US3915716A - Chemical nickel plating bath - Google Patents
Chemical nickel plating bath Download PDFInfo
- Publication number
- US3915716A US3915716A US020828A US2082870A US3915716A US 3915716 A US3915716 A US 3915716A US 020828 A US020828 A US 020828A US 2082870 A US2082870 A US 2082870A US 3915716 A US3915716 A US 3915716A
- Authority
- US
- United States
- Prior art keywords
- liter
- mole
- nickel
- bath
- hydrazine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 55
- 239000000126 substance Substances 0.000 title claims abstract description 10
- 238000007747 plating Methods 0.000 title abstract description 12
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 52
- 150000003839 salts Chemical class 0.000 claims abstract description 20
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 9
- 239000008139 complexing agent Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052716 thallium Inorganic materials 0.000 claims description 5
- 229910000147 aluminium phosphate Chemical class 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 239000006172 buffering agent Substances 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 abstract description 18
- 230000003197 catalytic effect Effects 0.000 abstract description 10
- 230000007797 corrosion Effects 0.000 abstract description 5
- 238000005260 corrosion Methods 0.000 abstract description 5
- 230000002401 inhibitory effect Effects 0.000 abstract description 4
- 230000001376 precipitating effect Effects 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- 230000008021 deposition Effects 0.000 description 16
- 239000010410 layer Substances 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 150000002815 nickel Chemical class 0.000 description 7
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 7
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- -1 buffering'icompounds Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 230000003139 buffering effect Effects 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 3
- 229960004838 phosphoric acid Drugs 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- PHJJWPXKTFKKPD-UHFFFAOYSA-N [Ni+3].[O-]P([O-])[O-] Chemical compound [Ni+3].[O-]P([O-])[O-] PHJJWPXKTFKKPD-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000002429 hydrazines Chemical class 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- FUSNOPLQVRUIIM-UHFFFAOYSA-N 4-amino-2-(4,4-dimethyl-2-oxoimidazolidin-1-yl)-n-[3-(trifluoromethyl)phenyl]pyrimidine-5-carboxamide Chemical compound O=C1NC(C)(C)CN1C(N=C1N)=NC=C1C(=O)NC1=CC=CC(C(F)(F)F)=C1 FUSNOPLQVRUIIM-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000212342 Sium Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical class OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012493 hydrazine sulfate Substances 0.000 description 1
- 229910000377 hydrazine sulfate Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- RBWSWDPRDBEWCR-RKJRWTFHSA-N sodium;(2r)-2-[(2r)-3,4-dihydroxy-5-oxo-2h-furan-2-yl]-2-hydroxyethanolate Chemical compound [Na+].[O-]C[C@@H](O)[C@H]1OC(=O)C(O)=C1O RBWSWDPRDBEWCR-RKJRWTFHSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- YTQVHRVITVLIRD-UHFFFAOYSA-L thallium sulfate Chemical compound [Tl+].[Tl+].[O-]S([O-])(=O)=O YTQVHRVITVLIRD-UHFFFAOYSA-L 0.000 description 1
- 229940119523 thallium sulfate Drugs 0.000 description 1
- 229910000374 thallium(I) sulfate Inorganic materials 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
- C23C18/34—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
Definitions
- the invention relates to a chemical nickeljplatin'g bathcontaining hydrazine or its salts for precipitating nic'k'el coatings having corrosion inhibiting or catalytic properties.
- v V Nickel coatings can be deposited from known'baths by chemical reduction, thatis, without an externalcurrent source. These baths contain a nickel salt, a' reducing agent, cornplexfor'rning agentsand'other addition agents in the dissolved state, and they deposit nickelon als in this manner; but also many inactive' metals and even non-conduct'ors after' previous activation treat" ment, for example, with palladium nuclei.
- nickel salts can bereduced by means of sodiumiborohydride and ofboiazanesJ
- the coatingsdeposited contain 5 7% boron addition to the nickel.
- the nickel baths containing sodium borohydride can be regenerated only to a limited extent. Aborate which formed as a reaction product accumulates in the electrolyte, and interferes with nickel deposition.
- the bath is operated at a value of 65 to 1 land at a, temperature of 7,0f to 100T, preferably 9 to 9 C ..Ammoniuin carbonate may be added to the bath asa'complexing agent and bnffering compound in'amounts of 0.01 or 0.02 mole per liter.
- greater aniounts of-this compound be used, nor that the pH value be increased beyond the indicated maximum limit.
- the deposition rate of the nickel isvery low and the stability of the bathis unsatisfactory. Because the bath is operated at felativelyjhi gh temperatures, it is not well'suited to thenickel coating of plasties. 7
- nickel matings Lhaving corrosion inhibiting and/ or catalytic effects are obtained from a bath which a high deposition rate and by carbonates.
- a pH value which is higher than of'tl1'e known bath" and the higher concentratibn of the abovementioned buffering compounds in the bathof the invention as compared to the known bath provide substantial'advantages'and constitute a major'ad'van'ce in the art.
- Corrosion resistant nickel coating s of great hardness can be deposited'with the bath of the invention on metals and on non-conductors. These'nickel layers do not tend to turn passive when theyare reinforced by galvanic deposition. M
- the bath of the invention additionally permits, nickel to be deposited already at a. bath temperature above C.
- the deposition rate is, very high, and the stability of the bath isexcellent.
