US3900529A - Rubber modified high nitrile polymers and polymer blends produced thereby - Google Patents
Rubber modified high nitrile polymers and polymer blends produced thereby Download PDFInfo
- Publication number
- US3900529A US3900529A US404527A US40452773A US3900529A US 3900529 A US3900529 A US 3900529A US 404527 A US404527 A US 404527A US 40452773 A US40452773 A US 40452773A US 3900529 A US3900529 A US 3900529A
- Authority
- US
- United States
- Prior art keywords
- percent
- weight
- acrylonitrile
- monomer
- methacrylonitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920002959 polymer blend Polymers 0.000 title abstract description 9
- 229920001971 elastomer Polymers 0.000 title description 41
- 239000005060 rubber Substances 0.000 title description 33
- 239000011117 high nitrile polymer Substances 0.000 title description 6
- 239000000758 substrate Substances 0.000 claims abstract description 60
- 150000002825 nitriles Chemical class 0.000 claims abstract description 42
- 229920000642 polymer Polymers 0.000 claims abstract description 27
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 24
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims abstract description 23
- 239000000178 monomer Substances 0.000 claims description 188
- 239000000203 mixture Substances 0.000 claims description 176
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 90
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 78
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 50
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 36
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 17
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 17
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 15
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 claims description 12
- 230000008961 swelling Effects 0.000 claims description 10
- 150000001993 dienes Chemical class 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 229930195733 hydrocarbon Natural products 0.000 claims 1
- 150000002430 hydrocarbons Chemical class 0.000 claims 1
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical class C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 claims 1
- 229920000578 graft copolymer Polymers 0.000 abstract description 49
- 230000003287 optical effect Effects 0.000 abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 239000002131 composite material Substances 0.000 abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 7
- 239000001301 oxygen Substances 0.000 abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 abstract description 7
- 230000035699 permeability Effects 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 32
- 229920000126 latex Polymers 0.000 description 28
- 239000004816 latex Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 19
- -1 vinylidene aromatic hydrocarbon Chemical class 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000009472 formulation Methods 0.000 description 13
- 238000010559 graft polymerization reaction Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 9
- 206010042674 Swelling Diseases 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 6
- 238000007720 emulsion polymerization reaction Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 125000005907 alkyl ester group Chemical group 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000344 soap Substances 0.000 description 5
- 238000010557 suspension polymerization reaction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 4
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 3
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- IYNRVIKPUTZSOR-HWKANZROSA-N ethenyl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC=C IYNRVIKPUTZSOR-HWKANZROSA-N 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 125000005395 methacrylic acid group Chemical class 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 229920000307 polymer substrate Polymers 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N vinyl ethyl ether Natural products CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 3
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- XWJBRBSPAODJER-UHFFFAOYSA-N 1,7-octadiene Chemical compound C=CCCCCC=C XWJBRBSPAODJER-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004609 Impact Modifier Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- MOYAFQVGZZPNRA-UHFFFAOYSA-N Terpinolene Chemical compound CC(C)=C1CCC(C)=CC1 MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 235000013405 beer Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- KJRCEJOSASVSRA-UHFFFAOYSA-N propane-2-thiol Chemical compound CC(C)S KJRCEJOSASVSRA-UHFFFAOYSA-N 0.000 description 2
- 239000012966 redox initiator Substances 0.000 description 2
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- LDVVMCZRFWMZSG-OLQVQODUSA-N (3ar,7as)-2-(trichloromethylsulfanyl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione Chemical group C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)Cl)C(=O)[C@H]21 LDVVMCZRFWMZSG-OLQVQODUSA-N 0.000 description 1
- NDCVXYMOWMJIPR-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enyl]peroxyoctadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOOCCCCCCCC\C=C/CCCCCCCC NDCVXYMOWMJIPR-CLFAGFIQSA-N 0.000 description 1
- SPTHWAJJMLCAQF-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene;hydrogen peroxide Chemical compound OO.CC(C)C1=CC=CC=C1C(C)C SPTHWAJJMLCAQF-UHFFFAOYSA-N 0.000 description 1
- VJDVKNLYGQTELS-UHFFFAOYSA-N 1,3-dichloro-2-ethenyl-5-methylbenzene Chemical compound CC1=CC(Cl)=C(C=C)C(Cl)=C1 VJDVKNLYGQTELS-UHFFFAOYSA-N 0.000 description 1
- XSZYESUNPWGWFQ-UHFFFAOYSA-N 1-(2-hydroperoxypropan-2-yl)-4-methylcyclohexane Chemical compound CC1CCC(C(C)(C)OO)CC1 XSZYESUNPWGWFQ-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- OEVVKKAVYQFQNV-UHFFFAOYSA-N 1-ethenyl-2,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C)=C1 OEVVKKAVYQFQNV-UHFFFAOYSA-N 0.000 description 1
- VTPNYMSKBPZSTF-UHFFFAOYSA-N 1-ethenyl-2-ethylbenzene Chemical compound CCC1=CC=CC=C1C=C VTPNYMSKBPZSTF-UHFFFAOYSA-N 0.000 description 1
- WHFHDVDXYKOSKI-UHFFFAOYSA-N 1-ethenyl-4-ethylbenzene Chemical compound CCC1=CC=C(C=C)C=C1 WHFHDVDXYKOSKI-UHFFFAOYSA-N 0.000 description 1
- UVHXEHGUEKARKZ-UHFFFAOYSA-N 1-ethenylanthracene Chemical compound C1=CC=C2C=C3C(C=C)=CC=CC3=CC2=C1 UVHXEHGUEKARKZ-UHFFFAOYSA-N 0.000 description 1
- FFHGJCBXRQUCED-UHFFFAOYSA-N 1-methyl-2-(2-methylphenyl)peroxybenzene Chemical compound CC1=CC=CC=C1OOC1=CC=CC=C1C FFHGJCBXRQUCED-UHFFFAOYSA-N 0.000 description 1
- HSYSVFXBQIIBBJ-UHFFFAOYSA-N 1-tert-butyl-4-(2-hydroperoxypropan-2-yl)benzene Chemical compound CC(C)(C)C1=CC=C(C(C)(C)OO)C=C1 HSYSVFXBQIIBBJ-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- OMNYXCUDBQKCMU-UHFFFAOYSA-N 2,4-dichloro-1-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C(Cl)=C1 OMNYXCUDBQKCMU-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- LIZVXGBYTGTTTI-UHFFFAOYSA-N 2-[(4-methylphenyl)sulfonylamino]-2-phenylacetic acid Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(C(O)=O)C1=CC=CC=C1 LIZVXGBYTGTTTI-UHFFFAOYSA-N 0.000 description 1
- SZSWKGVWJBZNIH-UHFFFAOYSA-N 2-chloro-1-ethenyl-4-methylbenzene Chemical compound CC1=CC=C(C=C)C(Cl)=C1 SZSWKGVWJBZNIH-UHFFFAOYSA-N 0.000 description 1
