US3903107A - Direct alpha to X phase conversion of metal containing phthalocyanine - Google Patents
Direct alpha to X phase conversion of metal containing phthalocyanine Download PDFInfo
- Publication number
- US3903107A US3903107A US366395A US36639573A US3903107A US 3903107 A US3903107 A US 3903107A US 366395 A US366395 A US 366395A US 36639573 A US36639573 A US 36639573A US 3903107 A US3903107 A US 3903107A
- Authority
- US
- United States
- Prior art keywords
- deposit
- alpha
- metal containing
- phthalocyanine
- containing phthalocyanine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 title claims abstract description 108
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 103
- 239000002184 metal Substances 0.000 title claims abstract description 103
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 65
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 238000011065 in-situ storage Methods 0.000 claims abstract description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 13
- VVOLVFOSOPJKED-UHFFFAOYSA-N copper phthalocyanine Chemical compound [Cu].N=1C2=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC=1C1=CC=CC=C12 VVOLVFOSOPJKED-UHFFFAOYSA-N 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- 239000011701 zinc Substances 0.000 claims description 13
- 239000010453 quartz Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 239000011521 glass Substances 0.000 claims description 10
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 claims description 9
- WDEQGLDWZMIMJM-UHFFFAOYSA-N benzyl 4-hydroxy-2-(hydroxymethyl)pyrrolidine-1-carboxylate Chemical compound OCC1CC(O)CN1C(=O)OCC1=CC=CC=C1 WDEQGLDWZMIMJM-UHFFFAOYSA-N 0.000 claims description 7
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 7
- 229910001887 tin oxide Inorganic materials 0.000 claims description 7
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 claims description 5
- OFHCOWSQAMBJIW-AVJTYSNKSA-N alfacalcidol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C OFHCOWSQAMBJIW-AVJTYSNKSA-N 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- -1 poly(N-vinylcarbazole) Polymers 0.000 claims 4
- 239000000049 pigment Substances 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 15
- 238000000151 deposition Methods 0.000 abstract description 12
- 238000003384 imaging method Methods 0.000 description 27
- 230000008021 deposition Effects 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- 238000007669 thermal treatment Methods 0.000 description 7
- 238000000862 absorption spectrum Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- CMSGUKVDXXTJDQ-UHFFFAOYSA-N 4-(2-naphthalen-1-ylethylamino)-4-oxobutanoic acid Chemical compound C1=CC=C2C(CCNC(=O)CCC(=O)O)=CC=CC2=C1 CMSGUKVDXXTJDQ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 description 3
- 229920006391 phthalonitrile polymer Polymers 0.000 description 3
- JVTCNOASZYIKTG-UHFFFAOYSA-N stk329495 Chemical compound [Cu].[N-]1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)[N-]3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 JVTCNOASZYIKTG-UHFFFAOYSA-N 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000033458 reproduction Effects 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000220324 Pyrus Species 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 235000021017 pears Nutrition 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0664—Dyes
- G03G5/0696—Phthalocyanines
Definitions
- the X form of metal containing phthalocyanines are known to possess good electrophotographic speed, and, thus, can be used either alone or in combination with other photoconductive PATENTEU 2 975 FIG.
- This invention relates to a process for preparation of electrophotographic pigments and the use of such pigments in electrophotographic imaging elements and methods. More specifically, this invention provides a novel route for the preparation of the X polymorph of metal containing phthalocyanines from the alpha form of these pigments.
- the developed image can then be read or permanently affixed to the photoconductor in the event that the imaging layer is not to be reused. This latter practice is usually followed with respect to the binder-type photoconductive films where the photoconductive layer is an integral part of the finished copy.
- the latent image can be developed on the imaging surface of a reusable photoconductor or transferred to another surface, such as a sheet of paper, and thereafter devel oped.
- the latent image is developed on the imaging surface of a reusable photoconductor, it is subsequently transferred to another substrate and then permanently affixed thereto.
- Any one of a variety of wellknown techniques can be used to permanently affix the toner image to the copy sheet, including overcoating with transparent films, and solvent or thermal fusion of the toner particles to the supportive substrate.
- the materi als used in the photoconductive layer should preferably be capable of rapid switching from insulative to conductive to insulative state in order to permit cyclic use of the imaging layer.