- the upkeep of the electrolyte thus .does not presen tany problems. .lt is another, significant advantage thatthe electrolyte canbe regenerated indefinitely with'suitable, concentrated stock solutions of the individual ingredients.
- Suitable watersoluble salts of phosphoric acid and carbonic acid include, for vexample,-.the sodium, potas;
- T he coatings deposited from the bath with the use 0 phosphates as buffering compounds generally. are, of better quality thanthe coatings obtained withthe use ofcarbonates.
- the stability of the bath and the nickel are, of better quality thanthe coatings obtained withthe use ofcarbonates.
- the concentration of the aforementioned phosphates and carbonates isin the range above 0.05 mole/liter; preferably between 0.05 to 1 .0 mole/liter.
- the concentrad n er e reducing agent is about 0.01 to'4.0 moles/ liteflfbase'd'on the liydrafziriecontent;
- Complexing agents particularly suitable for this purpose are, for example, ammonia, amino alcohols and the salts of diphosphoric acid, such as Na ,P O in concentrations of about 0.01 to 4.0 moles/liter.
- ammonia as a complexing agent even at elevated temperatures regardless of its volatility when the electrolyte is suitable covered.
- the usual cover of floating solid bodies is not sufficient.
- an inert agent insoluble in the liquid of the bath preferably an aliphatic or aromatic hydrocarbon. such as decalin, or an ether of low volatility, such as di-nbutyl ether.
- Objects of metal or ceramics which are first moistened with water can be entered into the bath through the cover layer without the cover layer adhering to them.
- Organic synthetic resins are generally wetted by the floating covering layer and can thereafter not be coated with nickel.
- the bath of the invention is prepared in a manner known in itself, preferably, however, by mixing the components in the following sequence: water, nickel salt, complexing agent, phosphate or carbonate, hydrazine or its salt. Ultimately, the pH is adjusted to the desired value or more than 1 1 if necessary, for example, by addition of alkali metal hydroxides such as sodium hydroxide.
- the bath of the invention may have the following composition: 0.01 to 0.5 mole/liter nickel salt, 0.01 to 4.0 moles/liter comlexing agent, 0.01 to 4.0 moles/liter hydrazine or a corresponding amount of a hydrazine salt, between 0.05 and 1.0 mole/liter of a water soluble salt of phosphoric or carbonic acid, and optionally up to 3 mole/liter alkali metal hydroxide, in aqueous solution.
- the bath is used in a manner known in the art. Also, this bath is particularly well suited for nickel plating plastic surfaces.
- the necessary pretreatment and activation of the plastic surfaces is carried out in the usual manner.
- Many organic synthetic resin compositions can be roughened by etching, for example, with hot chrome sulfuric acid.
- the etched plastics are subsequently dipped in a solution of a noble metal salt, for example, palladium chloride, and thereafter in a reducing agent, for example, hydrazine.
- the activated plastics are then rinsed, and subsequently nickel plated in the chemical nickel plating bath.
- a nickel plating bath containing a diphosphate, such as Na P O is particularly suitable for nickel plating organic synthetic resin compositions or plastics. Nickel is already deposited at the low bath temperature of over 50C.
- this induction period can be substantially shortened by the addition of a very small amount of alkali metal hypophosphite, such as sodium hypophosphite, to the nickel plating bath. Simultaneously, complete nickel coating of the plastics and good adhesion of the nickel deposits are achieved.
- the preferred concentration of the hypophosphite is in the range between approximately 0.002 and 0.1 mole/- liter.
- hydrazine-bearing nickel baths are already stabilized and excellently by the addition of phosphates or carbonates. Further stabilization is possible by adding certain inhibitors in low concentrations.
- Particularly suitable inhibitors are the water soluble salts of lead, cadmium, bismuth, thallium or tin with inorganic or organic acids, or metal cyanides, preferably alkali metal cyanides, in preferred concentrations of 10' to 10 mole/liter.
- the bath may additionally contain water soluble salts of cobalt, germanium, tin or thallium in concentrations of about 10" to 10 mole/liter.
- Suitable salts are, for example, the chlorides and sulfates.
- the deposition conditions are analogous to those of nickel.
- the alloys obtained from the baths of this composition are distinguished by their superior catalytic activity.
- EXAMPLE l 0.1 Mole/liter nickel (11) chloride 2.0 Mole/liter ammonia 0.4 Mole/liter hydrazine 10' Mole/liter lead (11) acetate as stabilizer 0.4 Mole/liter dipotassium hydrogen phosphate pH 12.6; adjusted with sodium hydroxide Cover layer: di-n-butyl ether Deposition rate: 3.7 um/hr at 50C Appearance of nickel layer: light brown, dull EXAMPLE 2 0.1 Mole/liter nickel (ll) chloride 3.0 Mole/liter ammonia 0.4 Mole/liter hydrazine 0.4 Mole/liter dipotassiumhydrogen phosphate 3X10 Mole/liter potassium cyanide as stabilizer pH 12.2; adjusted with sodium hydroxide Cover layer: decalin Deposition rate: 15.6 ,um/hr at C Appearance of nickel layer: dark brown, dull EXAMPLE 3 0.05 Mole/liter nickel (l1) sulfate "0.2 Mole/liter sodium diphosphate (Na P O
- EXAMPLE 7 0.05 Mole/liter nickel (ll) chloride 1.5 Mole/liter monoethanolamine 0.4 Mole/liter hydrazine 0.4 Mole/liter dipotassium hydrogen phosphate 3X10 Mole/liter thallium (l) sulfate pH 11.7; adjusted with sodium hydroxide Deposition rate: 8.0 um/hr at 70C Appearance of nickel layer: brown, semi-bright EXAMPLE 8 0.05 Mole/liter nickel (ll) sulfate 0.005 Mole/liter cobalt (ll) sulfate 0.2 Mole/liter hydrazine 0.4 Mole/liter dipotassium hydrogen phosphate 0.2 Mole/liter sodium diphosphate (Na P O From this electrolyte, when adjusted to pH 1 1.4 (with sodium hydroxide), and at a temperature of 70C, a coating was deposited on a steel sheet. This deposit is distinguished by remarkable catalytic activity.