- ISRGONDNXBCDBM-UHFFFAOYSA-N 2-chlorostyrene Chemical compound ClC1=CC=CC=C1C=C ISRGONDNXBCDBM-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- PQUCIEFHOVEZAU-UHFFFAOYSA-N Diammonium sulfite Chemical class [NH4+].[NH4+].[O-]S([O-])=O PQUCIEFHOVEZAU-UHFFFAOYSA-N 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000282941 Rangifer tarandus Species 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000004973 alkali metal peroxides Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- SPTHWAJJMLCAQF-UHFFFAOYSA-M ctk4f8481 Chemical compound [O-]O.CC(C)C1=CC=CC=C1C(C)C SPTHWAJJMLCAQF-UHFFFAOYSA-M 0.000 description 1
- GCFUAWRGEMQGAR-UHFFFAOYSA-N cyclopentane;hydrogen peroxide Chemical compound OO.C1CCCC1 GCFUAWRGEMQGAR-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- HRKQOINLCJTGBK-UHFFFAOYSA-L dioxidosulfate(2-) Chemical compound [O-]S[O-] HRKQOINLCJTGBK-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- QZYRMODBFHTNHF-UHFFFAOYSA-N ditert-butyl benzene-1,2-dicarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1C(=O)OOC(C)(C)C QZYRMODBFHTNHF-UHFFFAOYSA-N 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-N dithionous acid Chemical class OS(=O)S(O)=O GRWZHXKQBITJKP-UHFFFAOYSA-N 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000006902 nitrogenation reaction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- QYZLKGVUSQXAMU-UHFFFAOYSA-N penta-1,4-diene Chemical compound C=CCC=C QYZLKGVUSQXAMU-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 229940045870 sodium palmitate Drugs 0.000 description 1
- 229940080350 sodium stearate Drugs 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- GGXKEBACDBNFAF-UHFFFAOYSA-M sodium;hexadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCC([O-])=O GGXKEBACDBNFAF-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011145 styrene acrylonitrile resin Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F285/00—Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/902—Core-shell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/932—Blend of matched optical properties
Definitions
- Michl 5 7 ABSTRACT A polyblend with good impact properties, good optical properties, low water vapor transmission and low oxygen permeability has a two-stage polymerization graft component with a particular butadiene-styrene rubbery substrate and a composite superstrate. Initially, a particular butadiene-styrene rubbery substrate is grafted in two stages. The resultant composite graft copolymer is then blended with a matrix of an ethylenically unsaturated nitrile polymer to provide the desired impact modified polymer blends.
- the present invention relates to a particular butadiene-styrene rubbery substrate (hereinafter described) which is grafted in two stages to provide a grafted butadiene-styrene rubber substrate with a high nitrile content in the outer shell.
- the resulting grafted rubber may be used per se or blended with a high nitrile polymer matrix to form a polyblend.
- the present invention fulfills a need in the art by providing rubber modified high nitrile polymers which have good optical properties as well as good impact, good oxygen permeability, good water vapor barrier properties and good weatherability properties.
- Another object is to provide novel polyblends which combine good optical properties, barrier properties, processing characteristics, color stability, heat stability and impact resistance.
- the resultant graft copolymer has a superstrate to substrate ratio of at least 102100 and is thereafter admixed with a second polymerizable monomer composition consisting of at least 55 pereentby weight of an ethylenically unsaturated nitrile monomer.
- the second monomer composition is subjected to polymerization conditions to effect polymerization of the monomers thereof and to produce grafting of a substantial portionof the polymer being produced onto the graft copolymer to form a composite graft copolymer.
- the grafted polymers of the first and second monomer compositions provide a superstrate containing a total of at least 40 percent by weight ethylenically unsaturated nitrile monomer.
- the composite graft copolymer thus formed may be utilized per se for various applications as a rubber modified material such as those where acrylonitrile-butadiene-styrene (ABS) or styrene-acrylonitrile (SAN) materials are employed, it has especial utility as an impact modifier for high nitrile polymers.
- ABS acrylonitrile-butadiene-styrene
- SAN styrene-acrylonitrile
- the apparent refractive index of the composite graft copolymer can be closely matched to the refractive index of the high nitrile matrix polymer to provide a transparent composition having highly desirable impact strength, good chemical resistance and a balance of other properties.
- Such impact modification has been especially useful in the manufacture of nitrile polymer blends for packaging and other applications.
- the particular butadiene-styrene rubbery polymer substrate onto which the monomers are grafted are copolymers of butadiene and styrene which contain from 68 to 72 percent of butadiene and correspondingly from 28 to 32 percent by weight of styrene based on the weight of the butadiene-styrene copolymer.
- up to 5 percent by weight of the butadiene may be replaced with a nitrile monomer such as acrylonitrile or methacrylonitrile.
- the butadiene-styrene rubbery substrate must have a refractive index in the range of from 1.5375 to l.5425, a particle size in the range of from 0.06 to 0.2 microns before grafting, a gel content in the range of from 40 to percent, a swelling index in the range of from 10 to 40, and a second order transition temperature (Tg) less than 20C. and preferably less than 40C. as deter mined by ASTM Test D-746-52T.
- Tg second order transition temperature
- the above specified refractive index range for the rubber substrate is required in order to have the refractive index of the rubber substrate in the same range as the refractive indiccs for the grafted superstrates and the high nitrile matrix in order to provide optimum optical properties.
- the above specified rubber particle size, gel content, swelling index and second order transition temperature is required in order to provide optimum impact properties.
- the Polymerizable Monomer Compositions of the superstrate comprises (1) from 0.1 to 2 percent by weight, preferably 0.1 to 1 percent by weight, of a nonconjugated diolefin monomer, (2) from O to 30 percent by weight of an ethylenically unsaturated nitrile selected from the group consisting of acrylonitrile, and mixtures of acrylonitrile and methacrylonitrile which contain up to 20 percent by weight methacrylonitrile, (3) from 40 to 60 percent by weight of a vinylidene aromatic hydrocarbon monomer formulation.
- these diolcfins have two ethylenically unsaturated double bonds with a different degree of reactivity or having a crosslinking efficiency of less than one.
- These diolefins may be aliphatic, aromatic, aliphatic-aromatic, heterocyclic, cycloaliphatic, etc. Examples of suitable diolefins would include divinyl benzene, ethylene dimethacrylate, ethylene glycol dimethacrylate, tricthylene glycol dimethacrylatc, tct raethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, allyl methacrylate.
- diallyl fumaratc diallyl maleate, vinyl crotonate, and nonconjugated alpha, omega diolefins of at least carbon atoms such as 1,4-pentadiene, 1,7-octadiene, etc.
- Ethylene glycol dimethacrylate is the preferred difunctional monomer.
