US3909574A - Microwave tunnel-ovens - Google Patents
Microwave tunnel-ovens Download PDFInfo
- Publication number
- US3909574A US3909574A US455538A US45553874A US3909574A US 3909574 A US3909574 A US 3909574A US 455538 A US455538 A US 455538A US 45553874 A US45553874 A US 45553874A US 3909574 A US3909574 A US 3909574A
- Authority
- US
- United States
- Prior art keywords
- tunnel
- lining
- members
- oven
- ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 26
- 238000010521 absorption reaction Methods 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims description 7
- 239000003989 dielectric material Substances 0.000 claims description 6
- 239000011810 insulating material Substances 0.000 claims description 5
- 239000000110 cooling liquid Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 abstract description 7
- 229920003023 plastic Polymers 0.000 abstract description 7
- 239000002250 absorbent Substances 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 3
- 241000005139 Lycium andersonii Species 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- -1 polytetrafluorethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/78—Arrangements for continuous movement of material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/76—Prevention of microwave leakage, e.g. door sealings
Definitions
- ABSTRACT relates to microwave tunnel ovens of [30] Foreign Application Priority Data the kind havingabsorption sections enclosed by a A H 1973 s Ind 5187/73 metal caslng which form cont1nuat1ons of a central zcr passage of said oven at both the inlet and outlet ends.
- the invention consists in that said absorption sections '2 219/1055 Contain a plurality of load members, each of which is made of a microwave absorbem material and is up 9 [58] fg i ranged between said casing and said central opening 35 the said load members being spaced from one another.
- load members may be individual ferrite rods or tubes or may consist of individual portions of a plas- [56]
- References Clted tics material helical tube containing a liquid and ar- UNITED STATES PATENTS ranged around the central passage. 3,365,562 l/l968 Jeppson 1. 219/1055 A 3,475,827 11/1969 Goerg 219 1055 A 8 ClalmS, 2 Drawing Figures 3,564,187 2/1971 Smith 219/1055 A UHF COOLING 18 7 Sept. 30,1975
- the present invention relates to microwave tunnelovens of the kind having microwave absorption sections enclosed by a metal casing which form continuations of a central passage of said oven at both the inlet and outlet ends.
- microwave tunnelovens of the kind having microwave absorption sections enclosed by a metal casing which form continuations of a central passage of said oven at both the inlet and outlet ends.
- ovens will be referred to as of the kind described.
- microwave ovens have acquired a particular importance in connection with the heating of precooked food or the cooking of raw food due to the fact that'the time they take to cook or heat is orders of magnitude less than the time required with conventional methods of heating'or cooking where the direct application of thermal energy is employed.
- microwaves are a powerful form of electromagnetic radiation which has no difficulty in passing through dielectrics and heat insulation and can even heat up people, since they are living creatures containing liquid.
- microwave tunnel-ovens since this type of oven remains open at both the inlet and outlet ends even while in operation.
- microwave tunnel-ovens of the kind described have absorption sections which consist in essence of a water jacket formed by a twin-walled tube, this jacket forming a continuation of the tunnel through the oven of some considerable length.
- water is known to be capable of absorbing microwaves and heating up, that is to say it forms a load in the microwave field which consumes energy, it was possible by using waterjackets of this type to reduce the strength of any microwave field which could still be detected outside the oven to an acceptable level, despite the open-ended tunnel, the level in question being between approximately 1 and mW/cm depending on local government regulations.
- a microwave tunneloven of the kind described includes a plurality of load members made of a material which is absorbent to microwaves which load members are arranged between the casing and the central passage in the absorption section, these members being arranged at a distance from one another.
- the load members may be individual ferrite rods or tubes which may be arranged at a distance from one another transversely to the central passage. In this case satisfactory results can be achieved even with only one row of ferrite rods or tubes arranged in each of the side walls, floor and roof of the shielding.
- the load members it is also possible for the load members to be formed by the individual turns of a plastics tube containing a liquid, e.g. water which forms a spiral around the central passage.
- a liquid e.g. water which forms a spiral around the central passage.
- FIG. 1 shows a simplified, perspective view of the inlet end of a first embodiment of the microwave tunnel-oven in which parts of the shielding at the inlet end are broken away, and
- FIG. 2 shows a modification constituting a embodiment with different load members from those shown in the embodiment of FIG. 1.