- the failure of the photoconductive material to return to its relative insulative state prior to the succeeding charging sequence will result in an increase in the rate of dark decay of the photoconductor.
- This phenomenon commonly referred to in the art as fatigue, has in the past been avoided by the selection of photoconductive materials possessing rapid switching capacity.
- Typical of the materials suitable for use in such a rapidly cycling imaging system include anthracene, sulfur, selenium and mixtures thereof (US. Pat. No. 2,297,691 selenium being preferred because of its superior photosensitivity.
- phthalocyanine pigments are also reportedly useful in electrophotography, see for example US. Pat. No. 3,594,163. These pigments can generally be classified into two major subgroups; the metal-free phthalocyanines and the metal-containing phthalocyanines. X-ray diffraction studies and/or infrared spectral analysis of these pigments indicate that phthalocyanines also exist in at least two different polymorphic forms; they being designated alpha and beta (listed in order of increasing stability). In addition to these well-known forms of the metal-free and metal-containing phthalocyanines, additional polymorphs of the metalcontaining phthalocyanines have also been recently reported, US. Pat. Nos. 3,051,721 (R form); 3,160,635 (delta form); and 3,150,150 (delta form).
- phthalocyanines have been prepared almost exclusively for use as a pigment, where color, tinctorial strength, light fastness, dispersability, etc. are prime considerations and the purity of the pigment being of only incidential importance.
- the reported methods for synthesis of these compounds very often introduce metals and/or other complex organic materials into the pigment which are very difficult to remove; see Moser and Thomas, Phthalocyanine Compounds. Reinhold Publishing Co., pp. 104 189.
- Two of the more common methods used in the manufacture of phthalocyanine pigments generally involve 1 indirect formation of the pigment from an acid and a metal phthalocyanine containing a replaceable metal and (2 direct synthesis from phthalonitrile.
- the object of this invention to pro vide a process for preparation of the X form of metal containing phthalocyanines substantially free of the contaminants and/or impurities associated with its preparation by more conventional prior art techniques.
- the above and related objects are achieved by providing a process for the direct synthesis of the X form of metal containing phthalocyanines from their corresponding alpha polymorph.
- This process comprises providing a substrate having deposited thereon at least one alpha metal containing phthalocyanine pigment; said deposit having a thickness of up to about 1400 A.
- This deposit is at least partially converted directly to the X form by heating at a rate in excess of from about C per minute to a temperature in the range of from about 220 to about 450C.
- the alpha metal containing phthalocyanine deposit forms a thin compact film overlying at least one surface of the substrate.
- the average thickness of the alpha metal containing phthalocyanine deposit used in this process should preferably be less than about 1300 A and thermal conversion to the X polymorph carried out by heating at about 60C per minute to a temperature in the range of from about 330 to about 390C.
- FIG. 1 is a graphical illustration of the absorption spectrum of a vacuum deposited film of the alpha polymorph of zinc phthalocyanine and the absorption spectrum of this same film after in situ thermal conversion to its corresponding X polymorph.
- FIG. 2 is a graphical illustration of the absorption spectrum of a vacuum deposited film of the alpha polymorph of cobalt phthalocyanine and the absorption spectrum of this same film after in situ thermal conversion to its corresponding X polymorph.
- an alpha metal containing phthalocyanine is deposited on a substrate material and thereafter thermally converted by controlled heating to its corresponding X polymorph.
- metal containing phthalocyanines which can be used in the process of this invention are readily commercially available or where not so available can be prepared by any of the conventional techniques described in the technical literature; see for example Chapter 4 of the previously reference Moser and Thomas publication.
- metals forming known phthalocyanine derivatives which can be used in this process include Group I metals such as lithium, sodium, potassium, copper and silver; Group II metals such as beryllium, magnesium, calcium, zinc, cadmium, barium and mercury; Group III metals such as aluminum, gallium, indium, lanthanum, neodymium, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium and lutecium; Group IV metals such as titanium, tin, hafnium, lead and thorium; Group V metals such as vanadium and antimony; Group VI metals such as chromium, molybdenum and uranium; Group Vll metals such as manganese; and Group VIII metals such as iron, cobalt, nickel, rhodium, palladium, osmium, platinum.
- Group III metals such as aluminum, gallium, indium
- Especially preferred metal containing phthalocyanines useful in this process are the alpha and beta froms of copper, cobalt, zinc and nickel phthalocyanines.
