US3899401A - Electrochemical production of pinacols - Google Patents

Electrochemical production of pinacols Download PDF

Info

Publication number
US3899401A
US3899401A US498447A US49844774A US3899401A US 3899401 A US3899401 A US 3899401A US 498447 A US498447 A US 498447A US 49844774 A US49844774 A US 49844774A US 3899401 A US3899401 A US 3899401A
Authority
US
United States
Prior art keywords
weight
pinacol
electrolysis
acetone
pinacols
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US498447A
Other languages
English (en)
Inventor
Heinz Nohe
Fritz Beck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Application granted granted Critical
Publication of US3899401A publication Critical patent/US3899401A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions
    • C25B3/295Coupling reactions hydrodimerisation

Definitions

  • ABSTRACT Pinacols are prepared by electrolytic hydrodimerization of carbonyl compounds in non-compartmented cells using a mixture of from 5 to 75% by weight of the carbonyl compound, from 5 to 90% by weight of the alcohol corresponding to the carbonyl compound, from 0.1 to 3% by :weight of a quaternary ammonium salt and from 0 to 30% by weight of water.
  • the invention is concerned with a new and particu larly advantageous process for the electrochemical manufacture of pinacols.
  • organic carbonyl compounds especially aldehydes and ketones
  • pinacols that is to say to derivatives of the alkylene glycol
  • pinacols from aromatic or aromatic/aliphatic carbonyl compounds gives high yields, whilst only moderate to poor yields of the pinacol are to be expected with purely aliphatic compounds.
  • This situation is related to the stability of the radical intermediates.
  • pinacol tetramethylethylene glycol
  • This compound is converted into pinacolene or into 2,3- dimethylbutadiene by acid-catalyzed elimination of one or two molecules of water, respectively.
  • pinacol One process for the manufacture of pinacol consists, for example, in reacting acetone with amalgams of aluminum, magnesium or sodium. This process is still being used to manufacture pinacol on a small scale. The process produces a great deal of isopropanol as a by-product and the degree of utilization of .the metal is relatively low, so that the resulting costs are high. Furthermore, the salts produced are an objectionable ballast. While the lastmentioned disadvantage is avoided in direct electro-reduction on lead, lead-copper alloy or lead-tin alloy cathodes in electrolytes containing sulfuric acid or in alkaline electrolytes, this process has not found industrial acceptance, because it suffers from various disadvantages.
  • pinacols of the formula II in which R is hydrogen or a hydrocarbon radical of one to 'sixcarbon atoms and R is a hydrocarbon radical of one to six carbon atoms are manufactured by electrolytic hydrodimerization of carbonyl compounds of the formula I in non-compartmented cells, using for the electrolysis a mixture which contains from 5 to by weight of the carbonyl compound, from 5 to 90% by weight of the alcohol corresponding to the carbonyl compound, of the formula from 0.1 to 3% by weight of a quaternary ammonium salt and from O to 30% by weight of water.
  • the hydrocarbon radicals can be straight-chain or branched radicals and can be saturated or unsaturated. Methyl, ethyl, propyl, butyl, isopropyl, isobutyl, hexyl and cyclohexyl may be mentioned as examples of hydrocarbon radicals.
  • Suitable carbonyl compounds are acetone, acetaldehyde, methyl ethyl ketone, diethyl ketone, methyl isopropyl ketone and methyl cyclohexyl ketone.
  • acetone and of the corresponding alcohol isopropanol is of particulr interest in industry.
  • the mixture to be subjected to electrolysis contains from 5 to 75% by weight, preferably from 10 to 40% by weight, of the above carbonyl compound. It also contains from 5 to 90% by weight, preferably from 20 to by weight, of the alcohol corresponding to the carbonyl compound.
  • Suitable quaternary ammonium salts are, for example, compounds of the formula in which the radicals R are alkyl, such as alkyl of one to six carbon atoms, for example methyl, ethyl, npropyl, i-propyl or n-butyl, aryl, such as phenyl, or am]- kyl, such as benzyl, and X is an anion, for example a sulfate, alkylsulfate, phosphate, carbonate, arylsulfonate such as tosylate, tetrafluoroborate, hexafluosilicate or perchlorate anion.
  • Particularly suitable conducting salts of this type are tetraethylammonium ethyl-sulfate, tetraethyl- 3 ammonium sulfate and tetrabutylammonium tetrafluoborate.
  • concentration of these salts should be kept as low as possible to simplify the isolation of the pinacol and avoid its anoidic degradation.
  • the electrode spacing in these cells in suitably from 0.1 to 1.0 mm, preferably from 0.2 to 0.5 mm.
  • cathode material any metal of medium or high hydrogen overvoltage, that is to say Cu, Ag, Cd, Zn, Sn, Pb, Tl and Hg, as the pure metals or in the form of their alloys.
