US3898083A - High sensitivity visible infrared photoconductor - Google Patents
High sensitivity visible infrared photoconductor Download PDFInfo
- Publication number
- US3898083A US3898083A US321164A US32116473A US3898083A US 3898083 A US3898083 A US 3898083A US 321164 A US321164 A US 321164A US 32116473 A US32116473 A US 32116473A US 3898083 A US3898083 A US 3898083A
- Authority
- US
- United States
- Prior art keywords
- atomic percent
- selenium
- bismuth
- iodine
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000035945 sensitivity Effects 0.000 title description 8
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 20
- 239000011630 iodine Substances 0.000 claims abstract description 20
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910001370 Se alloy Inorganic materials 0.000 claims abstract description 7
- 229910001152 Bi alloy Inorganic materials 0.000 claims abstract description 5
- 239000000956 alloy Substances 0.000 claims description 31
- 239000011669 selenium Substances 0.000 claims description 31
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 30
- 229910045601 alloy Inorganic materials 0.000 claims description 30
- 229910052711 selenium Inorganic materials 0.000 claims description 29
- 229910052797 bismuth Inorganic materials 0.000 claims description 19
- BSYQSAUDILOWEX-UHFFFAOYSA-N [I].[Bi].[Se] Chemical compound [I].[Bi].[Se] BSYQSAUDILOWEX-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 238000003384 imaging method Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 7
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 claims description 6
- 108091008695 photoreceptors Proteins 0.000 claims description 5
- 239000011149 active material Substances 0.000 claims description 3
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 claims description 3
- 239000011368 organic material Substances 0.000 claims description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 47
- 235000011649 selenium Nutrition 0.000 description 24
- 229940091258 selenium supplement Drugs 0.000 description 24
- 239000000758 substrate Substances 0.000 description 19
- 230000004044 response Effects 0.000 description 8
- 229910052785 arsenic Inorganic materials 0.000 description 6
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 239000003708 ampul Substances 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910000713 I alloy Inorganic materials 0.000 description 2
- QLNFINLXAKOTJB-UHFFFAOYSA-N [As].[Se] Chemical compound [As].[Se] QLNFINLXAKOTJB-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000002140 antimony alloy Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/043—Photoconductive layers characterised by having two or more layers or characterised by their composite structure
- G03G5/0436—Photoconductive layers characterised by having two or more layers or characterised by their composite structure combining organic and inorganic layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08207—Selenium-based
Definitions
- This invention relates to xerography and more specifically to a system utilizing an improved photosensitive member and composition.
- an electrostatic latent image on a member or plate which comprises an electrically conductive backing member having a photoconductive insulating surface thereon.
- a member or plate which comprises an electrically conductive backing member having a photoconductive insulating surface thereon.
- One example of such a member comprises a layer of vitreous selenium contained on a conductive substrate.
- This imaging member is characterized by being capable of receiving satisfactory electrostatic charge and selectively dissipating the charge when exposed to a light pattern, and in general is largely sensitive to light in the blue-green spectral range.
- the electrostatic charge pattern formed by the selective dissipation of charge may be converted into a visible image by developing with electroscopic material called toner.
- vitreous selenium in xerography has had wide acceptance because of its capability of holding an electrostatic charge for long periods of time when not exposed to light, and because of its relative sensitivity to light when compared to other photoconductive materials.
- vitreous selenium has sufficient strength and stability to be reused hundreds or even thousands of times.
- the foregoing objects and others are accomplished in accordance with this invention by providing a novel photosensitive vitreous or amorphous ternary alloy comprising selenium, bismuth and iodine.
- the novel alloy of the instant invention has been found to exhibit a panchromatic response which is significantly higher than that of other photoconductors such as selenium or selenium containing arsenic in amounts up to about 40 atomic percent.
- the higher sensitivity of the photosensitive alloy of the present invention is especially evident for light whose wavelength is greater than about 600 nanometers (6,000 Angstrom Units).
- the vitreous alloy of selenium, bismuth and iodine in concentrations of about 90 to 97 atomic percent selenium, about 1 to atomic percent bismuth, and about 2 to 5 atomic percent iodine yields the desired advantages enumerated above.