- the catalytic activity was determined by the rate of decomposition of hydrazine in a solution of the composition 0.1 mole/liter hydrazine 0.3 mole/liter disdoium hydrogen phosphate pH 12.1; adjusted with sodium hydroxide at 70C.
- the decomposition rate was found to be' 300 umole hydrazinelcm hr.
- the decomposition rate of the hydrazine under identical experimental conditions on a sheet of pure nickel (rolled) which was etched at 70C in 2 N hydrochloric acid was less than 3 umole hydrazine/cm hr.
- EXAMPLE 9 From an electrolyte of the composition 0.05 mole/liter nickel (ll) sulfate 10 mole/liter thallium sulfate 0.6 mole/liter hydrazine 0.4 mole/liter dipotassium hydrogen phosphate 0.2 mole/liter sodium diphosphate (Na P O a catalytically active coating was deposited at pH 12.0 (adjusted with sodium hydroxide) and at 70C as described in Example 8.
- the catalytic activity or the alloy coating was 310 umole hydrazinelcm hr.
- EXAMPLE 10 From an electrolyte of the composition 0.05 mole/liter nickel (ll) sulfate 10 mole/liter tin (ll) chloride 0.4 mole/liter hydrazine 0.2 mole/liter sodium diphosphate (Na P O 0.4 mole/liter dipotassium hydrogen phosphate a catalytically active coating was deposited at pH 1 1.4 (adjusted with sodium hydroxide) and at 70C as described in Example 8.
- the catalytic activity of the alloy coating was as follows:
- an alkaline chemical nickel plating bath having a surface layer of di-n-butyl ether and a pH above 1 1 comprising an aqueous solution of a nickel salt, a reducing agent selected from the group consisting of hydrazine and hydrazine salts, a complexing agent and a buffering agent, the improvement of which comprised from 0.05 to 1 mole per liter of at least one water soluble salt of an acid selected from the group consisting of amonium, sodium, potassium and hydrazonium salts of carbonic acid and phosphoric acid, said bath comprising about 10 to 10 moles per liter of at least one water soluble salt of a metal selected from the group consisting of cobalt, germanium, tin and thallium.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
A chemical nickel plating bath containing hydrazine or its salts for precipitating nickel coatings in a substrate and having catalytic or corrosion inhibiting properties.
Description
United States Patent 1 1 Haack 1 Oct. 28, 1975 1 CHEMICAL NICKEL PLATING BATH 2.822.294 2/1'958 Gutzeit et a1. 106/1 x 1 2,916,401 12/1959 Puls 106/1 X [75] Inventor mack Bern, Germany 3,024,134 3/1962 Nixon et a1. 106/1 x [73] Assignee: Schering AG, Berlin and h ep er Bergkamen Germany 3,403,035 9/1968 Schneble et a1. 106/1 [22] Filed: Mar. 18, 1970 3,438,798 4/1969 Baudrand 106/1 X [21] Appl. No.2 20,828 OTHER PUBLICATIONS Schwartz, M.,Z Proc. Amer. Electroplating Society, [30] Foreign Application Priority Data Vol. 47 (1960), pp. 176-183.
Apr. 17, 1969 Germany 1920152 Primary ExamirierLorenzo B. Hayes [52] US. Cl 106/1; 117/47 A; 117/130 E; Atmrney, Agent, or Firm-Joseph F. Padlon 117/160 R [51] Int. Cl. C23C 3/02 7 T A [58] Field of Search 106/1; 117/130 E, 130, [5 ABS R CT 7/1 0 47 A A chemical nickel plating bath containing hydrazine or its salts for precipitating nickel coatings in a sub- 56] References Cited strate and having catalytic or corrosion inhibiting UNITED STATES PATENTS PmPemesll/l947 Pessel 106/1 X 1 Claim, No Drawings 1" CHEMICAL NICKEL PLATING BATH; 1
The invention relates to a chemical nickeljplatin'g bathcontaining hydrazine or its salts for precipitating nic'k'el coatings having corrosion inhibiting or catalytic properties. v V Nickel coatings can be deposited from known'baths by chemical reduction, thatis, without an externalcurrent source. These baths contain a nickel salt, a' reducing agent, cornplexfor'rning agentsand'other addition agents in the dissolved state, and they deposit nickelon als in this manner; but also many inactive' metals and even non-conduct'ors after' previous activation treat" ment, for example, with palladium nuclei.