- a microwave tunneloven marked 10 in FIG. 1 has an oven section proper 11 which is subject to radiation and which is preceded at the inlet end by an absorption section 12. At the outlet end, oven section 11 is followed by a section (not shown) similar to absorption section 12.
- oven section 11 has one or more UHF excitation apertures 13 which are used to connect up a wave-guide leading to a magnetron.
- the wave guide and magnetron are not shown since per se they form no part of the invention and are moreover so well known in the art as not to require illustration.
- the microwave radiation enters the central passage of the oven shown at 15, through the openings 13, as indicated by arrow 14.
- the articles to be heated in the oven 10 are transported through it by any suitable means shown for example as a conveyor belt 16, which is therefore only shown diagrammatically, only the top run of the belt '16 passing through the central passage 15.
- the absorption section 12 is delimited on the outside by a casing 17 of polished sheet-metal which is closed off at the inlet end by a screen (not shown) which leaves the central passage 15 free.
- a casing 17 of polished sheet-metal which is closed off at the inlet end by a screen (not shown) which leaves the central passage 15 free.
- the roof, side-walls and floor of the casing 17 each have secured to them, by means of screws 18, two longitudinally extending supporting ribs 19, to the inner longitudinal faces of which is secured, by means of further screws 20, the inner lining, which consists of plates 21.
- Both the supporting ribs 19 and the plates 21 are made from a dielectric material such as polytetrafluorethylene, so that the material in question will not prevent leakage radiation from reaching the space between the plates 21 and the casing 17.
- Each of the supporting ribs 19 contains a row of holes 22 each of which is used, as shown, to hold a load member 23 in the form of a ferrite rod or tube.
- the ferrite rods being arranged in a grid-like structure which is mounted at a distance from the plates 21 and from the inside face of the casing 17.
- the load members 23 are also arranged at a distance from one another.
- the gap between the load members 23 and the inside face of the casing is filled with a layer 24 of a heat-insulating material such as an asbestos, fibreglass or mineral wool mat.
- a layer 24 of a heat-insulating material such as an asbestos, fibreglass or mineral wool mat.
- the high efficiency of the shielding described may be attributed to the fact that, when microwave radiation exists, the strength of the microwave field is reduced downstream of each of the load members 23.
- the main part of the shielding action occurs as a result of the energy being absorbed in the ferrite rods and tubes and then in the water jacket. 7
- the load members 23 It is important for the load members 23 to be spaced away from the inside wall of the casing 17 so that the field originating from the load members which counteracts the leakage field can be propagated practically without obstruction. Less critical is the gap between the load members and the outer face of the plates 21 and this may as small as desired provided that it is still possible for a stream of cooling air to flow through it.
- FIG. 2 is shown a square-cornered, spirally wound plastics tube 26 which may be used in the absorption section 12 shown in FIG. 1 in place of the load members 23.
- the individual segments 27, 28, 29 and 30 of the tube form the individual load members.
- the plastics tube 26 is filled with water and its inlet 31 and outlet 32 are connected to a piping circuit 33 (shown by a broken line) in which are inserted a circulating pump 35 and a cooler 34.
- the plastics tube 26 could also be connected to the main water-supply.
- segments 27 to 30 could be arranged to lie directly against the plates 21 forming the lining and with this arrangement it is not then necessary for the heat due to energy loss to be removed in any special way.
- a microwave tunnel-oven having absorption sections enclosed by a metal casisng forming continuations of a central passage of said oven at both the inlet and outlet ends of said oven, the improvement comprising said absorption sections including a plurality of individual elongated load members of a ferrite material for absorbing microwaves, said plurality of ferrite load members being arranged between said casing and said continuations of said central passage at a distance next to one another in spaced relationship transversely to said continuations of said central passage.
- a tunnel-oven according to claim 1 including a lining surrounding said continuations of said central passage, which lining is composed of a dielectric material, and wherein said load members are arranged at a distance from said lining between said casing and said lining.
- a tunnel-oven according to claim 2 wherein a layer of heat insulating material is arranged between said ferrite members and said metal casing, the spacing between said lining and said ferrite members being sufficient to allow a flow of cooling air to pass through said spacing.