- the phthalocyanine Prior to deposition of the phthalocyanine on the substrate it should be substantially free of impurities. For example, where the phthalocyanine is prepared directly from phthalonitrile, residual phthalonitrile can be readily removed by washing the phthalocyanine with acetone.
- the metal containing phthalocyanine can then be de posited on an appropriate substrate by standard vapor deposition techniques. For example, in such procedures a measured quantity of alpha or beta metal containing phthalocyanine is placed in an open container or boat, the boat placed in a vacuum deposition chamber, a substrate positioned above the boat, the chamber sealed and evacuated to a pressure of less than 10" Torr. The temperature on the boat is then increased to about 400C whereupon the phthalocyanine sublimes and deposits on the substrate. The quantity of the deposition is monitored and upon obtaining the desired amount of alpha metal containing phthalocyanine on said substrate, deposition is terminated by interposition of a shutter between the substrate and the boat.
- the substrate upon which the alpha metal containing phthalocyanine is deposited is maintained at ambient temperatures (approximately 20C) during such deposition.
- the form of the deposit on the substrate will vary with the extent of such deposition. Ordinarily, where the deposition is terminated within a few seconds after the alphs metal containing phthalocyanine begins to collect upon the substrate, the deposit may appear as a discontinuous coating. On the other hand, where the deposition is allowed to proceed for about a minute the deposit will appear as a thin compact film.
- the thickness of such deposition is critical to the process of this invention and must be maintained within previously prescribed limits in order to insure the direct alpha to X phase conversion of the phthalocyanine deposit.
- the precise chemical composition and geometry of the substrate used in the condensation of the alpha metal-free phthalocyanine does not appear to be critical, provided, that it is inert toward the alpha metal containing phthalocyanine and its corresponding X polymorph and thermally stable during the heating phase of this process.
- the substrate be nonhygroscopic and relatively transparent.
- any one of a variety of materials possessing the above characteristics are suitable for use as substrates in this process; typical of such materials include quartz, tin oxide coated glass (NESA glass) and select plastic films (e.g., poly( N-vinylcarbazole).
- SOSA glass quartz, tin oxide coated glass
- select plastic films e.g., poly( N-vinylcarbazole
- This confinement of the deposit can be achieved by simply placing a plate in contact with the deposit and maintaining this sandwich-like structure during the thermal treatment phase of this process.
- the composition of this plate is not believed to be critical, and good results have been obtained using materials similar to those employed as substrates.
- the physical geometry of the plate should be such as to afford maximum confinement of the deposit on the substrate.
- Both the rate of heating and the temperature to which the deposit is heated are critical in determining the direction and extent of conversion of the alpha metal containing phthalocyanine.
- alpha metal containing phthalocyanine deposits are heated at a rate in excess of from about to about 60C per minute to a temperature in the range of from about 220 to about 450C direct conversion of the deposit to the X polymorph is observed. This conversion is manifest by a change in color and a transformation in the apparently structureless character of the deposit to one having a fine uniform grain.
- the rate of heating is below about 10C per minute, substantial quantities of the alpha metal containing phthalocyanine are converted to the corresponding beta polymorph and the deposit takes on a nonuniform appearance.
- the formation of the beta polymorph within the alpha metal containing phthalocyanine deposit also ap pears to occur at temperatures in the range of from about 420- 450C. At such elevated temperatures, there is a competitive formation of both the X and beta polymorphs and thus, the temperature of such thermal conversion chamber should be maintained below this upper level and perferably in the range of from about 330-390C.
- thermal treatment step of this process is carried out in a combined differential thermal analysis-spectrophotometric cell, it is possible to monitor the absorption spectra of the phthalocyanine deposit before and immediately after thermal treatment without removal of the sample from the cell; cell design shown in REVIEW OF SCIENTIFIC INSTRUMENTS, Vol. 41, 1313 I315 (I970).
- FIGS. 1 & 2 provide graphic illustration of such a shift in absorption spectra resulting from controlled thermal treatment of the alpha polymorphs of zinc and cobalt phthalocyanines films; each having a film thickness of about 800 A.
- the X form of metal containing phthalocyanines prepared as described above have rapid photoresponse in the red and near infrared regions of the spectrum and thus, can be used as the photoresponsive medium of an clectrophotographic imaging member.