The reduction of'nickelcompounds with sodiu m hy pophosphite has been known for the longest time. Depending on experimental conditions, the coatings so deposited contain 3 13% phosphorus. Theyihave the disadvantage of having a lower' melting'poi'rit' and a much smaller electric conductivity that pure nickel deposits. Also, they readily become passive and'are therefore difficult" to reinforceiiby' galvanic de position because the adherence of the galvanic face coating is low. Moreover, hypophosphite baths are'notistable and tend to decompose. It also: difficult to maintain the electrolyte for extended 'p eriodsbecause phosphite accumulates as a reaction product, and sparingly soluble nickel phosphite is precipitated. The suspended nickel phosphite causes rough coatings and'ultirr'iately decomposition of the bath.
It is further known thatnickel salts can bereduced by means of sodiumiborohydride and ofboiazanesJThe coatingsdeposited contain 5 7% boron addition to the nickel. However, it is n'oted'that theflow melting point and the small electrical conductivity of the nickel-boron alloys are disadvantages, Moreover, the nickel baths containing sodium borohydride can be regenerated only to a limited extent. Aborate which formed as a reaction product accumulates in the electrolyte, and interferes with nickel deposition. special disadvantage of sodium borohydride as a reducing gent is its rapid hydrolysis in the nickel bath Beeause this, reaction takes place independently from the nickel deposition, the yield of the reaction, based on sodium borohydride, decreases materially with the decreasing use of thebath. f j n '1' f A chemical nickel bath' containing a nickel salt," a complexing agent, buffering'icompounds, hydrazine or its derivatives, and optionally alkali metal hydroxide has been described, in U .S Pat. No. 3 ,l98,6'59.'The bath is operated at a value of 65 to 1 land at a, temperature of 7,0f to 100T, preferably 9 to 9 C ..Ammoniuin carbonate may be added to the bath asa'complexing agent and bnffering compound in'amounts of 0.01 or 0.02 mole per liter. There is no suggestion, however, thangreater aniounts of-this compound be used, nor that the pH value be increased beyond the indicated maximum limit. However, under the described conditions, the deposition rate of the nickel isvery low and the stability of the bathis unsatisfactory. Because the bath is operated at felativelyjhi gh temperatures, it is not well'suited to thenickel coating of plasties. 7
According to the invention, nickel matings; Lhaving corrosion inhibiting and/ or catalytic effects are obtained from a bath which a high deposition rate and by carbonates. i
is'ex-treinly' stable. 'As-the known bath, thefbath'of the invention contains 'anaquebus"solution" of nickel salt;
complexing agent,'hydrazin'e or' its salts,and optionally alkali metal hydroxide, as a "buffering'compound'; however'fa't least one 'waterisolubles alt of phosphoricacid or carbonic acid with-inorganicor organic bases in concentrations above 0.05 mole per liter, and'preferably between 0.05 and 1.0 mole/liter areiusedf and it has"a pl-lvalu'e higher thanll'. i v
A pH value which is higher than of'tl1'e known bath" and the higher concentratibn of the abovementioned buffering compounds in the bathof the invention as compared to the known bath provide substantial'advantages'and constitute a major'ad'van'ce in the art. T:
Corrosion resistant nickel coating s of great hardness can be deposited'with the bath of the invention on metals and on non-conductors. These'nickel layers do not tend to turn passive when theyare reinforced by galvanic deposition. M
It is also possible to produce nickel coatings having remarkable catalytic effects which are suitable particu-' larly as hydrogenation anddehydrog'enation catalysts.
They can, bedeposited on metalliesnrtaces of any desired shape and, inaddition to good adherence, have the advantage of not being pyrophoric. Thebath of the invention additionally permits, nickel to be deposited already at a. bath temperature above C. The deposition rate is, very high, and the stability of the bath isexcellent. The upkeep of the electrolyte thus .does not presen tany problems. .lt is another, significant advantage thatthe electrolyte canbe regenerated indefinitely with'suitable, concentrated stock solutions of the individual ingredients.
,Suitable watersoluble salts of phosphoric acid and carbonic acid include, for vexample,-.the sodium, potas;
sium, ammoniumand hydrazonium salts..
T he coatings deposited from the bath with the use 0 phosphates as buffering compounds generally. are, of better quality thanthe coatings obtained withthe use ofcarbonates. The stability of the bath and the nickel.
.improved by phosphates than depositionrate are more The concentration of the aforementioned phosphates and carbonatesisin the range above 0.05 mole/liter; preferably between 0.05 to 1 .0 mole/liter.-
' The aforementioned buffering-agents increase not of the bath, but have the additional advantage to achieve a better adjustment and maintenance of the optirnal pH value when used in the'aforernentioned con-. centratioris, than ispossible with the known system.
-. They "also cause high solubility ofi the nickel salts in the *l-lydrazine and its saltsjfor exarnple, hydrazine sulfate, are employedasreducing agents. The concentrad n er e reducing agent is about 0.01 to'4.0 moles/ liteflfbase'd'on the liydrafziriecontent;
Asis' wen known; nickel-salts canb'e held in solution w in an'alkaline medium only complexing agents. In
order to make the desired high deposition rate of nickel possible} enickelfcornplexs 'mustl'b'e ineit'lier too sta- Complexing agents particularly suitable for this purpose are, for example, ammonia, amino alcohols and the salts of diphosphoric acid, such as Na ,P O in concentrations of about 0.01 to 4.0 moles/liter.