  • particularly advantageous cathode materials are graphite, carbon and graphite-filled plastics. Examples which may be mentioned are the commercially available electrode carbons of type LEK or EXN as supplied by Conradty, Nuremberg, West Germany, or of type DIABON N, BS 70 or P 127 from Sigri, Meitingen, West Germany or BASCODUR from Raschig, Ludwigshafen, West Germany.
  • the carbon cathodes should preferably be cleaned carefully before the electrolysis, for example by rinsing them with concentrated hydrochloric acid and/or by brushing them with pure quartz powder.
  • the carbon electrodes which are usually porous, should preferably be stored in distilled water.
  • the current efficiency can be increased by depositing a very thin layer, namely from 1 to 1,000 atom layers, preferably from 30 to 100 atom layers, of certain metals, such as Hg, Pb, Cu, Ag or Au, individually or as mixtures, on the cathode prior to the electrolysis.
  • the electrodes in the readyassembled cell, are dipped into a dilute acidified aqueous solution of the corresponding metal salt such as Pb(NO HgSO CuSO AgNO or AuCl and the metal is deposited at current densities of from 0.1 to l A/dm for the calculated period of time, whilst circulating the solution.
  • the metals are more probably distributed over the surface as islands at selected points than as a coherent layer.
  • a suitable anode material is above all lead dioxide, preferably as a composite electrode on base surfaces of graphite, carbon, lead titanium or tantalum.
  • Other oxide anodes such as Fe O MnO T1 or RuO (on Ti) can also be employed, as can gold, graphite, carbon and the platinum metals.
  • the use of graphite anodes is particularly advantageous. Since graphite cathodes are also preferred, the bipolar electrodes are thus conveniently simple discs or plates of graphite, carbon or graphite-filled plastics.
  • metals which can be passivated such as Fe, Co, Ni or chrome nickel steel, as the anode material in the process according to the invention.
  • a preferred bipolar electrode consists of graphite plates or carbon plates which have optionally been coated with lead dioxide (100 to 500 p.) on the anode side, or to which thin foils of, for example, Ti or Ni have been glued by means of a graphite-filled adhesive.
  • the current density used in the process according to the invention is not critical and is, for example, from 0.1 to 100 A/dm preferably from 5 to 25 A/dm".
  • the temperature is suitably maintained at from 0to 50C. Whilst low temperatures increase the current yield, they entail technical complications. For this reason, temperatures of from 20to 35C are preferably used.
  • the pH proves to have little influence and can be selected to be from 1 to 14. If the pH is not regulated externally, it assumes a value of from 2 to 4 during the electrolysis.
  • Movement of the bath is advantageous, and is essential when using a capillary gap cell.
  • Good convection is achieved by circulating the electrolyte by means of a pump.
  • the rate of flow parallel to the electrodes is preferably set to values of from 1 to 30 cm per second.
  • the process according to the invention can be carried out batchwise or continuously.
  • the reaction mixture is circulated continuously through the cell (and, preferably, through a heat exchanger).
  • the process of the invention is carried out in a noncompartmented cell.
  • the preferred anode process is the dehydrogenation of the alcohol, for example in accordance with the equation
  • a part of the ketone which is converted at the cathode is produced from the alcohol at the anode.
  • a part of the ketone to be converted is introduced in the form of the corresponding alcohol in the process according to the invention.
  • the acetone is consumed at the cathode, is a single-electron reaction, more rapidly than it can be replaced from the isopropanol, at the anode, in a twoelectron reaction.
  • the process according to the invention has yet other advantages over the known processes.
  • the production of salts which is unavoidable when the acids are neutralized, does not arise.
  • the low concentration of the ammonium salts in the mixture there is no solubilizing effect of the pinacol. Since the solutions contain relatively little water, only little energy is required to concentrate the material issuing from the electrolysis.
  • the cell used is a capillary gap cell consisting of a stack of circular horizontal plates of DIABON N (Messrs. Sigri) electrode carbon, the discs being of l 17 mm diameter and mm thickness.
  • the plates are wired bipolar in series.
  • the anode side of the plates is provided with a 300 ,0. thick layer of PbO anodically deposited from lead nitrate solution.
  • the interior of the stack of plates bears a 30 mm hole, so that the effective electrode surface is 1 dm A spacing of 0.25 mm is maintained between the plates by radially applied polyester strips.
  • the stack of plates is suspended from the cover of the cell.