- the X form of the pigment can be prepared directly on a conductive substrate, such as tin oxide coated glass, or subsequent to its preparation removed therefrom and dispersed in a film forming insulating resin and sprayed, draw or dip coated on a conductive substrate.
- the photoresponsive layer containing the X form of the phthalocyanine pigment can be overcoated with an insulating film in order to improve its charge storage characteristics.
- the rate of dark decay of such members may also be reduced by the interposition of a barrier layer between the photoconductive insulating layer and the conductive substrate.
- This barrier layer provides a blocking contact thus preventing premature injection of charge carriers from the conductive substrate into the photoconductive insulating medium.
- the electronic properties of this electrophotographic member require that the image bearing layer thereof have a resistivity in excess of about l0'" ohm centimeters. This insulating quality of the image bearing layer must be maintained even in the presence of an applied electric field.
- the X polymorph of metaLfree phthalocyanine can be operatively disposed with respect to any one of a number of conductive substrates such as aluminum, brass, chromium or metalized plastic films.
- the electophotographic imaging members prepared from these photoconductive materials and conductive substrates can be used in electrostatographic imaging systems.
- the imaging member comprises an imaging layer (generally containing the photoconductive material) operatively disposed in relation to the conductive substrate.
- This imaging layer is sensitized in the dark by the application thereto of a uniform electrostatic charge.
- the methods commonly employed for sensitization of this imaging layer include frictional charging or a discharge from a corona electrode. After the imaging layer is sensitized, it is selectively exposed to activating electromagnetic radiation thereby dissipating the charge on the light struck areas of said layer.
- the remaining charge pattern or latent electrostatic image is rendered visible by development with finely divided colored electroscopic particles, generally referred to in that as toner.
- This visible toner image can then be fused to the surface of the imaging layer or transferred to a receiving sheet. Fixation of the toner image is generally accomplished by solvent or thermal fusion techniques. Prior to a recycling of the electrostatographic imaging member residual toner particles remaining on the imaging layer are removed by a combination of neutralizing charging and mechanical means.
- EXAMPLE I A measured quantity of the alpha polymorph of copper phthalocyanine is placed in a molybdenum boat, the boat inserted into a vacuum, deposition chamber, and a quartz substrate two inches square by 0.125 inches thick suspended about 16 inches above the boat so that the face of the substrate is perpendicular to the base of the boat. The pressure within the chamber is then reduced to about 10 Torr and the temperature of the boat thereafter increased to about 400C. thus, resulting in the vaporization of the alpha copper phthalocyanine. These vapors rise within the chamer, condense on the substrate and thus form a thin compact, apparently structureless deposit of alpha copper phthalocyanine.
- Spectral analysis prior and subsequent to such heat treatment evidences a shift in spectral sensitivity from the alpha to the X polymorph of copper phthalocyanine.
- the sample can be removed from the cell shortly after heating to the desired temperature or the sample and the cell allowed to cool prior to such removal.
- the two plates eneasing the sample are separated and the deposit examined under a light microscope at a magnification of 2OOX.
- the apparently structureless compact film of alpha copper phthalocyanine now possesses a fine grain structure indicating thermal crystallization v during the phase transformation of the copper phthalocyanine from the alpha to the X polymorph.
- EXAMPLE II EXAMPLE III The procedure of Example I is repeated, except for the heating of the sample at a rate of 5C per minute to a temperature of 330C. The size and randomness of distribution of crystals within the film is seen to increase dramatically and significant quantities of beta copper phthalocyanine are found to be present within the film.
- Example IV The procedure of Example I is repeated, except for the heating of the sample to about 420C.
- Example Ill the size and randomness of crystals within the film is seen to increase dramatically and significant quantities of beta copper phthalocyanine are found to be present in the film.
- the period of exposure of the film to such higher temperatures is a factor in determining the relative concentration of the X and beta polymorphs in the film; the more abbreviated the period of heating at such elevated temperatures, the less beta polymorph present in the film.
- Example IX The procedure of Example I is repeated, except for the separation of the quartz cover plate from the sample by a 0.01 inch spacer and the maintenance of such separation during thermal treatment. Spectrophotometric evaluation of the sample indicates conversion of the sample directly from the alpha to the beta polymorph.