It is possible to use ammonia as a complexing agent even at elevated temperatures regardless of its volatility when the electrolyte is suitable covered. The usual cover of floating solid bodies, however, is not sufficient. It has been found advantageous to cover the bath with an inert agent insoluble in the liquid of the bath. preferably an aliphatic or aromatic hydrocarbon. such as decalin, or an ether of low volatility, such as di-nbutyl ether.
Objects of metal or ceramics which are first moistened with water can be entered into the bath through the cover layer without the cover layer adhering to them. Organic synthetic resins, however, are generally wetted by the floating covering layer and can thereafter not be coated with nickel.
The bath of the invention is prepared in a manner known in itself, preferably, however, by mixing the components in the following sequence: water, nickel salt, complexing agent, phosphate or carbonate, hydrazine or its salt. Ultimately, the pH is adjusted to the desired value or more than 1 1 if necessary, for example, by addition of alkali metal hydroxides such as sodium hydroxide.
The bath of the invention may have the following composition: 0.01 to 0.5 mole/liter nickel salt, 0.01 to 4.0 moles/liter comlexing agent, 0.01 to 4.0 moles/liter hydrazine or a corresponding amount of a hydrazine salt, between 0.05 and 1.0 mole/liter of a water soluble salt of phosphoric or carbonic acid, and optionally up to 3 mole/liter alkali metal hydroxide, in aqueous solution.
The bath is used in a manner known in the art. Also, this bath is particularly well suited for nickel plating plastic surfaces.
The necessary pretreatment and activation of the plastic surfaces is carried out in the usual manner. Many organic synthetic resin compositions can be roughened by etching, for example, with hot chrome sulfuric acid. The etched plastics are subsequently dipped in a solution of a noble metal salt, for example, palladium chloride, and thereafter in a reducing agent, for example, hydrazine. The activated plastics are then rinsed, and subsequently nickel plated in the chemical nickel plating bath. A nickel plating bath containing a diphosphate, such as Na P O is particularly suitable for nickel plating organic synthetic resin compositions or plastics. Nickel is already deposited at the low bath temperature of over 50C.
At lower bath temperatures, however, the nickel deposition on plastic surfaces activated by means of palladium nuclei starts only after a fairly long induction period.
As has further been found, this induction period can be substantially shortened by the addition of a very small amount of alkali metal hypophosphite, such as sodium hypophosphite, to the nickel plating bath. Simultaneously, complete nickel coating of the plastics and good adhesion of the nickel deposits are achieved. The preferred concentration of the hypophosphite is in the range between approximately 0.002 and 0.1 mole/- liter.
According to the invention, hydrazine-bearing nickel baths are already stabilized and excellently by the addition of phosphates or carbonates. Further stabilization is possible by adding certain inhibitors in low concentrations. Particularly suitable inhibitors are the water soluble salts of lead, cadmium, bismuth, thallium or tin with inorganic or organic acids, or metal cyanides, preferably alkali metal cyanides, in preferred concentrations of 10' to 10 mole/liter.
According to a further embodiment of the invention, the bath may additionally contain water soluble salts of cobalt, germanium, tin or thallium in concentrations of about 10" to 10 mole/liter. Suitable salts are, for example, the chlorides and sulfates. The deposition conditions are analogous to those of nickel. The alloys obtained from the baths of this composition are distinguished by their superior catalytic activity.
The following Examples further describe and illustrate baths according to the invention.
EXAMPLE l 0.1 Mole/liter nickel (11) chloride 2.0 Mole/liter ammonia 0.4 Mole/liter hydrazine 10' Mole/liter lead (11) acetate as stabilizer 0.4 Mole/liter dipotassium hydrogen phosphate pH 12.6; adjusted with sodium hydroxide Cover layer: di-n-butyl ether Deposition rate: 3.7 um/hr at 50C Appearance of nickel layer: light brown, dull EXAMPLE 2 0.1 Mole/liter nickel (ll) chloride 3.0 Mole/liter ammonia 0.4 Mole/liter hydrazine 0.4 Mole/liter dipotassiumhydrogen phosphate 3X10 Mole/liter potassium cyanide as stabilizer pH 12.2; adjusted with sodium hydroxide Cover layer: decalin Deposition rate: 15.6 ,um/hr at C Appearance of nickel layer: dark brown, dull EXAMPLE 3 0.05 Mole/liter nickel (l1) sulfate "0.2 Mole/liter sodium diphosphate (Na P O 0.2 Mole/liter hydrazine 0.4 Mole/liter sodium carbonate 10' Mole/liter bismuth (111) nitrate as stabilizer pH 11.1
Deposition rate: 5.4 um/hr at 70C Appearance of nickel layer: gray, dull EXAMPLE 4 0.05 Mole/liter nickel (l1) sulfate 0.2 Mole/liter sodium diphosphate (Na P O 0.4 Mole/liter hydrazine 0.4 Mole/liter dipotassium hydrogen phosphate 10" Mole/liter potassium cyanide as stabilizer pH 11.1; adjusted with sodium hydroxide Deposition rate: 16.7 um/hr at C Appearance of nickel layer: brown, bright EXAMPLE 5 0.05 Mole/liter nickel (l1) sulfate 0.2 Mole/liter sodium diphosphate (Na P O 0.6 Mole/liter hydrazine 0.4 Mole/liter dipotassium hydrogen phosphate 10 Mole/liter tin (11) chloride as stabilizer pH 12.0; adjusted with sodium hydroxide Deposition rate: 7.6 um/hr at 70C Appearance of nickel layer: light, bright EXAMPLE 6 0.03 Mole/liter nickel (ll) sulfate 0.3 Mole/liter sodium diphosphate (Na P O 0.4 Mole/liter hydrazine 0.4 Mole/liter dipotassium hydrogen phosphate 0.008 Mole/liter sodium hypophosphite l Mole/liter cadmium (l1) sulfate as stabilizer pH 12.0; adjusted with sodium hydroxide Deposition rate: 3 um/hr at 60C Appearance of nickel layer: light, bright This electrolyte may also be used for nickel plating plastics.