- Exemplary of the monovinylidene aromatic hydrocarbons which are used in the superstrate are styrene, alpha-methylstyrene; ring-substituted alkyl styrenes, e.g,, vinyl toluene, o-ethylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, etc.; ring-substituted halosty renes, e.g., o-chlorostyrene, p-chlorostyrene, obromostyrene, 2,4-dichlorostyrene, etc.; ring-alkyl, ring-halosubstituted styrenes, e.g., 2-chloro-4-methylstyrene, 2,6-dichloro-4-methylstyrene, etc.; vinyl naphthalene; vinyl anthracene,
- the alkyl substituents generally have 1 to 4 carbon atoms and may include isopropyl and isobutyl groups. Mixtures of the above monovinylidene aromatic monomers may be employed. Styrene and alpha methyl styrene are preferred.
- the alkyl esters of acrylic and methacrylic acids used in the first polymerizable monomer composition are those wherein the alkyl group contains from 1 to 8 carbon atoms, e.g., methyl, ethyl, propyl, butyl, 2ethylhexyl, etc.
- esters include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, butyl methacrylate, 2-ethyl hexylmethacrylate, etc.
- the preferred ester is methyl methacrylate.
- a particularly preferred first polymerizable monomer composition contains l 0.1 to 2 percent by weight of ethylene glycol dimethacrylate; (2) 20 to 30 percent by weight ofacrylonitrile; (3) 40 to 60 percent by weight of styrene; and (4) 20 to 50 percent by weight of methyl methacrylate; wherein the percent by weight referred to above is based on the total weight of the first polymerizable monomer mixture.
- the second polymerizable monomer composition contains from 55 to 85 percent by weight of an ethylenically unsaturated nitrile monomer selected from the group consisting of acrylonitrile and mixtures of acrylonitrile and methacrylonitrile which contains up to 20 percent by weight of methacrylonitrile based on the total weight of acrylonitrile and methacrylonitrile.
- an ethylenically unsaturated nitrile monomer selected from the group consisting of acrylonitrile and mixtures of acrylonitrile and methacrylonitrile which contains up to 20 percent by weight of methacrylonitrile based on the total weight of acrylonitrile and methacrylonitrile.
- the second polymerizable monomer composition contains from 1 to 45 percent by weight of a monovi nylidene aromatic hydrocarbon monomer of the type referred to above. Up to percent of the monovinylidene aromatic hydrocarbon monomer can be replaced with a vinylidene monomer selected from the group consisting of alkyl viLyl ethers wherein the alkyl group contains from 1 to 4 carbon atoms, vinyl esters such as vinyl acetate and alkyl esters of acrylic and methacrylic acids wherein the alkyl groups contain from 1 to 8 carbon atoms.
- the preferred monovinylidene aromatic hydrocarbons are styrene and alpha methylstyrene.
- the preferred vinylidene monomers which are used to replace up to 10 percent by weight of the monovinylidene aromatic hydrocarbon, include methyl vinyl 4 ether, ethyl vinyl ether, methyl acrylate, ethyl acrylate, butyl acrylate and the corresponding methacrylates, especially methyl methacrylates.
- the percent by weight referred to above in regard to the second monomer mixture is based on the total weight of the monomers in the second monomer mixture.
- the Graft Polymerization Process Although the method of the present invention has previously been described as being conducted with two distinct polymerization monomer formulations in two separate polymerization steps, it should be appreciated that the two steps can be blended into each other. Accordingly, the two formulations can be blended into each other in a process where monomers are added during the course of polymerization. In such a technique, the first monomer formulation would be provided by the monomers present initially during the first stage grafting reaction and thereafter the second stage monomer formulation would be added during the course of the polymerization reaction to provide the equivalent of the second or high nitrile monomer polymerizable formulation as the grafting reaction ,progressed.
- the amount of the first polymerizable monomer composition relative to the amount of substrate may vary fairly widely depending upon the efficiency of the grafting reaction and the composition of the formulation. As previously indicated, of the total graft superstrate provided by the two monomer compositions, at least 40 percent by weight must be formed from ethylenically unsaturated nitrile monomer.
- the weight ratio of the first monomer formulation to substrate will normally be about 15150: parts by weight, and preferably about 2511201100. It is essential that the superstrate to substrate ratio resulting from the polymerization of the first monomer formulation be at least 10: 100 and preferably about 20-90: 100. Since the barrier properties of the composition will vary with the amount of non-nitrile polymer content, it is generally desirable to minimize the amount of ungrafted polymer formed from the first polymerizable monomer mixture.
- the ratio of the second polymerizable composition to rubbery polymer substrate also may vary fairly widely depending upon the amount of superstrate produced by the first polymerizable composition in view of the requirement that the nitrile monomer content comprise at least 40 percent by weight of the total graft superstrate.
- the ratio of the second monomer composition to rubber substrate will be about 20-250: 100 and preferably about 40-150: 100.
- the grafting reaction is ideally conducted under relatively efficient Conditions so as to minimize the amount of ungrafted interpolymer which is formed, although any ungrafted nitrile polymer would normally not adversely affect the barrier properties of the blend.
- the monomers and rubbery substrate are emulsified in a relatively large volume of water by use of suitable emulsifying agents such as fatty acid soaps, alkali metal or ammonium soaps of high molecular weight alkyl or alkaryl sulfates and sulfonates, mineral acid salts of long chain aliphatic amines, etc.
- suitable emulsifying agents such as fatty acid soaps, alkali metal or ammonium soaps of high molecular weight alkyl or alkaryl sulfates and sulfonates, mineral acid salts of long chain aliphatic amines, etc.
- Emulsifying agents which have proven particularly advantageous are sodium oleate, sodium palmitate, sodium stearate, sodium lauryl sulfate and other sodium soaps.
- the emulsifying agent is provided in amounts of about 1 to parts by weight per 100 parts by weight of the monomers.
- the amount of water in which the monomers and rubbery polymer substrate are emulsified may vary depending upon the emulsifying agent, the polymerization conditions and the particular monomers. Generally, the ratio of water to monomer with alkali metal soaps will fall within the range of about 80-3002100, and preferably about l50250:l00.
- the aqueous latex formed in the emulsion polymerization of the rubbery polymer substrate may provide the aqueous medium into which the monomers are incorporated with or without additional emulsifying agents, etc. However, the rubbery polymer may be dispersed in the monomers and the mixture emulsified, or a latex thereof may be separately prepared.
- Exemplary of the water-soluble peroxy catalysts are the alkali metal peroxides; the alkali metal and ammonium persulfates, perborates, peracetates and percarbonates; and hydrogen peroxide.