  • the current is supplied at the ends of the bipolar stack of plates, via an insulated middle axial in the case of the bottom end, or directly in the case of the upper end.
  • the reaction solution is pumped through a union on the cover of the cell into the center of the stack of plates, flows radially outward through the capillary gaps and is returned into the center of the stack of plates via a heat exchanger.
  • the cell which is further provided with a thermometer, a glass electrode and an off-gas pipeline, is described German laid-open sae'e'ifieauon No. 1,804,809.
  • the liquid After termination of the electrolysis, the liquid is colorless.
  • the acetone with NH OH.HC1
  • the pH to 7.0 by adding 4.3 ml of 1 N NaOH solution
  • the acetone and the isopropanol are stripped off in a rotary evaporator at 40C under 100 mm Hg.
  • a further 50 g of water are added to the residue and the mixture is cooled to 0C.
  • pinacol hydrate crystallizes out and is filtered off quickly and rinsed with a little ice water. 98.5 g of a pure white crystalline product containing 53% of pinacol, and thus having a composition close to that of pinacol hexahydrate, are obtained.
  • pinacol can be extracted from the mother liquor by means of ether. Accordingly, the total pinacol yield is 52.2 2.5 54.7 g. This corresponds to a current efficiency of 20.3%. Assuming anodic dehydrogenation of isopropanol with 100% current efficiency, a current efficiency of 70.4% for its cathodic formation can be calculated from the acetone balance. 6.6 g of 2-methy1- pentane-2,4-diol were isolated as a high-boiling byproduct from the above ether extract. The subsidiary yield of isopropanol had no nett effect in the process according to the invention. The pinacol hexahydrate isolated as the main fraction melts at 44C (literature value: 454C).
  • EXAMPLE 2 The electrosynthesis described in Example 1 was repeated, varying the acetone 1 isopropanol ratio and in some cases also varying the water content in the batches.
  • the table which follows lists the concentrations of the components, the amounts of current, the current efficiencies based on pinacol, designated CE, and the cell potentials (for six electrode pairs), designated U.
  • the results show that optimum current efficiencies based on pinacol are obtained at low acetone concentrations and high isopropanol concentrations.
  • the current density of 10 A/dm the temperature of 20C, and the conducting salt concentration of 0.5% of tetraethylammonium ethyl-sulfate NEt .EtSO.,) were kept constant.
  • EXAMPLE 4 The influence of dioxane as a co-solvent was examined in more detail in the series of experiments which follows.
  • the solutions contained 40% of acetone, 2.5% of water, 1% of NEt .EtSO and the amounts of dioxan listed in the table which follows, the remainder consisting of isopropanol.
  • the penultimate column compares the initial potential with the final potential.
  • the experiments showed a slight tendency for the potential to rise, and indicated the formation of small amounts of an acid by-product, but no covering layers were detectable on the electrodes at the end of the experiment. 138.7 ampere hours were used per kg of batch, corresponding to a theoretical conversion of 60%.
  • the current density, temperature and other conditions of electrolysis were the same as in Example 1.
  • Hg was deposited from a solution of 100 g of HgSO and g of H per liter at 0.5 A/dm", whilst circulating the solution. This required a deposition time of 6 seconds for atom layers of Hg, if it is assumed that one atom layer contains 10 atoms per cm
  • the lead was deposited from an acid lead tetrafluoborate bath, using the same current density.
  • EXAMPLE 7 1 kg of a reaction mixture composed of 50% of methyl ethyl ketone, 39.5% of sec. butanol, 10% of water and 0.5% of l ⁇ lEt.,.SO was introduced into the capillary gap cell described in EXample l, but consisting of four electrode pairs.
  • the DlABON-N cathodes were coated with 100 atom layers of mercury as in Example 5 prior to the experiment.
  • the electrolysis was carried out at A/dm and C until an amount of current of 111.8 ampere hours had been passed through, corresponding to a theoretical conversion of 60%. Accordingly, the electrolysis time was 2.8 hours. During the electrolysis, the cell potential rose from 50.5 to 55 volt.
  • the pH at the end of the electrolysis was 5.0.
  • the low-boiling constituents of the electrolyte were distilled off under reduced pressure. 77.2 g of a brown crude product were left; this was examined directly by gas chromatography..lt contained 12.3% 9.5g of pinacol (1,2-dimethyl-l ,2- diethyl glycol), corresponding to a current efficiency of 3.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US498447A 1973-08-25 1974-08-19 Electrochemical production of pinacols Expired - Lifetime US3899401A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2343054A DE2343054C2 (de) 1973-08-25 1973-08-25 Verfahren zur elektrochemischen Herstellung von Pinacolen