EXAMPLE 7 0.05 Mole/liter nickel (ll) chloride 1.5 Mole/liter monoethanolamine 0.4 Mole/liter hydrazine 0.4 Mole/liter dipotassium hydrogen phosphate 3X10 Mole/liter thallium (l) sulfate pH 11.7; adjusted with sodium hydroxide Deposition rate: 8.0 um/hr at 70C Appearance of nickel layer: brown, semi-bright EXAMPLE 8 0.05 Mole/liter nickel (ll) sulfate 0.005 Mole/liter cobalt (ll) sulfate 0.2 Mole/liter hydrazine 0.4 Mole/liter dipotassium hydrogen phosphate 0.2 Mole/liter sodium diphosphate (Na P O From this electrolyte, when adjusted to pH 1 1.4 (with sodium hydroxide), and at a temperature of 70C, a coating was deposited on a steel sheet. This deposit is distinguished by remarkable catalytic activity.
The catalytic activity was determined by the rate of decomposition of hydrazine in a solution of the composition 0.1 mole/liter hydrazine 0.3 mole/liter disdoium hydrogen phosphate pH 12.1; adjusted with sodium hydroxide at 70C. The decomposition rate was found to be' 300 umole hydrazinelcm hr.
By way of comparison, the decomposition rate of the hydrazine under identical experimental conditions on a sheet of pure nickel (rolled) which was etched at 70C in 2 N hydrochloric acid was less than 3 umole hydrazine/cm hr.
EXAMPLE 9 From an electrolyte of the composition 0.05 mole/liter nickel (ll) sulfate 10 mole/liter thallium sulfate 0.6 mole/liter hydrazine 0.4 mole/liter dipotassium hydrogen phosphate 0.2 mole/liter sodium diphosphate (Na P O a catalytically active coating was deposited at pH 12.0 (adjusted with sodium hydroxide) and at 70C as described in Example 8.
The catalytic activity or the alloy coating was 310 umole hydrazinelcm hr.
EXAMPLE 10 From an electrolyte of the composition 0.05 mole/liter nickel (ll) sulfate 10 mole/liter tin (ll) chloride 0.4 mole/liter hydrazine 0.2 mole/liter sodium diphosphate (Na P O 0.4 mole/liter dipotassium hydrogen phosphate a catalytically active coating was deposited at pH 1 1.4 (adjusted with sodium hydroxide) and at 70C as described in Example 8.
The catalytic activity of the alloy coating was as follows:
390 umole hydrazine/cm hr.
What is claimed is:
1. in an alkaline chemical nickel plating bath having a surface layer of di-n-butyl ether and a pH above 1 1 comprising an aqueous solution of a nickel salt, a reducing agent selected from the group consisting of hydrazine and hydrazine salts, a complexing agent and a buffering agent, the improvement of which comprised from 0.05 to 1 mole per liter of at least one water soluble salt of an acid selected from the group consisting of amonium, sodium, potassium and hydrazonium salts of carbonic acid and phosphoric acid, said bath comprising about 10 to 10 moles per liter of at least one water soluble salt of a metal selected from the group consisting of cobalt, germanium, tin and thallium.