- Exemplary of the monomer-soluble peroxy and perazo compounds are ditert-butyl peroxide, di-benzoyl peroxide, di-lauroyl peroxide, di-oleyl peroxide, di-toluyl peroxide, di-tertbutyl diperphthalate, di-tert-butyl peracetate, di-tertbutyl perbenzoate, dicumyl peroxide, di-tert-butyl peroxide, di-isopropyl peroxy dicarbonate, 2,5-dimethyl-2, 5 di-(tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di(- tert-butyl peroxy) hexyne-3, di-
- the catalyst is generally included within the range of 0.001 to 1.0 percent by weight, and preferably on the order of 0.005 to 0.5 percent by weight of the polymerizable material, depending upon the monomers and the desired polymerization cycle.
- reducing agents which may be employed are alkali metal and ammonium sulfites, hydrosulfites, metabisulfites, thiosulfates, sulfinates, alkali metal formaldehyde sulfoxylates, ascorbic acid, dioxyacetone, dextrose, etc.
- reducing agents for redox systems may also be employed.
- the amount of reducing agent will be about 0.001 to 1.0 percent by weight, and preferably on the order of 0.005 to 0.5 percent by weight of the polymerizable monomer formulation, depending on the catalyst and the amount thereof. Minute amounts of activators or promoters such as ferrous salts and copper salts may be included in the redox systems.
- Molecular weight regulators may be included in the formulation for the graft polymerization reaction so as to control the molecular weight and achieve the desired properties.
- exemplary of such molecular weight regulators are alkyl mercaptans and terpenes, specifically N- dodecyl mercaptan, tertdodecyl mercaptan, n-butyl mercaptan, isopropyl mercaptan, terpinolene, d-limonene, etc., or their blends.
- the particular polymerization conditions employed will vary with the monomer formulation, the catalyst and the polymerization technique. Generally, the reaction will increase with an increase in temperature although a limiting factor is possible deterioration in product properties and also a tendency to produce problems in maintaining latex stability. Generally, temperatures of about 30 to Centigrade and pressures of about 0-50 p.s.i.g. have been found suitable for a fairly efficient emulsion graft polymerization reaction. Preferably, an inert atmosphere is employed over the polymerizing latex.
- the graft copolymer blend may be recovered from emulsion by various techniques of coagulation in the form of a crumb, or by evaporation, and is washed for subsequent processing.
- the latex may be combined with a latex of the matrix polymer and coagulated or spray dried therewith.
- the amount of ungrafted interpolymers produced by the graft polymerization reaction will vary with the type and efficiency of the graft reaction and the ratio of monomer formation to rubbery polymer substrate in the charge. By these factors, the amount of ungrafted polymer in an emulsion reaction will normally vary within the range of about 10 to parts of grafted rubbery polymer substrate with the higher ratios being produced by high monomer/substrate charges.
- the Matrix lnterpolymer Generally, it is advantageous to conduct an emulsion graft polymerization reaction under conditions which are reasonably efficient so that the rubbery content of the emulsion product will range from about 25 to 65 percent thereof. Normally, the rubbery substrate content desired for the polyblends of the present invention will be in the range of 3 to 50 percent by weight and preferably 5 to 20 percent. Thus, it is generally preferred to prepare matrix interpolymer by a separate reaction and this matrix interpolymer is then blended with the graft polymer component which may include (and will normally include) some ungrafted interpolymer.
- the matrix polymer contains from 55 to 85 percent,
- an ethylenically unsaturated nitrile monomer selected from the group consisting of acrylonitrile and mixtures of acrylonitrile and methacrylonitrile which contain up to 20 percent by weight of methacrylonitrile based on the total weight of acrylonitrile and methacrylonitrile and from 15 to 45 percent of a monovinylidene aromatic hydrocarbon monomer of the .type referred to above.
- Up to 10 percent of the monovinylidene aromatic hydrocarbon monomer can be replaced with a vinylidene monomer selected from the group consisting of alkyl vinyl ethers, wherein the alkyl group contains from 1 to 4 carbon atoms, vinyl esters such as vinyl acetate; and alkyl esters of acrylic and methacrylic acids wherein the alkyl groups contain from 1 to 8 carbon atoms.
- the preferred monovinylidene aromatic hydrocarbons are styrene and methyl styrene.
- the preferred vinylidene monomers which can be used to replace up to 10 percent of the monovinylidene aromatic hydrocarbon include methyl vinyl ether, ethyl vinyl ether, methyl acrylate, ethyl acrylate, butyl acrylate and the corresponding methacrylates, especially methyl methacrylate.
- the composition of the matrix polymer is substantially the same as the composition of the second polymerizable monomer composition.
- the method used to prepare the matrix interpolymer may be any which is commonly practiced in the art; the polymerization may be effected en masse, in solution or with the monomer in an aqueous dispersion as an emulsion or suspension. From the standpoint of economics and process control, highly suitable polymers can be prepared by a method in which the monomers are suspended in water since emulsion polymerization tends to introduce coloring impurities in the polymer by reason of the salts used for coagulation, the emulsifying agents, etc.
- the refractive index of the matrix interpolymer should closely approximate the apparent refractive index of the graft copolymer component. Although the refractive index may be measured in each instance, it is possible to present graphically the refractive indices of the various resinous and rubber interpolymers and then calculate the refractive index for the graft copolymer component.
- compositions of the present invention may be added to the compositions of the present invention depending upon the intended use and nature thereof such as, for example, plasticizers, dyes, pigments, stabilizers, antioxidants, lubricants, processing aids and fillers. The amount and nature thereof will determine the possible effect upon the transparency of the blends. Generally, it is necessary to incorporate stabilizers and antioxidants to prevent degradation of the graft polymer component. Although the stabilizers and antioxidants may be incorporated at the time of blending of the components into the final polyblend, generally it is most advantageous to incorporate these materials into the individual components after they are formed so as to minimize the tendency for degradation or oxidation during processing and storage.
- the final polymer blends may be prepared by admixing the components thereof in any of the customary ways including mill rolling, extrusion blending, etc.
- the latex thereof may be admixed with a latex of the graft copolymer blend and the mixed latex coagulated, washed and dried.
- the polymer blends may contain 3 to 50 percent by weight of rubber provided by the rubbery substrate of the graft copolymer blend and the preferred compositions will normally contain about 5 to percent.
- Polymer blends produced in accordance with the present invention are substantially transparent, i.e., the transmittance through a molded specimen of 0.1 inch in thickness at 550 millimicrons wave length may have a value of at least percent and generally considerably greater.
- suspension matrix polymers having a definite yellow cast may be brought to a clear less yellow blend when admixed with a suitably formulated graft copolymer component.
- the refractive indices of the graft copolymer blend and matrix polymer must be closely matched, and the average particle size of the graft copolymer component should be less than about 0.4 micron. Yellowish coloration can be neutralized by incorporation of the appropriate blue dyes.
- blends which may be produced in accordance with the invention afford significantly advantageous transparency enabling their application to packaging, laminating and other uses where transparency is advantageous and where the remaining balance of properties offers signficant advantages.
- the polyblends of the present invention may be formed in conventional processing equipment including injection molding apparatus, blow molding apparatus and extrusion apparatus.