Publications (1)

Publication Number Publication Date
US3899401A true US3899401A (en) 1975-08-12

Family

ID=5890758

Family Applications (1)

Application Number Title Priority Date Filing Date
US498447A Expired - Lifetime US3899401A (en) 1973-08-25 1974-08-19 Electrochemical production of pinacols

Country Status (8)

Country Link
US (1) US3899401A (en))
JP (1) JPS5052010A (en))
BE (1) BE819123A (en))
DE (1) DE2343054C2 (en))
FR (1) FR2241631B3 (en))
NL (1) NL7411282A (en))
NO (1) NO742803L (en))
SE (1) SE7410641L (en))

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984294A (en) * 1974-08-28 1976-10-05 Basf Aktiengesellschaft Electrochemical manufacture of pinacol
US3992269A (en) * 1975-11-03 1976-11-16 Diamond Shamrock Corporation Production of pinacols in a membrane cell
US4087336A (en) * 1976-12-27 1978-05-02 Monsanto Company Electrolytic reductive coupling of hydroxybenzaldehydes
US4133729A (en) * 1977-12-19 1979-01-09 Monsanto Company Production of 1,2-bis(hydroxy-phenyl)ethane-1,2-diols by electrolytic reduction
FR2457911A1 (fr) * 1979-06-01 1980-12-26 Toyo Soda Mfg Co Ltd Procede de production de glycol a partir de formaldehyde par electrolyse
US4478694A (en) * 1983-10-11 1984-10-23 Ska Associates Methods for the electrosynthesis of polyols
US4931155A (en) * 1989-05-19 1990-06-05 Southwestern Analytical Chemicals, Inc. Electrolytic reductive coupling of quaternary ammonium compounds
US20090266716A1 (en) * 2004-08-11 2009-10-29 Patrissi Charles J Method of fabricating a bipolar electrode for use in a semi fuel cell
US20110114501A1 (en) * 2010-03-19 2011-05-19 Kyle Teamey Purification of carbon dioxide from a mixture of gases
US20110114504A1 (en) * 2010-03-19 2011-05-19 Narayanappa Sivasankar Electrochemical production of synthesis gas from carbon dioxide
US20110114502A1 (en) * 2009-12-21 2011-05-19 Emily Barton Cole Reducing carbon dioxide to products
US20110114503A1 (en) * 2010-07-29 2011-05-19 Liquid Light, Inc. ELECTROCHEMICAL PRODUCTION OF UREA FROM NOx AND CARBON DIOXIDE
US20110226632A1 (en) * 2010-03-19 2011-09-22 Emily Barton Cole Heterocycle catalyzed electrochemical process
US8313634B2 (en) 2009-01-29 2012-11-20 Princeton University Conversion of carbon dioxide to organic products
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US8592633B2 (en) 2010-07-29 2013-11-26 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
US8658016B2 (en) 2011-07-06 2014-02-25 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
CN114108014A (zh) * 2020-08-28 2022-03-01 天津大学 一种水中活性氢介导的羰基化合物选择性电还原偶联合成频哪醇的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858777B2 (en) 2012-07-26 2014-10-14 Liquid Light, Inc. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US8845876B2 (en) 2012-07-26 2014-09-30 Liquid Light, Inc. Electrochemical co-production of products with carbon-based reactant feed to anode
US10329676B2 (en) 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422468A (en) * 1942-07-04 1947-06-17 Standard Oil Dev Co Electrolytic production of pinacols
US3497430A (en) * 1966-09-14 1970-02-24 Continental Oil Co Electrochemical reduction of ketones to pinacols
US3511765A (en) * 1965-07-09 1970-05-12 Basf Ag Carrying out electrochemical reactions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422468A (en) * 1942-07-04 1947-06-17 Standard Oil Dev Co Electrolytic production of pinacols
US3511765A (en) * 1965-07-09 1970-05-12 Basf Ag Carrying out electrochemical reactions
US3497430A (en) * 1966-09-14 1970-02-24 Continental Oil Co Electrochemical reduction of ketones to pinacols