- higher concentrations of bismuth and iodine tend to lead to crystallization of the alloy layer, making it unsuitable for use in xerography.
- FIGS. 1a, lb, 1c and 1d illustrate various structural embodiments which may employ the alloy composition of the present invention.
- FIG. 2 graphically illustrates the sensitivity of various alloy compositions of the present invention compared to two photoconductive materials of the prior art.
- the selenium-bismuth-iodine alloys of the present invention may be prepared by any suitable technique. Typical techniques include vacuum evaporation in which either coevaporation or flash evaporation methods are employed.
- the appropriate amount of the selenium, bismuth and iodine are placed separately in heated crucibles and maintained in the vacuum chamber under suitable vacuum conditions such as from about 10' to 10' Torr.
- the crucibles may comprise any inert material such as quartz, metal or ceramic lined metal.
- the components to be evaporated are each maintained at a temperature between about their respective melting points and well below their boiling points. Evaporation is carried out for a time sufficient to form a layer of desired thickness. In general, a film thickness of about 10 to 40 microns is obtained where evaporation is continued for a time ranging from about 1 to 3 hours at a vacuum of about 5 X l0" Torr.
- the substrate to be coated is supported above the heated crucibles and maintained at a slightly elevated temperature in the vicinity of 50 to C.
- cylindrical substrates such as an aluminum drum is used, it is generally rotated above the evaporation source during the coating step.
- a preferred method of forming the photoconductive layer comprises flash evaporation under vacuum conditions similar to those defined for co-evaporation.
- a master alloy of the desired composition having a partical size less than about 0.5 millimeters in diameter is selectively dropped into a heated crucible maintained at a temperature of about 600C to 800C.
- the vapors formed from the heated mixture are evaporated upward onto a substrate supported above the crucible. This procedure is continued until the desired thickness of the vitreous selenium-bismuth-antimony alloy has been formed on the substrate.
- the alloys of this invention may be conveniently formed on any conductive or insulating substrate.
- the substrate may comprise a metal plate or cylinder such as brass, aluminum, platinum, stainless steel or the like.
- the substrate may be in any convenient thickness, rigid or flexible in the form of a sheet, web, cylinder, or the like, and may be coated with a thin layer of plastic. It may also comprise such materials such as metalized paper, a plastic sheet covered with a thin coating of aluminum or copper iodide, or glass coated with a thin layer of tin oxide or chromium.
- a thin barrier layer is normally formed between the photoconductive layer and the substrate.
- This'barrier layer may comprise a thin oxide or organic coating, which is formed on the substrate before depositing the photoconductive layer.
- the substrate may even be dispensed with, if desired, following the formation of the photoconductive layer.
- the thickness of the selenium-bismuth-iodine alloy is not particularly critical.
- the layer can be as thin as about 1 micron or less, or as thick as about 300 microns or more, but for most applications, the thickness will generally be between about to 80 microns when the layer is used alone on a supporting substrate.
- One embodiment of the present invention comprises using the selenium-bismuth-iodine alloy in a single layered configuration.
- Imaging member 10, of FIG. la illustrates this configuration in which a supporting substrate 11 contains a selenium-bismuth-iodine layer 12.
- an imaging member (FIG. lb) comprises a supporting substrate 21, having a relatively thick photoconductive layer 22, such as selenium or selenium-arsenic, overcoated with a relatively thin layer 23 of the selenium-bismuth-iodine photoconductive alloy of the present invention.
- a relatively thick photoconductive layer 22 such as selenium or selenium-arsenic
- a relatively thin layer 23 of the selenium-bismuth-iodine photoconductive alloy of the present invention During imaging in the xerographic mode, imaging light is absorbed in the top layer 23, and positive charges or holes are transported through the lower photoconductor layer.
- an im' aging member 30 comprises a supporting substrate 31, a thin layer of the selenium-bismuth-iodine photoconductor 32 over the substrate, and a top layer of the electrically active material such as polyvinyl carbazole or polyvinyl pyrene.
- This member may be imaged with light to which the active layer is transparent and to which the photoconductor layer is absorbing.
- the thickness of the active layer is usually considerably thicker than the photoconductor layer.