- the polyblends may be compression molded if so desired. The process ability of the polyblends is satisfactory for use in conventional equipment without the need for employing solvents, lubricants or other flow modifiers.
- Packaging sheet materials may be prepared from the polyblend by extrusion, calendering, casting and by other means well known to those skilled in the art. Bottles and containers may be made by any of the conventional methods such as blow extrusion, injection molding, vacuum forming, etc.
- sheet materials of the polyblends of this invention are subjected to uniaxial or biaxial orientation, still further improvements in the mechanical properties are noted.
- the films are so oriented, it is preferred that they be stretched at least about 300 percent in one or both directions. It is further preferred that the stretching be carried out at a rate of at least about 2,000 percent per minute. The preferred rate of stretching ranges l0,000-20,000 percent per minute.
- Biaxial stretching can be effected in a single or continuous operation.
- a lazy-tongs-type cross-stretcher can be used to advantage, whereas in continuous-type operations either tenter-type crossstretching frames or blow-extrusion techniques can be used.
- tenter-frames When tenter-frames are used, the differential in speed between the front and rear rollers develops longitudinal stretching, while simultaneously the lateral spacing of the frame develops transversel stretching so that the sheet material is bi-axially stretched in both directions.
- the polyblends of the present invention have been indicated as being formed by a single graft polymerization component, it will be appreciated that the polymerization graft component need not be homogeneous. It may be comprised of two or more polymerization graft components for benefits which may be obtained thereby.
- the graft polymer of the present invention will have a total superstrate to substrate ratio of 15-2001100 and preferably 20l50:l0(), one particle may have a ratio of 20-45: 1 O0 and another may have a ratio of 55-1 50'. with the amounts thereof being varied.
- the size of the particles may be multimodal or broadly distributed.
- polyblends of the present invention may be mechanically blended with other polar poly- EXAMPLE 1
- This example illustrates the preparation of a butadiene-sytrene rubber of the type used in the present invention.
- a butadiene-styrene rubber which contains 70 percent by weight of butadiene, and 30 percent by weight of styrene, is prepared using the following charge:
- the above ingredients are charged to a reaction vessel, heated at 55C. for hours to a degree of conversion of 96%.
- the ethylene glycol dimethacrylate is used to crosslink the rubber.
- the resulting butadiene-styrene latices are characterized as follows:
- Solids Surface tension Average particle size 40% by weight 8.58.8 68-72 dynes/em 0.09 to 0.1 micron
- EXAMPLE 2 This example illustrates the use of a two-stage graft polymerization reaction to prepare the grafted polymers of the present invention.
- Example 2 Twenty-five hundred parts of the latex prepared in Example 1 above, after dilution to 20 percent rubber solids and addition of 1 percent, by weight of rubber, of sodium lauryl sulfate, are charged to a reactor and heated under nitrogen and with agitation to about 60C. An aqueous solution of 1.0 parts of sodium formaldehyde sulfoxylate and a small quantity of chelated iron is added before graft monomer addition. To this latex is continuously added over a one hour period a first monomer composition of 100 parts acrylonitrile, 200 parts styrene, 100 parts methyl methacrylate and 4 parts ethylene glycol dimethacrylate.
- a solution of 11 parts sodium lauryl sulfate is charged to the reactor, and agitation and heating are continued for about 30 minutes.
- the latex is then cooled to 25C. and 5 parts of a conventional antioxidant is added to the batch.
- the latex is then coagulated in a hot aqueous magnesium sulfate solution, the coagulum is filtered, washed with water and dried.
- the crumb is fused and sheeted on a two-roll mill at C. Thereafter test specimens are compression molded at C. and 5000 psi for 5 minutes.
- Optical properties on the molded specimens are determined in accordance with ASTM Test D-1003-52 and impact properties are determined in accordance with ASTM Test D-256-56.
- the properties of the test specimens are listed in Table I below.
- EXAMPLE 3 For comparison a graft copolymer is prepared by a one step grafting procedure wherein the grafted superstrate is of substantially uniform composition throughout. In this test, the procedure of Example 2 is substan tially repeated. However, to the 2,500 parts of rubber latex, a mixture of 390 parts acrylonitrile, 210 parts styrene and 6 parts tert.-dodecyl mercaptan is added continuously over a ninety-minute period. The total amount of reducing agent and of persulfate used is the same as in Example 2. The latex is stirred at 60C. for one hour after monomer addition and the graft copolymer is recovered, processed and molded as in Example 2. The properties of the test specimens are listed in Table I below.
- EXAMPLE 4 This example illustrates polyblends made from an acrylonitrile/styrene copolymer and the graft copolymers produced in Examples 2 and 3 above.
- the copolymer utilized for these blends is a copolymer of 63 percent by weight acrylonitrile and 37 percent by weight styrene previously prepared by conventional suspension polymerization.
- the copolymer has a specific viscosity (0.1 g/100 ml DMF) of 0.078 and a yellowness index of 35.5 and 1.5 percent haze.
- the blends are compounded by extrusion and test specimens are molded on a reciprocating screw injection molding machine at 200C. barrel temperature.
- Optical and impact properties are determined as outlined above. Injection molded plaques, 0.1 inch thick, are used for determination of haze at 550 nm wave length and yellowness is determined on the same speci- 1 1 men with a IDL Color Eye. lzod impact strength is determined on one-half inch one-half inch injection molded bars with 0. mil notch radius. The properties of the test specimens are listed in Table 11 below.
- EXAMPLE 5 This example further illustrates the improved properties which are obtained with the two-stage grafted rubbers of the present invention.
- a first monomer composition of 150 parts styrene, 150 parts methyl methacrylate, 3 parts ethylene glycol dimethacrylate and 0.75 parts di-isopropyl benzene hydroperoxide 100 percent active) is continuously added to the reaction vessel over a period of 45 minutes while maintaining a temperature differential of about 4C. between the cooling jacket temperature and the temperature of the polymerizing latex.
- Part A (CONTROL) Preparation Of Single Stage Grafted Rubber
- EXAMPLE 6 This example illustrates a two-stage grafted rubber which is blended with an acrylonitrile/styrene polymer matrix which contains 68 percent by weight of acrylonitrile and 32 percent styrene.
- the first stage graft is carried out using a monomer composition containing 15 percent acrylonitrile, 45 percent styrene, 4 percent methyl methacrylate and 0.8 percent of ethylene glycol dimethacrylate wherein the percent is by weight based on the total monomer weight in the first monomer composition.
- the second stage graft is carried out using a monomer composition containing 65 percent acrylonitrile, 2 percent methacrylonitrile and 33 percent styrene containing 0.5 percent by weight tert-dodecyl mercaptan based on the total monomer weight in the second monomer mixture.
- a combination of potassium persulfate and sodium thiosulfate is used as a redox initiator system for the grafting reaction.