- Example X The procedure of Example I is repeated, except for the substitution of a tin oxide coated glass plate (NESA glass) for the quartz substrate.
- the phthalocyanine product obtained is equivalent to that obtained in Example I.
- Example XI The procedure of Example I is repeated, except for the substitution of a 50 micron thick film of poly( N- vinylcarbazole) for the quartz substrate.
- the phthalocyanine product obtained is equivalent to that obtained in Example I.
- EXAMPLE XII The X copper phthalocyanine plate of Example X is evaluated for use as an electrostatographic imaging member on a Xerox Model D type copier adapted for acceptance of an imaging member of reduced dimensions. Charging, exposure and development sequences utilized in the copying cycle are standard. The electrostatographic reproductions made with this plate are of acceptable quality.
- EXAMPLE XIII The plate prepared as described in Example XI is placed in a vacuum deposition chamber and a 10 micron thick aluminum film vacuum deposited over the layer of X copper phthalocyanine. The resultant plate is removed from the chamber and evaluated for use as an electrostatographic imaging member on a Xerox Model D type copier in the manner described in Example XII. The electrostatographic reproductions made with this plate are superior to those obtained in Example XII.
- Example XIV The procedures of Example I are repeated except that the vacuum deposition of the alpha copper phthalocyanine is carried out at a pressure of about 30 Torr. As the alpha copper phthalocyanine sublimes it is converted directly to the X form; nucleation and particle growth occurring in the vapor phase. These X copper phthalocyanine particles are collected on an appropriate substrate and subjected to spectrophotometric and light microscopic examination. Such tests confirm that the product is the X polymorph of copper phthalocyanine and that the deposit has a light fluffy microcrystalline structure characteristic of a particulate deposit.
- a process for the direct thermal conversion of the alpha polymorph of at least one metal containing phthalocyanine to the corresponding X polymorph comprising:
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US366395A US3903107A (en) | 1973-06-04 | 1973-06-04 | Direct alpha to X phase conversion of metal containing phthalocyanine |
| CA194,524A CA1032803A (en) | 1973-06-04 | 1974-03-08 | Direct alpha to x phase conversion of metal containing phthalocyanine |
| DE2421022A DE2421022C3 (de) | 1973-06-04 | 1974-04-30 | Verfahren zur Herstellung eines elektrofotografischen Aufzeichnungsmaterials |
| BE144833A BE815632A (fr) | 1973-06-04 | 1974-05-28 | Procede de transformation directe de phase alpha en phase x de phtalocyanines contenant un metal et nouveaux produits ainsi obtenus |
| JP6067974A JPS5319933B2 (cs) | 1973-06-04 | 1974-05-29 | |
| GB2380474A GB1474264A (en) | 1973-06-04 | 1974-05-29 | Direct alpha to x phase conversion of metal containing phthalocyanine |
| IT23510/74A IT1014699B (it) | 1973-06-04 | 1974-06-03 | Procedimento per la trasformazione termica diretta della polimorea alfa di una ftalocianina contenente metallo ed elemento elettrofotogra fico impressionabile rivestito con la ftalocianina da detto procedi mento |
| BR4567/74A BR7404567D0 (pt) | 1973-06-04 | 1974-06-03 | Processo para conversao termica direta da forma polimorfica alfa de pelo menos uma ftalocianina contendo metal a forma polimorfica x correspondente revestimento de deposito compacto cristalino sem aglutinante da forma polimorfica x de ftalocianina e peca formadora de imagem eletrofotografica |
| ZA00743536A ZA743536B (en) | 1973-06-04 | 1974-06-04 | Direct alpha to x phase conversion of metal containing phthalocyanine |
| FR7419231A FR2231990B1 (cs) | 1973-06-04 | 1974-06-04 | |