- a tunnel-oven according to claim 1 wherein said ferrite members are spaced apart by a distance approximately corresponding to their diameter.
- a tunnel-oven according to claim I wherein additional load members are formed by individual portions of the turns of a tube which forms a spiral around said continuations of said central passage and is arranged to contain a liquid.
- a tunnel-oven according to claim 6, including a lining of a dielectric material surrounding said continuations of said central passage, and wherein said additional load members lie directly against said lining and said plurality of ferrite load members are arranged between said additional load members and said casing.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CH518273A CH555516A (de) | 1973-04-11 | 1973-04-11 | Mikrowellen-tunnelofen. |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3909574A true US3909574A (en) | 1975-09-30 |
Family
ID=4289289
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US455538A Expired - Lifetime US3909574A (en) | 1973-04-11 | 1974-03-28 | Microwave tunnel-ovens |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US3909574A (de) |
| AT (1) | AT326232B (de) |
| CA (1) | CA999055A (de) |
| CH (1) | CH555516A (de) |
| DE (1) | DE2407927A1 (de) |
| GB (1) | GB1461177A (de) |
| IT (1) | IT1003673B (de) |
| NL (1) | NL7403361A (de) |
| SE (1) | SE393732B (de) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2642152A1 (de) * | 1975-10-09 | 1977-04-21 | Nicolas Meisel | Tunnelofen |
| US4045638A (en) * | 1976-03-09 | 1977-08-30 | Bing Chiang | Continuous flow heat treating apparatus using microwaves |
| US4216727A (en) * | 1978-05-22 | 1980-08-12 | Plastics, Inc. | Portable turntable for microwave oven |
| US4239009A (en) * | 1979-08-29 | 1980-12-16 | Plastics, Inc. | Portable turntable for microwave oven |
| US4330696A (en) * | 1978-04-17 | 1982-05-18 | Plastics, Inc. | Portable turntable for ovens |
| US4405850A (en) * | 1978-10-06 | 1983-09-20 | Raytheon Company | Combination microwave heating apparatus |
| US4754111A (en) * | 1980-03-18 | 1988-06-28 | Plastics, Inc. | Portable turntable for ovens |
| US4861955A (en) * | 1987-07-09 | 1989-08-29 | Shen Zhi Yuan | Matched absorptive end choke for microwave applicators |
| US4886948A (en) * | 1978-04-17 | 1989-12-12 | Plastics, Inc. | Portable turntable with shielded drive motor for microwave ovens |
| US4922731A (en) * | 1988-09-30 | 1990-05-08 | Texas Instruments Incorporated | Quartz conductive baffles for heat removal and method |
| US5245149A (en) * | 1990-06-21 | 1993-09-14 | Immobiliare Centro Nord S.P.A. | Process and device for accelerating the drying of cement mixes |
| US5523548A (en) * | 1994-01-31 | 1996-06-04 | Nec Corporation | Electromagnetic wave heater having a cone-shaped container whose tapered portion is pointed and directed toward the electromagnetic wave generator |
| USRE36943E (en) * | 1993-07-09 | 2000-11-07 | Gamma-Metrics | Modularized assembly for bulk material analyzer |
| US20030183623A1 (en) * | 2002-03-29 | 2003-10-02 | Fritts Rex E. | Shielding system for protecting select portions of a food product during processing in a conveyorized microwave oven |
| US20070187401A1 (en) * | 2003-10-22 | 2007-08-16 | Sergio Quinta | Microwaves blocker apparatus for opening microwaves oven |
| WO2014195450A1 (de) * | 2013-06-07 | 2014-12-11 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Anlage, mikrowellendurchlaufofen und verfahren zur kontinuierlichen herstellung von werkstoffen, bevorzugt von werkstoffplatten |
| US11412584B2 (en) | 2017-12-08 | 2022-08-09 | Alkar-Rapidpak, Inc. | Ovens with metallic belts and microwave launch box assemblies for processing food products |