- a preferred thickness range which gives optimum electrical characteristics comprises a range of about 10 to 20 microns for the active layer, and about 0.03 to 1 microns for the selenium-bismuth-iodine pho toconductor alloy. This concept is more fully described in copending application, Ser. No. 94,139, filed Dec. 1, 1970.
- Another composite configuration contemplated by the present invention comprises an imaging member 40 (FIG. 1d) having a supporting substrate 41, with an electrically active layer 42 contained over the substrate.
- a thin layer of the selenium-bismuth-iodine photoconductive 43 is formed over layer 42.
- layer 42 may comprise an electrically insulating organic material. This structure is especially suitable for reflex-type imaging. A similar type of structure is more fully described in US. Pat. No. 3,573,906.
- the photoconductive alloy of the present invention may be ground into fine particles and dispersed in any suitable binder and used as a photoconductive binder layer.
- the binder may be photoconductive, electrically active, or electrically insulating.
- a selenium-bismuth-iodine photoconductive alloy comprising 94 atomic percent selenium, 3 atomic percent bismuth, and 3 atomic percent iodine, is formed by placing the appropriate amount of each element in a quartz ampoule and sealing the ampoule. The ampoule is then placed in a vacuum environment at a vacuum of 10 Torr and heated at 600C for about 12 hours.
- the alloy materials comprise selenium having 99.999 percent purity, available from the American Smelting and Refining Company, South Plainfield, NJ.
- the bismuth comprises 99.9999 percent purity available for Cominco American, Incorporated, in Washington.
- the iodine has a purity of 99.99 percent, Baker Analyzed Reagent Grade, available fro the J. P. Baker Chemical Company, Phillipsburg, NJ.
- the ampoule is quenched in water and the resultant vitreous alloy removed from the ampoule.
- the alloy is then crushed and sized to a particle size range of about 0.149 mm to 0.42 mm.
- EXAMPLE II A 10 micron film of the vitreous-selenium-bismuthiodine alloy formed by the method of Example I, is formed on a fiat 2 inch square aluminum substrate 'containing a thin aluminum oxide surface layer. Thirty grams of the alloy is placed in a hopper within a vacuum chamber and fed at a controlled rate into a heated quartz crucible which is maintained below the hopper.
- the same output voltage is differentiated by a Philbrick P45ALU operational amplifier and displayed on the second recorder channel.
- a monochrometer illuminates the sample surface through the transparent electrometer probe. This allows both dark and light discharge to be monitored continuously. If desired, the monochrometer can be replaced with another light source such as a fluorescent light.
- a Tungsten lamp filtered by a 380 nanometer interference filter set is used to discharge the remaining potential from the sample in preparation for the next test.
- the spectral response of the six alloys of the instant invention is compared to the control plates containing the layer of selenium and a second plate containing a layer of 60 selenium 40 arsenic (As Se). It can be seen from the data shown in FIG. 2, that the seleniumbismuth-iodine alloys of the instant invention exhibit a high photosensitivity for light whose wavelength is greater than about 600 nanometers. Further, the alloys of the instant invention exhibit a panchromatic response which is significantly higher than the selenium alone or the selenium-arsenic alloy.
- a photosensitive element which includes a photoconductive insulating layer, said layer comprising the vitreous alloy of selenium, bismuth and iodine comprising about 1 to 5 atomic percent bismuth, 2 to 5 atomic percent iodine, with the balance substantially selenium.
- composition comprises about 3 atomic percent bismuth, about 3 atomic percent iodine and about 94 atomic percent selenium.
- a photoreceptor member comprising an electrically conductive support member having a photoconductive insulating layer thereon, said photoconductive layer comprising a vitreous alloy of about to 97 atomic percent selenium, l to 5 atomic percent of bismuth and 2 to 5 atomic percent iodine.
- the member of claim 3 in which the photoconductor composition comprises about 94 atomic percent selenium, 3 atomic percent bismuth and 3 atomic percent iodine.
- a photoreceptor member which comprises:
- the active material comprises a material selected from the group consisting of polyvinyl carbazole and polyvinyl pyrene.