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984294A (en) * 1974-08-28 1976-10-05 Basf Aktiengesellschaft Electrochemical manufacture of pinacol
US3992269A (en) * 1975-11-03 1976-11-16 Diamond Shamrock Corporation Production of pinacols in a membrane cell
US4087336A (en) * 1976-12-27 1978-05-02 Monsanto Company Electrolytic reductive coupling of hydroxybenzaldehydes
US4133729A (en) * 1977-12-19 1979-01-09 Monsanto Company Production of 1,2-bis(hydroxy-phenyl)ethane-1,2-diols by electrolytic reduction
FR2457911A1 (fr) * 1979-06-01 1980-12-26 Toyo Soda Mfg Co Ltd Procede de production de glycol a partir de formaldehyde par electrolyse
US4270992A (en) * 1979-06-01 1981-06-02 Toyo Soda Manufacturing Co., Ltd. Process for producing glycol
US4478694A (en) * 1983-10-11 1984-10-23 Ska Associates Methods for the electrosynthesis of polyols
EP0139197A1 (en) * 1983-10-11 1985-05-02 Norman Louis Weinberg Improved methods for the electrosynthesis of polyols
US4931155A (en) * 1989-05-19 1990-06-05 Southwestern Analytical Chemicals, Inc. Electrolytic reductive coupling of quaternary ammonium compounds
US9340889B2 (en) * 2004-08-11 2016-05-17 The United States Of America As Represented By The Secretary Of The Navy Method of fabricating a bipolar electrode for use in a semi fuel cell
US20090266716A1 (en) * 2004-08-11 2009-10-29 Patrissi Charles J Method of fabricating a bipolar electrode for use in a semi fuel cell
US8313634B2 (en) 2009-01-29 2012-11-20 Princeton University Conversion of carbon dioxide to organic products
US8663447B2 (en) 2009-01-29 2014-03-04 Princeton University Conversion of carbon dioxide to organic products
US8986533B2 (en) 2009-01-29 2015-03-24 Princeton University Conversion of carbon dioxide to organic products
US20110114502A1 (en) * 2009-12-21 2011-05-19 Emily Barton Cole Reducing carbon dioxide to products
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US20110114501A1 (en) * 2010-03-19 2011-05-19 Kyle Teamey Purification of carbon dioxide from a mixture of gases
US9970117B2 (en) * 2010-03-19 2018-05-15 Princeton University Heterocycle catalyzed electrochemical process
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US9222179B2 (en) 2010-03-19 2015-12-29 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US20110226632A1 (en) * 2010-03-19 2011-09-22 Emily Barton Cole Heterocycle catalyzed electrochemical process
US10119196B2 (en) 2010-03-19 2018-11-06 Avantium Knowledge Centre B.V. Electrochemical production of synthesis gas from carbon dioxide
US20150047987A1 (en) * 2010-03-19 2015-02-19 Liquid Light, Inc. Heterocycle Catalyzed Electrochemical Process
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US20110114504A1 (en) * 2010-03-19 2011-05-19 Narayanappa Sivasankar Electrochemical production of synthesis gas from carbon dioxide
AU2011282771B2 (en) * 2010-07-29 2015-03-12 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
CN103328691A (zh) * 2010-07-29 2013-09-25 液体光有限公司 杂环催化电化学过程
US20110114503A1 (en) * 2010-07-29 2011-05-19 Liquid Light, Inc. ELECTROCHEMICAL PRODUCTION OF UREA FROM NOx AND CARBON DIOXIDE
US8592633B2 (en) 2010-07-29 2013-11-26 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
WO2012015909A3 (en) * 2010-07-29 2013-08-08 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8524066B2 (en) 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9309599B2 (en) 2010-11-30 2016-04-12 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
US8658016B2 (en) 2011-07-06 2014-02-25 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
CN114108014A (zh) * 2020-08-28 2022-03-01 天津大学 一种水中活性氢介导的羰基化合物选择性电还原偶联合成频哪醇的方法
CN114108014B (zh) * 2020-08-28 2023-08-11 天津大学 一种水中活性氢介导的羰基化合物选择性电还原偶联合成频哪醇的方法