| US20220346198A1 (en) * | 2021-04-26 | 2022-10-27 | Alkar-Rapidpak, Inc. | Food Processing Machines With Microwave Heating Systems And Microwave Suppression Systems |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3421778A1 (de) * | 1984-06-12 | 1986-01-02 | Karl Dr. 7800 Freiburg Fritz | Mikrowellen-erwaermungsverfahren |
| DE102007043483B4 (de) * | 2007-09-12 | 2009-07-09 | Rational Ag | Abdichtungsvorrichtung zum Verringern eines Mikrowellenaustrittes aus einem Gargerät und Gargerät mit zumindest einer solchen Abdichtungsvorrichtung |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3365562A (en) * | 1962-12-17 | 1968-01-23 | Cryodry Corp | Apparatus and process for microwave treatment |
| US3475827A (en) * | 1967-12-06 | 1969-11-04 | Bechtel Int Corp | R.f. seal in microwave drier |
| US3564187A (en) * | 1969-01-15 | 1971-02-16 | Cryodry Corp | Microwave oven |
| US3624335A (en) * | 1970-06-25 | 1971-11-30 | Raytheon Co | Microwave oven |
| US3654417A (en) * | 1970-10-30 | 1972-04-04 | Litton Precision Prod Inc | Microwave oven including air flow system |
| US3749874A (en) * | 1972-06-02 | 1973-07-31 | Raytheon Co | Microwave applicator |
-
1973
- 1973-04-11 CH CH518273A patent/CH555516A/de not_active IP Right Cessation
-
1974
- 1974-02-19 DE DE19742407927 patent/DE2407927A1/de not_active Ceased
- 1974-03-04 IT IT48986/74A patent/IT1003673B/it active
- 1974-03-13 NL NL7403361A patent/NL7403361A/xx unknown
- 1974-03-15 AT AT218674A patent/AT326232B/de not_active IP Right Cessation
- 1974-03-28 US US455538A patent/US3909574A/en not_active Expired - Lifetime
- 1974-03-29 CA CA196,375A patent/CA999055A/en not_active Expired
- 1974-04-10 SE SE7404927A patent/SE393732B/xx unknown
- 1974-04-11 GB GB1639974A patent/GB1461177A/en not_active Expired
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3365562A (en) * | 1962-12-17 | 1968-01-23 | Cryodry Corp | Apparatus and process for microwave treatment |
| US3475827A (en) * | 1967-12-06 | 1969-11-04 | Bechtel Int Corp | R.f. seal in microwave drier |
| US3564187A (en) * | 1969-01-15 | 1971-02-16 | Cryodry Corp | Microwave oven |
| US3624335A (en) * | 1970-06-25 | 1971-11-30 | Raytheon Co | Microwave oven |
| US3654417A (en) * | 1970-10-30 | 1972-04-04 | Litton Precision Prod Inc | Microwave oven including air flow system |
| US3749874A (en) * | 1972-06-02 | 1973-07-31 | Raytheon Co | Microwave applicator |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2642152A1 (de) * | 1975-10-09 | 1977-04-21 | Nicolas Meisel | Tunnelofen |
| US4246462A (en) * | 1975-10-09 | 1981-01-20 | Nicolas Meisel | Microwave tunnel oven for the continuous processing of food products |
| US4045638A (en) * | 1976-03-09 | 1977-08-30 | Bing Chiang | Continuous flow heat treating apparatus using microwaves |
| US4330696A (en) * | 1978-04-17 | 1982-05-18 | Plastics, Inc. | Portable turntable for ovens |
| US4886948A (en) * | 1978-04-17 | 1989-12-12 | Plastics, Inc. | Portable turntable with shielded drive motor for microwave ovens |
| US4216727A (en) * | 1978-05-22 | 1980-08-12 | Plastics, Inc. | Portable turntable for microwave oven |
| US4405850A (en) * | 1978-10-06 | 1983-09-20 | Raytheon Company | Combination microwave heating apparatus |
| US4239009A (en) * | 1979-08-29 | 1980-12-16 | Plastics, Inc. | Portable turntable for microwave oven |
| US4754111A (en) * | 1980-03-18 | 1988-06-28 | Plastics, Inc. | Portable turntable for ovens |
| US4861955A (en) * | 1987-07-09 | 1989-08-29 | Shen Zhi Yuan | Matched absorptive end choke for microwave applicators |
| US4922731A (en) * | 1988-09-30 | 1990-05-08 | Texas Instruments Incorporated | Quartz conductive baffles for heat removal and method |