Claims (1)
1. IN AN ALKALINE CHEMICAL NICKEL PALATING BATH HAVING A SURFACE LAYER OF DI-N-BUTYL ETHER AND A PH ABOVE 11 COMPRISING AN AQUEOUS SOLUTION OF A NICKLE SALT, A REDUCING AGENT SELECTED FROM THE GROUP CONSISTING OF HYDRAZINE AND HYDRAZINE SALTS, A COMPLEXING AGENT AND A BUFFERING AGENT, THE IMPROVEMEMT OF WHICH COMPRISING FROM 0.05 TO 1 MOLE PER LITER OF AT LEAST ONE WATER SOLUBLFE SALT OF AN ACID SELECTED FROM THE GROUP CONSISTING OF AMONIUM, SODIUM, POTASSIUM AND HYDRAZONIUM SALTS OF CARBONIC ACID AND PHOSPHORIC ACID, SAID BATH COMPRISING ABOUT 10**-4 TO 10**-2 MOLES PER LITER OF AT LEAST ONE WATER SOLU SALT OF A METAL SELECTED FROM THE GROUP CONSISTING OF COBALT, GERMANIUM, TIN AND THALLIUM.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19691920152 DE1920152C3 (en) | 1969-04-12 | Chemical nickel bath |
Publications (1)
Publication Number | Publication Date |
---|---|
US3915716A true US3915716A (en) | 1975-10-28 |
Family
ID=5731818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US020828A Expired - Lifetime US3915716A (en) | 1969-04-17 | 1970-03-18 | Chemical nickel plating bath |
Country Status (3)
Country | Link |
---|---|
US (1) | US3915716A (en) |
FR (1) | FR2045398A5 (en) |
GB (1) | GB1310610A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4167416A (en) * | 1976-10-19 | 1979-09-11 | Alfachimici S.P.A. | Composition for the electroless deposition of nickel base alloys |
US4189324A (en) * | 1978-06-02 | 1980-02-19 | Michael Gulla | Stabilized electroless plating solutions |
US4695489A (en) * | 1986-07-28 | 1987-09-22 | General Electric Company | Electroless nickel plating composition and method |
US4780342A (en) * | 1987-07-20 | 1988-10-25 | General Electric Company | Electroless nickel plating composition and method for its preparation and use |
US5614477A (en) * | 1995-09-07 | 1997-03-25 | Kompan; Vladimir | Anti-friction additive and method for using same |
US5622877A (en) * | 1993-03-02 | 1997-04-22 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Method for making high-voltage high-speed gallium arsenide power Schottky diode |
US6080447A (en) * | 1998-05-14 | 2000-06-27 | Enthone-Omi, Inc. | Low etch alkaline zincate composition and process for zincating aluminum |
US6183546B1 (en) * | 1998-11-02 | 2001-02-06 | Mccomas Industries International | Coating compositions containing nickel and boron |
WO2001066825A1 (en) * | 2000-03-08 | 2001-09-13 | Mccomas, Edward | Coating compositions containing nickel and boron |
WO2010045559A1 (en) | 2008-10-16 | 2010-04-22 | Atotech Deutschland Gmbh | Metal plating additive, and method for plating substrates and products therefrom |
EP2671969A1 (en) | 2012-06-04 | 2013-12-11 | ATOTECH Deutschland GmbH | Plating bath for electroless deposition of nickel layers |
EP3026143A1 (en) | 2014-11-26 | 2016-06-01 | ATOTECH Deutschland GmbH | Plating bath and method for electroless deposition of nickel layers |
EP3190208A1 (en) | 2016-01-06 | 2017-07-12 | ATOTECH Deutschland GmbH | Electroless nickel plating baths comprising aminonitriles and a method for deposition of nickel and nickel alloys |
EP3190209A1 (en) | 2016-01-06 | 2017-07-12 | ATOTECH Deutschland GmbH | 1-acylguanidine compounds and the use of said compounds in electroless deposition of nickel and nickel alloy coatings |
US10358724B2 (en) * | 2013-07-16 | 2019-07-23 | Korea Institute Of Industrial Technology | Electroless nickel plating solution, electroless nickel plating method using same, and flexible nickel plated layer formed by using same |
CN115323363A (en) * | 2022-07-27 | 2022-11-11 | 惠州市安泰普表面处理科技有限公司 | Aluminum alloy chemical nickel plating solution and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7976692B2 (en) * | 2008-07-25 | 2011-07-12 | Xerox Corporation | Metallization process for making fuser members |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2430581A (en) * | 1944-11-29 | 1947-11-11 | Rca Corp | Metallizing nonmetallic bodies |
US2822294A (en) * | 1954-12-31 | 1958-02-04 | Gen Am Transport | Chemical nickel plating processes and baths therefor |
US2916401A (en) * | 1958-02-10 | 1959-12-08 | Gen Motors Corp | Chemical reduction nickel plating bath |
US3024134A (en) * | 1953-07-24 | 1962-03-06 | Gen Motors Corp | Nickel chemical reduction plating bath and method of using same |
US3198659A (en) * | 1962-04-09 | 1965-08-03 | Lockheed Aircraft Corp | Thin nickel coatings |
US3370974A (en) * | 1965-10-20 | 1968-02-27 | Ivan C. Hepfer | Electroless plating on non-conductive materials |
US3403035A (en) * | 1964-06-24 | 1968-09-24 | Process Res Company | Process for stabilizing autocatalytic metal plating solutions |
US3438798A (en) * | 1965-08-23 | 1969-04-15 | Arp Inc | Electroless plating process |
-
1970
- 1970-03-18 US US020828A patent/US3915716A/en not_active Expired - Lifetime
- 1970-04-13 GB GB1744470A patent/GB1310610A/en not_active Expired
- 1970-04-17 FR FR7013968A patent/FR2045398A5/fr not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2430581A (en) * | 1944-11-29 | 1947-11-11 | Rca Corp | Metallizing nonmetallic bodies |
US3024134A (en) * | 1953-07-24 | 1962-03-06 | Gen Motors Corp | Nickel chemical reduction plating bath and method of using same |
US2822294A (en) * | 1954-12-31 | 1958-02-04 | Gen Am Transport | Chemical nickel plating processes and baths therefor |