- the ratio of substrate/first stage graft superstrate/second stage graft superstrate is 110.8204.
- the average particle size after grafting is found to be 0.1 3 microns.
- the graft copolymer is fused and sheeted by roll-milling and then the mechanical and optical properties are determined on compression molded test specimens.
- the physical and mechanical properties of the test specimens are found to be as follows:
- Tensile stress (psi) at yield at failure Percent elongation at yield at failure 22.
- Tensile modulus (psi X 10") Percent haze (60 mil, 550 mm) Yellowness index I Refractive index n,,'-"" 1.5404
- EXAMPLE 8 This example illustrates the preparation of three different twostage graft copolymers. In Part A no difunctional monomer is used, in Part B the difunctional monomer is omitted from the first monomer mixture but included in the second monomer mixture, and in Part C the difunctional monomer is included in the first monomer mixture in accordance with the teachings of the present invention.
- Each example uses a latex of a 70/30 butadiene/styrene rubbery copolymer having an average particle size of O. 151 microns, as determined by turbidity measurement, a gel content of 48.0 percent, a refractive index of 1.5381, a swelling index of 37.7 and a Tg less than -40C.
- the two-stage grafting procedure is carried out at 50C. using a persulfate/sulfoxylate/iron redox initiator system.
- Example 2 PART A (CONTROL)
- the graft polymerization procedure of Example 2 is substantially repeated with the exception that the first monomer composition, which contains 50 percent by weight styrene, percent methyl methacrylate and 25 percent acrylonitrile, does not contain a Rubber Content Percent haze (100 mil, 550mm) 1.2 1.1 1.3 1.5 Yellowness index 466 39.6 33.8 31.5 Refractive index nf" 1.5405 1.5410 1.5412 1.541 1 12011 impact (ft.lbs./in.) 0.4 1.25 1.81 9.6 Density. grams/cc 1.128 1.1 12 1.105 1.090 FDl (falling dart impact) Ft. lbs. (1) 4.2 16.0 99.9
- EXAMPLE 7 This example illustrates the blending of two latices to obtain the rubber modified polymer blends of the pres ent invention.
- a graft copolymer is prepared in a two-stage polymerization procedure by grafting 100 parts of the butadiene/styrene rubber prepared in Example 1 with 60 parts of a styrene/acrylonitrile/methyl methacrylate/ethylene glycol dimethacrylate mixture (50/25/25/0.8% by weight) and 60 parts of an acrylonitrile/styrene mixture (65/35% by weight) in two consecutive steps using the procedure outlined in Example 2.
- the resulting latex is blended with a latex of acrylonitrile/styrene/methyl methacrylate (60/35/5% by weight) so as to provide a polyblend having a solids content of 26 percent by weight providing a rubber content of 10 percent in the polyblend.
- the polyblend is spray dried and the resulting powder blend is compounded by extrusion into pellets which are further extruded into a clear transparent sheet having a refractive index of 1.5425.
- a falling dart drop test one inch tip
- a ductile failure pattern and a strength ofO. 15 foot pounds/ mil is obtained, further illustrationating the good physical properties of the polyblends of the present invention.
- the first monomer composition is the same as in Part A above.
- the second monomer composition contains 65 percent by weight of acrylonitrile, 35 percent styrene and 0.5 percent by weight of allyl methacrylate difunctional monomer.
- a graft copolymer is prepared as in Parts A and B but using a first monomer composition containing 0.5 percent by weight of allyl methacrylate based on the total weight of monomers in the mixture.
- the composition of the first and second stage monomer mixtures and the graft ratios are the same for Parts A, B and C.
- the graft copolymers are recovered by coagulation with calcium chloride and optical and mechanical properties are determined on compression molded specimens mil thickness). The properties of the test specimens are found to be as follows:
- the strength properties of the graft rubber obtained by a two-stage procedure using a difunctional monomer in the second a monomer composition are better than those of the graft copolymer, which contains no difunctional monomer (Part A), but still lower than those of the graft copolymer prepared using a difunctional monomer present in the first stage monomer composition (Part C).
- the graft copolymers prepared by procedures A, B and C are blended with a 65/35 acrylonitrile/styrene copolymer previously prepared by conventional suspension polymerization to provide blends containing 15 percent of the graft copolymer substrate providing a rubber content of 15% in the polyblend.
- the polyblends are compounded by extrusion and injection molded into test specimens. The properties of the test specimens are found to be as follows:
- EXAMPLE 9 This example illustrates the use of a vinyl crotonate difunctional monomer in the first monomer mixture of a two-stage grafting procedure. It also illustrates various grafting levels and the preparation of polyblends in accordance with the present invention.
- Three different graft copolymers are prepared by the procedure described in Example 2 above using a rub ber latex containing 69.3 percent by weight butadiene and 30.7 percent by weight styrene and having a Tg less than 40C., a gel content of 87.5 percent, a swelling index of 16.3, a particle size of about 0.1 microns average and a refractive index of 1.5376.
- the first graft monomer composition contains 1 percent by weight of vinyl crotonate difunctional monomer
- the secondmonomer composition contains 1 percent of a tertiary-dodecyl mer'captan chain transfer agent, both weight percents based on the total mono- 16 mer weight in the respective mixtures.
- the graft ratios of substratezfirst stage graft: second stage graft are l:0.5:0.5, 1:0.6:0.6 and 1:0.8:O.4.
- the graft copolymers prepared above are blended with an acrylonitrile/styrene (63/37% by weight) previously prepared by conventional suspension polymerization, to provide polyblends having a rubber content of 15 percent by weight.
- the polyblends are injection molded into [2 X /z X 5 inch bars, 3 X 4 X 0.1 inch plaques and /2 X A; X 6V2 inch tensile bars which are then tested for physical properties.
- the properties of the test specimens are found to be as follows:
- the polyblends of this invention exhibit oxygen per meability of less than 6.5 cc of oxygen for a film of 1 mil thickness and 100 square inches over a period of 24 hours at one atmosphere (760 mm.) of oxygen and at 73F, and a water vapor transmission rate (WVT) of less than 8.5 grams for such film of equivalent dimensions over a 24 hour period maintained at 100F. and percent relative humidity (RH. as determined by ASTM Method D-l434-63 and ASTM Method E-96- 63T., respectively.
- WVT water vapor transmission rate
- the present invention provides a novel graft copolymer for blends with rigid matrices having highly desirable optical and mechanical properties.
- the graft copolymers are particularly useful as an impact modifier for acrylonitrile-styrene copolymers high in acrylonitrile content.
- the graft copolymers and the matrix polymer are prepared so as to have closely matching refractive indices in order to provide optimum mechanical properties and optimum optical properties including a high degree of transparency.
- the present invention may be utilized to produce materials which are particularly advantageously employed in packaging and in outdoor applications.