| NL7407521A NL7407521A (en) | 1973-06-04 | 1974-06-04 | X-form phthalocyanine electrophotographic pigments prepn. - by thermal conversion of thin alpha-form layer in situ on image-forming element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US366395A US3903107A (en) | 1973-06-04 | 1973-06-04 | Direct alpha to X phase conversion of metal containing phthalocyanine |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3903107A true US3903107A (en) | 1975-09-02 |
Family
ID=23442825
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US366395A Expired - Lifetime US3903107A (en) | 1973-06-04 | 1973-06-04 | Direct alpha to X phase conversion of metal containing phthalocyanine |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US3903107A (cs) |
| JP (1) | JPS5319933B2 (cs) |
| BE (1) | BE815632A (cs) |
| BR (1) | BR7404567D0 (cs) |
| CA (1) | CA1032803A (cs) |
| DE (1) | DE2421022C3 (cs) |
| FR (1) | FR2231990B1 (cs) |
| GB (1) | GB1474264A (cs) |
| IT (1) | IT1014699B (cs) |
| ZA (1) | ZA743536B (cs) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4298975A (en) * | 1979-01-15 | 1981-11-03 | U.S. Philips Corporation | Optical recording medium and method of optically recording information thereon |
| US4471039A (en) * | 1982-11-22 | 1984-09-11 | Eastman Kodak Company | Photoconductive elements sensitive to radiation in the infrared region of the spectrum |
| US4719286A (en) * | 1985-03-14 | 1988-01-12 | Northrop Corporation | Class of conductive polymers |
| US4950579A (en) * | 1988-07-08 | 1990-08-21 | Minnesota Mining And Manufacturing Company | Optical disc recording medium having a microstructure-derived inhomogeneity or anisotropy |
| US5225551A (en) * | 1990-06-04 | 1993-07-06 | Xerox Corporation | Imaging member containing titanium phthalocyanines |
| US5322754A (en) * | 1990-06-04 | 1994-06-21 | Xerox Corporation | Imaging members containing titanium phthalocyanines |
| US6506244B1 (en) | 1999-08-03 | 2003-01-14 | Ciba Specialty Chemicals Corporation | Stable polymorphic copper-free phthalocyanine pigment |
| WO2003038003A1 (en) * | 2001-10-31 | 2003-05-08 | Avecia Limited | Phthalocyanine based inks with absorption maxima in the near infra red and visible spectrum |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5389433A (en) * | 1977-01-17 | 1978-08-07 | Mita Industrial Co Ltd | Photosensitive body for electrophotography |
| JPS5642236A (en) * | 1979-09-14 | 1981-04-20 | Hitachi Ltd | Composite type electrophotographic plate |
| DE3525994A1 (de) * | 1985-07-20 | 1987-01-29 | Philips Patentverwaltung | Elektronenstrahl-aufzeichnungstraeger |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3293075A (en) * | 1962-12-31 | 1966-12-20 | Monsanto Co | Thin films of metal polyphthalocyanines on substrates and coating process |
| FR1530080A (fr) * | 1966-07-01 | 1968-06-21 | Rank Xerox Ltd | Procédé pour préparer un cliché original en relief pour l'impression des images |
| FR2016639A1 (cs) * | 1968-08-30 | 1970-05-08 | Xerox Corp | |
| BR6909984D0 (pt) * | 1968-08-30 | 1973-04-12 | Xerox Corp | Processo aperfeicoado para a preparacao de valociamina da forma x metalica ou isenta de metal placa e processo eletrofotografica de formacao de imagens baseados na mesma |
| US3717462A (en) * | 1969-07-28 | 1973-02-20 | Canon Kk | Heat treatment of an electrophotographic photosensitive member |
-
1973
- 1973-06-04 US US366395A patent/US3903107A/en not_active Expired - Lifetime
-
1974
- 1974-03-08 CA CA194,524A patent/CA1032803A/en not_active Expired
- 1974-04-30 DE DE2421022A patent/DE2421022C3/de not_active Expired
- 1974-05-28 BE BE144833A patent/BE815632A/xx unknown
- 1974-05-29 GB GB2380474A patent/GB1474264A/en not_active Expired
- 1974-05-29 JP JP6067974A patent/JPS5319933B2/ja not_active Expired
- 1974-06-03 BR BR4567/74A patent/BR7404567D0/pt unknown
- 1974-06-03 IT IT23510/74A patent/IT1014699B/it active
- 1974-06-04 ZA ZA00743536A patent/ZA743536B/xx unknown
- 1974-06-04 FR FR7419231A patent/FR2231990B1/fr not_active Expired
