granulated material in the die and form a tablet, and means for subsequently withdrawing one of the punches from the die and for advancing the other punch to eject the tablet from the die.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicinal Preparation (AREA)
US523143A 1973-11-17 1974-11-12 Tabletting machines Expired - Lifetime US3918873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/960,299 USRE30319E (en) 1973-11-17 1978-11-13 Tabletting machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB53494/73A GB1481797A (en) 1973-11-17 1973-11-17 Tabletting machines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/960,299 Reissue USRE30319E (en) 1973-11-17 1978-11-13 Tabletting machines

Publications (1)

Publication Number Publication Date
US3918873A true US3918873A (en) 1975-11-11

Family

ID=10468016

Family Applications (1)

Application Number Title Priority Date Filing Date
US523143A Expired - Lifetime US3918873A (en) 1973-11-17 1974-11-12 Tabletting machines

Country Status (5)

Country Link
US (1) US3918873A (de)
JP (2) JPS548546B2 (de)
BE (1) BE836049Q (de)
DE (2) DE2462439C3 (de)
GB (1) GB1481797A (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145174A (en) * 1978-02-15 1979-03-20 Leningradskoe Spelsialnoe Konstruktorskoe Bjuro Polimernogo Masinostroenia Rotary tabletting machine
US4292017A (en) * 1980-07-09 1981-09-29 Doepel Wallace A Apparatus for compressing tablets
US4403935A (en) * 1980-03-27 1983-09-13 Manesty Machines Limited Tabletting machines
US4570229A (en) * 1983-09-19 1986-02-11 Pennwalt Corporation Tablet press controller and method
US6068465A (en) * 1995-05-18 2000-05-30 Bwi Plc Rotary tabletting press
CN107139526A (zh) * 2017-06-27 2017-09-08 北京东兴堂科技发展有限公司 粉末压片器
CN112537072A (zh) * 2020-11-19 2021-03-23 孟繁军 一种秸秆成型压块机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU179442B (en) * 1978-10-30 1982-10-28 Chinoin Gyogyszer Es Vegyeszet Process and equipment for preparing tablets
DE3532692A1 (de) * 1985-09-13 1987-03-19 Boehringer Mannheim Gmbh Verfahren zum herstellen von tabletten aus pellets
IT1221567B (it) * 1987-12-30 1990-07-12 Ima Spa Macchina comprimitrice per la realizzazione di compresse
IT1238959B (it) * 1990-05-21 1993-09-17 Ima Spa Dispositivo per il prelevamento ed il convogliamento di compresse in uscita da una macchina comprimitrice.
IT1296554B1 (it) * 1997-11-18 1999-07-09 Bl Macchine Automatiche Macchina confezionatrice di compresse.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016572A (en) * 1959-05-21 1962-01-16 John Holroyd & Company Ltd Tabletting machines
US3063390A (en) * 1960-07-27 1962-11-13 Stokes F J Corp Tablet machine with inspection means
US3158111A (en) * 1962-06-06 1964-11-24 Smith Kline French Lab Method and apparatus for forming tablets
US3276079A (en) * 1965-04-09 1966-10-04 Squibb & Sons Inc Feed frame
US3337915A (en) * 1964-11-23 1967-08-29 Pennsalt Chemicals Corp Tablet press

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016572A (en) * 1959-05-21 1962-01-16 John Holroyd & Company Ltd Tabletting machines
US3063390A (en) * 1960-07-27 1962-11-13 Stokes F J Corp Tablet machine with inspection means
US3158111A (en) * 1962-06-06 1964-11-24 Smith Kline French Lab Method and apparatus for forming tablets
US3337915A (en) * 1964-11-23 1967-08-29 Pennsalt Chemicals Corp Tablet press
US3276079A (en) * 1965-04-09 1966-10-04 Squibb & Sons Inc Feed frame

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145174A (en) * 1978-02-15 1979-03-20 Leningradskoe Spelsialnoe Konstruktorskoe Bjuro Polimernogo Masinostroenia Rotary tabletting machine
US4403935A (en) * 1980-03-27 1983-09-13 Manesty Machines Limited Tabletting machines
US4475880A (en) * 1980-03-27 1984-10-09 Manesty Machines Limited Tabletting machines
US4292017A (en) * 1980-07-09 1981-09-29 Doepel Wallace A Apparatus for compressing tablets
US4570229A (en) * 1983-09-19 1986-02-11 Pennwalt Corporation Tablet press controller and method
US6068465A (en) * 1995-05-18 2000-05-30 Bwi Plc Rotary tabletting press
CN107139526A (zh) * 2017-06-27 2017-09-08 北京东兴堂科技发展有限公司 粉末压片器
CN107139526B (zh) * 2017-06-27 2023-02-17 北京东兴堂科技发展有限公司 粉末压片器
CN112537072A (zh) * 2020-11-19 2021-03-23 孟繁军 一种秸秆成型压块机

Also Published As

Publication number Publication date
GB1481797A (en) 1977-08-03
JPS50112281A (de) 1975-09-03
DE2454168A1 (de) 1975-05-28
JPS5750600B2 (de) 1982-10-28
DE2462439B2 (de) 1978-04-20
DE2462439A1 (de) 1977-02-24
DE2454168C3 (de) 1978-07-20
BE836049Q (fr) 1976-03-16
JPS5495717A (en) 1979-07-28
DE2454168B2 (de) 1977-11-24
DE2462439C3 (de) 1978-12-21
JPS548546B2 (de) 1979-04-17

Similar Documents

Publication Publication Date Title
US3918873A (en) Tabletting machines
CA2176412C (en) Rotary tabletting press
US4943227A (en) Compressing machine for making tablets
US5855233A (en) Pulverulent substance dispensing device for capsule filling machines
GB2133339A (en) Lubricating moulds
US4475880A (en) Tabletting machines
US5698238A (en) Rotary tabletting machine
US2700938A (en) Apparatus and method for tablet production
US3408963A (en) Tablet machine
USRE30319E (en) Tabletting machines
US5910324A (en) Device for the manufacture of tablets
US2879724A (en) Tablet coating machine
US4167380A (en) Apparatus for the manufacture of layered articles such as multilayer tablets
US2814261A (en) Machine for depositing viscous or plastic materials
CN114929464A (zh) 压片机
SU770836A1 (ru) Автомат дл таблетировани порошка
US3014240A (en) Tablet press
GB739711A (en) Improvements in or relating to machines for compressing a coating upon tablets, pills and like cores
US2839015A (en) Adjustable pressure roll for rotary tablet press having self accommodating bridge
SU656872A1 (ru) Роторна таблеточна машина
SU1284692A1 (ru) Устройство дл непрерывного прессовани порошков
US2928173A (en) Print molder for plastic materials
EP0219168A2 (de) Verfahren und Vorrichtung zum Dosieren von Schüttgut
JPH09122990A (ja) 打錠機
US3406644A (en) Apparatus for moulding articles of candy