- a polymeric composition comprising:
- the polymerization product of a first polymerizable monomer composition comprising:
- nitrile monomer selected from the group consisting of acrylonitrile, and mixtures of acrylonitrile and methacrylonitrile which contain up to 20 percent by weight of methacrylonitrile;
- a second polymerizable monomer composition comprising from 55 to 85 percent by weight of an ethylenically unsaturated nitrile monomer selected from the group consisting of acrylonitrile and mixtures of acrylonitrile and methacrylonitrile which contain up to 20 percent by weight of methacrylonitrile based on the total weight of acrylonitrile and methacrylo nitrile and from 15 to 45 percent by weight of a monovinylidene aromatic hydrocarbon monomer wherein the percent by weight is based on the total weight of the monomers in the second polymerizable monomer mixture; wherein the grafted superstrate contains a total of at least 40 percent by weight ethylenically unsaturated nitrile monomer and wherein the ratio of grafted superstrate to substrate is in the range of from l200: 100.
- an ethylenically unsaturated nitrile monomer selected from the group consisting of acrylonitrile and mixtures of acrylonit
- an ethylenically unsaturated nitrile monomer selected from the group consisting of acrylonitrile and mixtures of acrylonitrile and methacrylonitrile which contain up to 20 percent by weight of methacrylonitrile based on the total weight of acrylonitrile and methacrylonitrile and from to 45 percent of a mono-vinylidene aromatic hydrocarbon monomer.
- a polymeric composition comprising: A. a butadiene-styrene rubbery substrate having a butadiene content of 68 to 72 percent by weight and a styrene content of 28 to 32 percent by weight based on the total weight of the butadiene-styrene rubbery substrate which rubbery substrate is further characterized as having a refractive index in the range of from 1.5375 to 1.5425, a particle size in the range of from 0.06 to 0.2 micron, a gel content in the range of from 40 to percent, a swell ing index in the range of from 10 to 40, and a second order transition temperature (Tg) less than 40C.; B. a superstrate grafted onto the rubbery substrate in two separate stages which superstrate comprises: 1. as the first stage graft, the polymerization product of a first polymerizable monomer composition comprising:
- a vinylidene aromatic hydrocarbon monomer selected from the group consisting of styrene and alpha methyl styrene
- a second polymerizable monomer composition comprising from 55 to 85 percent by weight of an ethylenically unsaturated nitrile monomer selected from the group consisting of acrylonitrile and mixtures of acrylonitrile and methacrylonitrile which contains up to 20 percent by weight of methacrylonitrile based on the total weight of acrylonitrile and methacrylonitrile and from 15 to 45 percent by weight of a monovinylidene aromatic hydrocarbon monomer wherein the percent by weight is based on the total weight of the monomers in the second polymerizable monomer mixture; wherein the grafted superstrate contains a total T at least 40 percent by weight ethylenically unsaturat i nitrile monomer and wherein the ratio of grafted aperstrate to substrate is in the range of from l52 0: and
- an ethylenically unsaturated nitrile monomer selected from the group consisting of acrylonitrile and methacrylonitrile which contain up to 20 percent by weight of methacrylonitrile based on the total weight of acrylonitrile and methacrylonitrile and from 15 to 45 percent of a monovinyli dene aromatic hydrocarbon monomer
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US404527A US3900529A (en) | 1973-10-09 | 1973-10-09 | Rubber modified high nitrile polymers and polymer blends produced thereby |
FR7433847A FR2246594B1 (enrdf_load_stackoverflow) | 1973-10-09 | 1974-10-08 | |
IT2819874A IT1022703B (it) | 1973-10-09 | 1974-10-08 | Polimeri ad alto tenore di nitrile modificati con gomma e miscele polimeriche prodotte con essi |
DE19742447948 DE2447948A1 (de) | 1973-10-09 | 1974-10-08 | Verfahren zur modifizierung der schlagfestigkeit bei polymerisaten mit hohem nitrilgehalt |
GB4349274A GB1482143A (en) | 1973-10-09 | 1974-10-08 | High nitrile polymers |
CA211,128A CA1041245A (en) | 1973-10-09 | 1974-10-08 | Rubber modified high nitrile polymers and polymer blends produced thereby |
JP49116012A JPS5818380B2 (ja) | 1973-10-09 | 1974-10-08 | ジユウゴウタイソセイブツ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US404527A US3900529A (en) | 1973-10-09 | 1973-10-09 | Rubber modified high nitrile polymers and polymer blends produced thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
US3900529A true US3900529A (en) | 1975-08-19 |
Family
ID=23599955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US404527A Expired - Lifetime US3900529A (en) | 1973-10-09 | 1973-10-09 | Rubber modified high nitrile polymers and polymer blends produced thereby |
Country Status (2)
Country | Link |
---|---|
US (1) | US3900529A (enrdf_load_stackoverflow) |
JP (1) | JPS5818380B2 (enrdf_load_stackoverflow) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4048274A (en) * | 1975-07-10 | 1977-09-13 | Monsanto Company | Process for refrigerator construction |
US4083896A (en) * | 1976-07-22 | 1978-04-11 | Monsanto Company | Transparent polyblends |
US4097555A (en) * | 1976-05-11 | 1978-06-27 | Monsanto Company | Transparent polymeric polyblend |
US4107237A (en) * | 1977-02-17 | 1978-08-15 | The Standard Oil Company | Rubber-modified acrylonitrile-styrene-indene interpolymers |
US4113798A (en) * | 1975-09-11 | 1978-09-12 | Monsanto Company | Transparent ABS polyblends |
US4154777A (en) * | 1976-08-27 | 1979-05-15 | Hitachi Chemical Company, Ltd. | Process for producing high impact and weather resistant graft copolymers |
US4393172A (en) * | 1980-02-23 | 1983-07-12 | Bayer Aktiengesellschaft | High-notched-impact core-shell polymers having improved weather resistance |
US4764563A (en) * | 1985-11-04 | 1988-08-16 | Borg-Warner Chemicals, Inc. | Clear impact modifier for PVC |
US5073447A (en) * | 1988-12-27 | 1991-12-17 | Idemitsu Petrochemical Co., Ltd. | Polypropylene-based resin composition |
US5382625A (en) * | 1984-12-22 | 1995-01-17 | Bayer Aktiengesellschaft | Thermoplastic moulding compositions with high notched impact strength |
EP0737899A4 (en) * | 1993-12-24 | 1997-07-23 | Kao Corp | ELECTROPHOTOGRAPHIC TONER AND AMPLIFIER THEREFOR |
US6451386B1 (en) * | 2000-08-30 | 2002-09-17 | Pti Advanced Filtration, Inc. | Modified polymer having improved properties and process for manufacturing same |