| US5245149A (en) * | 1990-06-21 | 1993-09-14 | Immobiliare Centro Nord S.P.A. | Process and device for accelerating the drying of cement mixes |
| USRE36943E (en) * | 1993-07-09 | 2000-11-07 | Gamma-Metrics | Modularized assembly for bulk material analyzer |
| US5523548A (en) * | 1994-01-31 | 1996-06-04 | Nec Corporation | Electromagnetic wave heater having a cone-shaped container whose tapered portion is pointed and directed toward the electromagnetic wave generator |
| US20030183623A1 (en) * | 2002-03-29 | 2003-10-02 | Fritts Rex E. | Shielding system for protecting select portions of a food product during processing in a conveyorized microwave oven |
| US6717120B2 (en) * | 2002-03-29 | 2004-04-06 | Maytag Corporation | Shielding system for protecting select portions of a food product during processing in a conveyorized microwave oven |
| US20070187401A1 (en) * | 2003-10-22 | 2007-08-16 | Sergio Quinta | Microwaves blocker apparatus for opening microwaves oven |
| WO2014195450A1 (de) * | 2013-06-07 | 2014-12-11 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Anlage, mikrowellendurchlaufofen und verfahren zur kontinuierlichen herstellung von werkstoffen, bevorzugt von werkstoffplatten |
| US11412584B2 (en) | 2017-12-08 | 2022-08-09 | Alkar-Rapidpak, Inc. | Ovens with metallic belts and microwave launch box assemblies for processing food products |
| US11751296B2 (en) | 2017-12-08 | 2023-09-05 | Alkar-Rapidpak, Inc. | Ovens with metallic belts and microwave launch box assemblies for processing food products |
| US20220346198A1 (en) * | 2021-04-26 | 2022-10-27 | Alkar-Rapidpak, Inc. | Food Processing Machines With Microwave Heating Systems And Microwave Suppression Systems |
Also Published As
| Publication number | Publication date |
|---|---|
| CA999055A (en) | 1976-10-26 |
| CH555516A (de) | 1974-10-31 |
| IT1003673B (it) | 1976-06-10 |
| AT326232B (de) | 1975-11-25 |
| SE393732B (sv) | 1977-05-16 |
| NL7403361A (de) | 1974-10-15 |
| DE2407927A1 (de) | 1974-10-24 |
| ATA218674A (de) | 1975-02-15 |
| GB1461177A (en) | 1977-01-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3909574A (en) | Microwave tunnel-ovens | |
| CA1101497A (en) | Microwave tunnel oven for the continuous processing of food products | |
| US3783219A (en) | Air cooled microwave cooking oven and door | |
| US1814897A (en) | Apparatus for utilizing solar heat | |
| US3767884A (en) | Energy seal for high frequency energy apparatus | |
| US2467230A (en) | Ultra high frequency dielectric heater | |
| US3790735A (en) | Inductive heated bake oven | |
| US4405850A (en) | Combination microwave heating apparatus | |
| US3365562A (en) | Apparatus and process for microwave treatment | |
| US3845270A (en) | Microwave heating and vapor condensing apparatus | |
| US4861955A (en) | Matched absorptive end choke for microwave applicators | |
| US4718332A (en) | Electric toaster | |
| US4227063A (en) | Microwave apparatus seal | |
| US4189629A (en) | Apparatus and method for microwave heating in a kiln | |
| US4176267A (en) | Microwave energy trap | |
| US4358653A (en) | Combination microwave oven | |
| USRE32664E (en) | Energy seal for high frequency energy apparatus | |
| DE7833340U1 (de) | Mikrowellenherd oder -ofen | |
| US3239643A (en) | Ultra-high frequency heating system | |
| US2175307A (en) | Electric heater | |
| US3488858A (en) | Microwave apparatus for the processing or measurement of sheet materials | |
| CA1114453A (en) | Combination microwave and resistively heated oven | |
| US3665142A (en) | System for applying microwave energy to a lossy cylindrical object | |
| US3474208A (en) | Devices for heating non-metallic materials in an electromagnetic radiation field | |
| RU2141179C1 (ru) | Устройство для свч-конвективной сушки диэлектрических материалов |