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4298975A (en) * | 1979-01-15 | 1981-11-03 | U.S. Philips Corporation | Optical recording medium and method of optically recording information thereon |
| US4471039A (en) * | 1982-11-22 | 1984-09-11 | Eastman Kodak Company | Photoconductive elements sensitive to radiation in the infrared region of the spectrum |
| US4719286A (en) * | 1985-03-14 | 1988-01-12 | Northrop Corporation | Class of conductive polymers |
| US4950579A (en) * | 1988-07-08 | 1990-08-21 | Minnesota Mining And Manufacturing Company | Optical disc recording medium having a microstructure-derived inhomogeneity or anisotropy |
| US5225551A (en) * | 1990-06-04 | 1993-07-06 | Xerox Corporation | Imaging member containing titanium phthalocyanines |
| US5322754A (en) * | 1990-06-04 | 1994-06-21 | Xerox Corporation | Imaging members containing titanium phthalocyanines |
| US6506244B1 (en) | 1999-08-03 | 2003-01-14 | Ciba Specialty Chemicals Corporation | Stable polymorphic copper-free phthalocyanine pigment |
| WO2003038003A1 (en) * | 2001-10-31 | 2003-05-08 | Avecia Limited | Phthalocyanine based inks with absorption maxima in the near infra red and visible spectrum |
| US20040248027A1 (en) * | 2001-10-31 | 2004-12-09 | Campbell James Stanley | Phthalocyanine based inks with absorption maxima in the near infra red and visible spectrum |
| US7070646B2 (en) | 2001-10-31 | 2006-07-04 | Avecia Limited | Phthalocyanine based inks with absorption maxima in the near infra-red and visible spectrum |
Also Published As
| Publication number | Publication date |
|---|---|
| IT1014699B (it) | 1977-04-30 |
| BE815632A (fr) | 1974-09-16 |
| GB1474264A (en) | 1977-05-18 |
| JPS5319933B2 (cs) | 1978-06-23 |
| DE2421022B2 (de) | 1978-02-09 |
| JPS5022824A (cs) | 1975-03-11 |
| FR2231990B1 (cs) | 1977-10-07 |
| ZA743536B (en) | 1975-06-25 |
| DE2421022C3 (de) | 1978-10-12 |
| FR2231990A1 (cs) | 1974-12-27 |
| CA1032803A (en) | 1978-06-13 |
| DE2421022A1 (de) | 1974-12-19 |
| BR7404567D0 (pt) | 1975-01-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4665000A (en) | Photoresponsive devices containing aromatic ether hole transport layers | |
| EP0149914B1 (en) | Overcoated electrophotographic imaging member | |
| EP0056727B1 (en) | Infrared sensitive photoconductive element | |
| US3861913A (en) | Electrophotographic charge generation layer | |
| US3903107A (en) | Direct alpha to X phase conversion of metal containing phthalocyanine | |
| US3932180A (en) | Direct alpha to X phase conversion of metal-free phthalocyanine | |
| US3008825A (en) | Xerographic light-sensitive member and process therefor | |
| CA1057998A (en) | Dual-layered photoreceptor used in electrophotography | |
| JPS5913021B2 (ja) | 複合感光体部材 | |
| US3617265A (en) | Method for preparing a resin overcoated electrophotographic plate | |
| US3524745A (en) | Photoconductive alloy of arsenic,antimony and selenium | |
| US4106935A (en) | Xerographic plate having an phthalocyanine pigment interface barrier layer | |
| US3498835A (en) | Method for making xerographic plates | |
| US5206103A (en) | Photoconductive imaging member with a charge transport layer comprising a biphenyl diamine and a polysilylane | |
| JPS61109068A (ja) | 電荷転写媒体およびその製造方法 | |
| US3898083A (en) | High sensitivity visible infrared photoconductor | |
| US5122429A (en) | Photoconductive imaging members | |
| JP2819580B2 (ja) | 光導電体及びその製造方法 | |
| US3490903A (en) | Alloys of antimony and selenium used in photoconductive elements | |
| US3427157A (en) | Xerographic process utilizing a photoconductive alloy of thallium in selenium | |
| EP0146123B1 (en) | Novel squarylium compound and photoreceptor containing same | |
| US4952471A (en) | Quinacridone photoconductor imaging members | |
| US4055420A (en) | Single phase organic photoconductive composition | |
| Lee et al. | Xerographic properties of metal/metal-free phthalocyanine composites in a double-layered photoconductor | |
| JPH03148668A (ja) | ポリホスファゼンバインダーを有する光導電性画像形成部材 |