US20070078221A1 (en) * | 2005-08-30 | 2007-04-05 | Jeong-Su Choi | Thermoplastic resin composition and method for preparing the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4141935A (en) * | 1978-02-10 | 1979-02-27 | Rohm And Haas Company | Thermoplastic film having improved outdoor weatherability |
BR7808510A (pt) * | 1978-07-24 | 1980-05-20 | Monsanto Co | Composicao polimera |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3073798A (en) * | 1956-07-25 | 1963-01-15 | Monsanto Chemicals | Graft copolymers and polymer blends containing same |
US3288886A (en) * | 1963-01-25 | 1966-11-29 | Kanegafuchi Chemical Ind | Blend of vinyl chloride resin and graft copolymer prepared by consecutive polymerization of monomers onto butadiene polymer |
US3636138A (en) * | 1968-08-05 | 1972-01-18 | Monsanto Co | Process for impact modification of vinyl halide polymers and impact modifiers and vinyl halide blends produced therewith |
US3644584A (en) * | 1968-08-30 | 1972-02-22 | Du Pont | Graft copolymers bearing at least two unlike types of graft components |
US3671607A (en) * | 1969-10-14 | 1972-06-20 | Monsanto Co | Method for impact modification of ethylenically unsaturated nitrile polymers and polymer blends produced thereby |
US3763278A (en) * | 1970-08-10 | 1973-10-02 | Standard Oil Co | Olefinic nitrile styrene copolymerization process |
-
1973
- 1973-10-09 US US404527A patent/US3900529A/en not_active Expired - Lifetime
-
1974
- 1974-10-08 JP JP49116012A patent/JPS5818380B2/ja not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3073798A (en) * | 1956-07-25 | 1963-01-15 | Monsanto Chemicals | Graft copolymers and polymer blends containing same |
US3288886A (en) * | 1963-01-25 | 1966-11-29 | Kanegafuchi Chemical Ind | Blend of vinyl chloride resin and graft copolymer prepared by consecutive polymerization of monomers onto butadiene polymer |
US3636138A (en) * | 1968-08-05 | 1972-01-18 | Monsanto Co | Process for impact modification of vinyl halide polymers and impact modifiers and vinyl halide blends produced therewith |
US3644584A (en) * | 1968-08-30 | 1972-02-22 | Du Pont | Graft copolymers bearing at least two unlike types of graft components |
US3671607A (en) * | 1969-10-14 | 1972-06-20 | Monsanto Co | Method for impact modification of ethylenically unsaturated nitrile polymers and polymer blends produced thereby |
US3763278A (en) * | 1970-08-10 | 1973-10-02 | Standard Oil Co | Olefinic nitrile styrene copolymerization process |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4048274A (en) * | 1975-07-10 | 1977-09-13 | Monsanto Company | Process for refrigerator construction |
US4113798A (en) * | 1975-09-11 | 1978-09-12 | Monsanto Company | Transparent ABS polyblends |
US4097555A (en) * | 1976-05-11 | 1978-06-27 | Monsanto Company | Transparent polymeric polyblend |
US4083896A (en) * | 1976-07-22 | 1978-04-11 | Monsanto Company | Transparent polyblends |
US4154777A (en) * | 1976-08-27 | 1979-05-15 | Hitachi Chemical Company, Ltd. | Process for producing high impact and weather resistant graft copolymers |
US4107237A (en) * | 1977-02-17 | 1978-08-15 | The Standard Oil Company | Rubber-modified acrylonitrile-styrene-indene interpolymers |
US4393172A (en) * | 1980-02-23 | 1983-07-12 | Bayer Aktiengesellschaft | High-notched-impact core-shell polymers having improved weather resistance |
US5382625A (en) * | 1984-12-22 | 1995-01-17 | Bayer Aktiengesellschaft | Thermoplastic moulding compositions with high notched impact strength |
US4764563A (en) * | 1985-11-04 | 1988-08-16 | Borg-Warner Chemicals, Inc. | Clear impact modifier for PVC |
US5073447A (en) * | 1988-12-27 | 1991-12-17 | Idemitsu Petrochemical Co., Ltd. | Polypropylene-based resin composition |
EP0737899A4 (en) * | 1993-12-24 | 1997-07-23 | Kao Corp | ELECTROPHOTOGRAPHIC TONER AND AMPLIFIER THEREFOR |
US5714294A (en) * | 1993-12-24 | 1998-02-03 | Kao Corporation | Toner for electrophotography and reinforcing agent for said toner |
US6451386B1 (en) * | 2000-08-30 | 2002-09-17 | Pti Advanced Filtration, Inc. | Modified polymer having improved properties and process for manufacturing same |
US20070078221A1 (en) * | 2005-08-30 | 2007-04-05 | Jeong-Su Choi | Thermoplastic resin composition and method for preparing the same |
Also Published As
Publication number | Publication date |
---|---|
JPS5818380B2 (ja) | 1983-04-12 |
JPS5066589A (enrdf_load_stackoverflow) | 1975-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3671607A (en) | Method for impact modification of ethylenically unsaturated nitrile polymers and polymer blends produced thereby | |
US4393172A (en) | High-notched-impact core-shell polymers having improved weather resistance | |
US3833686A (en) | Sequentially produced alkyl acrylate polymers blended with poly(vinyl halides) | |
US3900529A (en) | Rubber modified high nitrile polymers and polymer blends produced thereby | |
US3509238A (en) | Abs graft polyblends containing two graft polymers with different degrees of grafting | |
US3991136A (en) | Method of producing ABS polyblends having a low residual monomer content | |
US3959895A (en) | Polyvinyl chloride polyblend molding | |
US4085166A (en) | Impact resistant acrylic polymer composition | |
US4510287A (en) | ABS Compositions and process for preparing same | |
US3636138A (en) | Process for impact modification of vinyl halide polymers and impact modifiers and vinyl halide blends produced therewith | |
US5268430A (en) | Methacrylate-butadiene-styrene graft polymer and its PVC blends having low yellowness, good clarity, and improved impact strength | |
KR940003859B1 (ko) | Pvc용의 투명한 내충격성 개량제 | |
US3900528A (en) | Process for impact modification of high nitrile polymers | |
CA1041245A (en) | Rubber modified high nitrile polymers and polymer blends produced thereby | |
US3985693A (en) | Polyvinyl chloride polyblend molding composition | |
US5382625A (en) | Thermoplastic moulding compositions with high notched impact strength | |
US4083896A (en) | Transparent polyblends | |
US4228256A (en) | Transparent blends of resinous copolymers and grafted elastomers | |
US4902745A (en) | Rubber-like thermoplastic polymer mixtures | |
US4778850A (en) | Thermoplastic moulding materials made from vinyl chloride polymers and graft polymers and having improved properties | |
US4113798A (en) | Transparent ABS polyblends | |
US4859744A (en) | Process for the production of graft polymers of high rubber content | |
US4230832A (en) | Process for preparing resistant vinyl halide polymers | |
US3627840A (en) | Process for making impact resistant blends and polymer blends produced thereby | |
US4559386A (en) | ABS compositions and process for preparing same |