US2916401A (en) * | 1958-02-10 | 1959-12-08 | Gen Motors Corp | Chemical reduction nickel plating bath |
US3198659A (en) * | 1962-04-09 | 1965-08-03 | Lockheed Aircraft Corp | Thin nickel coatings |
US3403035A (en) * | 1964-06-24 | 1968-09-24 | Process Res Company | Process for stabilizing autocatalytic metal plating solutions |
US3438798A (en) * | 1965-08-23 | 1969-04-15 | Arp Inc | Electroless plating process |
US3370974A (en) * | 1965-10-20 | 1968-02-27 | Ivan C. Hepfer | Electroless plating on non-conductive materials |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4167416A (en) * | 1976-10-19 | 1979-09-11 | Alfachimici S.P.A. | Composition for the electroless deposition of nickel base alloys |
US4189324A (en) * | 1978-06-02 | 1980-02-19 | Michael Gulla | Stabilized electroless plating solutions |
US4695489A (en) * | 1986-07-28 | 1987-09-22 | General Electric Company | Electroless nickel plating composition and method |
US4780342A (en) * | 1987-07-20 | 1988-10-25 | General Electric Company | Electroless nickel plating composition and method for its preparation and use |
US5622877A (en) * | 1993-03-02 | 1997-04-22 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Method for making high-voltage high-speed gallium arsenide power Schottky diode |
US5614477A (en) * | 1995-09-07 | 1997-03-25 | Kompan; Vladimir | Anti-friction additive and method for using same |
US6080447A (en) * | 1998-05-14 | 2000-06-27 | Enthone-Omi, Inc. | Low etch alkaline zincate composition and process for zincating aluminum |
US6183546B1 (en) * | 1998-11-02 | 2001-02-06 | Mccomas Industries International | Coating compositions containing nickel and boron |
WO2001066825A1 (en) * | 2000-03-08 | 2001-09-13 | Mccomas, Edward | Coating compositions containing nickel and boron |
WO2010045559A1 (en) | 2008-10-16 | 2010-04-22 | Atotech Deutschland Gmbh | Metal plating additive, and method for plating substrates and products therefrom |
EP2671969A1 (en) | 2012-06-04 | 2013-12-11 | ATOTECH Deutschland GmbH | Plating bath for electroless deposition of nickel layers |
WO2013182489A2 (en) | 2012-06-04 | 2013-12-12 | Atotech Deutschland Gmbh | Plating bath for electroless deposition of nickel layers |
US10358724B2 (en) * | 2013-07-16 | 2019-07-23 | Korea Institute Of Industrial Technology | Electroless nickel plating solution, electroless nickel plating method using same, and flexible nickel plated layer formed by using same |
EP3026143A1 (en) | 2014-11-26 | 2016-06-01 | ATOTECH Deutschland GmbH | Plating bath and method for electroless deposition of nickel layers |
WO2016083195A1 (en) | 2014-11-26 | 2016-06-02 | Atotech Deutschland Gmbh | Plating bath and method for electroless deposition of nickel layers |
EP3190208A1 (en) | 2016-01-06 | 2017-07-12 | ATOTECH Deutschland GmbH | Electroless nickel plating baths comprising aminonitriles and a method for deposition of nickel and nickel alloys |
EP3190209A1 (en) | 2016-01-06 | 2017-07-12 | ATOTECH Deutschland GmbH | 1-acylguanidine compounds and the use of said compounds in electroless deposition of nickel and nickel alloy coatings |
CN115323363A (en) * | 2022-07-27 | 2022-11-11 | 惠州市安泰普表面处理科技有限公司 | Aluminum alloy chemical nickel plating solution and preparation method thereof |
CN115323363B (en) * | 2022-07-27 | 2023-11-28 | 惠州市安泰普表面处理科技有限公司 | Chemical nickel plating solution for aluminum alloy and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
GB1310610A (en) | 1973-03-21 |
FR2045398A5 (en) | 1971-02-26 |
DE1920152B2 (en) | 1975-08-14 |
DE1920152A1 (en) | 1970-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3915716A (en) | Chemical nickel plating bath | |
US3338726A (en) | Chemical reduction plating process and bath | |
US4269625A (en) | Bath for electroless depositing tin on substrates | |
US3095309A (en) | Electroless copper plating | |
US4337091A (en) | Electroless gold plating | |
Barker | Electroless deposition of metals | |
US3485597A (en) | Electroless deposition of nickel-phosphorus based alloys | |
US3486928A (en) | Bath and process for platinum and platinum alloys | |
US3032436A (en) | Method and composition for plating by chemical reduction | |
CA1081406A (en) | Electroless metal plating | |
US3754939A (en) | Electroless deposition of palladium alloys | |
US4242180A (en) | Ammonia free palladium electroplating bath using aminoacetic acid | |
US3024134A (en) | Nickel chemical reduction plating bath and method of using same | |
US3853590A (en) | Electroless plating solution and process | |
US4913787A (en) | Gold plating bath and method | |
US2976181A (en) | Method of gold plating by chemical reduction | |
JP2004502872A (en) | Electroless self-catalytic platinum plating | |
US2976180A (en) | Method of silver plating by chemical reduction | |
JPS591668A (en) | Improved non-electrolytic gold plating bath and plating process | |
US3698939A (en) | Method and composition of platinum plating | |
EP0359784A1 (en) | Stabilized electroless baths for wear-resistant metal coatings | |
US3468676A (en) | Electroless gold plating | |
US2822294A (en) | Chemical nickel plating processes and baths therefor | |
US3130072A (en) | Silver-palladium immersion plating composition and process | |
EP0044878B1 (en) | A stable aqueous colloid for the activation of non-conductive substrates and the method of activating |