Also Published As

Publication number Publication date
NO742803L (en)) 1975-03-24
SE7410641L (en)) 1975-02-26
BE819123A (fr) 1975-02-24
FR2241631B3 (en)) 1977-06-17
DE2343054C2 (de) 1975-10-09
JPS5052010A (en)) 1975-05-09
DE2343054B1 (de) 1975-02-06
FR2241631A1 (en)) 1975-03-21
NL7411282A (nl) 1975-02-27

Similar Documents

Publication Publication Date Title
US3899401A (en) Electrochemical production of pinacols
US3764492A (en) Electrolytic preparation of esters from organo halides
US3347758A (en) Electrochemical preparation of aromatic esters
US4253921A (en) Electrochemical synthesis of butane-1,4-diol
EP0032427B1 (en) Preparation of hydroxy compounds by electrochemical reduction
US3193481A (en) Electrolytic hydrodimerization alpha, beta-olefinic nitriles
US3193479A (en) Electrolytic coupling of an olefinic compound with a ketone
US4411746A (en) Preparation of alkyl-substituted benzaldehydes
US4235683A (en) Electrolytic preparation of benzaldehydes
US3984294A (en) Electrochemical manufacture of pinacol
US3252877A (en) Electrochemical preparation of acyloxy derivatives of condensed ring aromatic compounds
US3193483A (en) Electrolysis of acrylamides
CN100585012C (zh) 制备2-炔-1-缩醛的方法
US3630861A (en) Electrolytic hydrodimerisation process
US3413202A (en) Electrolysis of di-olefinic compounds
US3193475A (en) Coupling cyclic olefins by electrolysis
US3390066A (en) Electrolytic hydrodimerization of certain allyl compounds
US3193482A (en) Electrolysis of alpha, beta mono-olefinic carboxylates
US3879271A (en) Production of diesters of dicarboxylic acids by electrochemical condensation of monoesters of dicarboxylic acids
US3994788A (en) Electrochemical oxidation of phenol
US3274084A (en) Electrolytic reductive coupling process
US4157286A (en) Production of 1,2-bis(hydroxyphenyl)ethane-1,2-diols by electrolytic reduction
US3556961A (en) Electrolytic hydrodimerisation
EP0095206B1 (en) Process for the synthesis of 2,4,6-trimethyl-4-hydroxycyclohexa-2,5-dien-1-one
DE2345461C3 (de) Verfahren zur Herstellung von Pinacol durch elektrolytische Hydrodimerisierung von Aceton