- a method of imaging comprising:
- a xerographic member which includes a photoconductive insulating layer having a composition comprising a vitreous alloy of selenium, bismuth and iodine in a concentration of about 1 to 5 atomic percent bismuth, 2 to 5 atomic percent iodine, with the balance substantially selenium;
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
- Light Receiving Elements (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US321164A US3898083A (en) | 1973-01-05 | 1973-01-05 | High sensitivity visible infrared photoconductor |
GB5882373A GB1447655A (en) | 1973-01-05 | 1973-12-19 | Extended spectral range photoconductor |
CA189,298A CA1017434A (en) | 1973-01-05 | 1974-01-02 | High sensitivity visible infrared photoconducted |
NL7400135A NL7400135A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1973-01-05 | 1974-01-04 | |
FR7400347A FR2213516B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1973-01-05 | 1974-01-04 | |
DE2400368A DE2400368C3 (de) | 1973-01-05 | 1974-01-04 | Elektrophotographisches Aufzeichnungsmaterial |
JP49005068A JPS5234354B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1973-01-05 | 1974-01-05 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US321164A US3898083A (en) | 1973-01-05 | 1973-01-05 | High sensitivity visible infrared photoconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
US3898083A true US3898083A (en) | 1975-08-05 |
Family
ID=23249467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US321164A Expired - Lifetime US3898083A (en) | 1973-01-05 | 1973-01-05 | High sensitivity visible infrared photoconductor |
Country Status (7)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4336558A (en) * | 1980-04-23 | 1982-06-22 | American Hoechst Corp. | Imaging system and method with reduced moire interference |
US4548886A (en) * | 1982-06-08 | 1985-10-22 | Canon Kabushiki Kaisha | Radiation sensitive organic thin film comprising an azulenium salt |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2937098A1 (de) * | 1979-09-13 | 1981-04-16 | Siemens AG, 1000 Berlin und 8000 München | Abbildungsflaeche fuer den elektrofotografischen oder xeroradiografischen umdruck und verfahren zur herstellung derselben |
DE3020938C2 (de) * | 1980-06-03 | 1983-02-24 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Elektrophotographisches Aufzeichnungsmaterial |
DE3020935C2 (de) * | 1980-06-03 | 1982-12-23 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Elektrophotographisches Aufzeichnungsmaterial |
JPS58166357A (ja) * | 1982-03-29 | 1983-10-01 | Comput Basic Mach Technol Res Assoc | 電子写真用感光体の製造方法 |
JPS58221847A (ja) * | 1982-06-18 | 1983-12-23 | Comput Basic Mach Technol Res Assoc | 電子写真用感光体 |
KR102465004B1 (ko) | 2015-08-13 | 2022-11-09 | 리텔퓨즈 세미컨덕터 (우시) 씨오., 엘티디. | 과전압 보호 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2862815A (en) * | 1953-10-01 | 1958-12-02 | Rca Corp | Electrophotographic member |
US2962376A (en) * | 1958-05-14 | 1960-11-29 | Haloid Xerox Inc | Xerographic member |
US3041166A (en) * | 1958-02-12 | 1962-06-26 | Xerox Corp | Xerographic plate and method |
US3312548A (en) * | 1963-07-08 | 1967-04-04 | Xerox Corp | Xerographic plates |
US3460476A (en) * | 1965-12-27 | 1969-08-12 | Xerox Corp | Imaging process |
US3607388A (en) * | 1967-03-18 | 1971-09-21 | Tokyo Shibaura Electric Co | Method of preparing photoconductive layers on substrates |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5125714B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | 1966-05-16 | 1976-08-02 | ||
FR2127346A5 (en) * | 1971-02-25 | 1972-10-13 | Xerox Corp | Xerographic plates |
-
1973
- 1973-01-05 US US321164A patent/US3898083A/en not_active Expired - Lifetime
- 1973-12-19 GB GB5882373A patent/GB1447655A/en not_active Expired
-
1974
- 1974-01-02 CA CA189,298A patent/CA1017434A/en not_active Expired
- 1974-01-04 NL NL7400135A patent/NL7400135A/xx not_active Application Discontinuation
- 1974-01-04 DE DE2400368A patent/DE2400368C3/de not_active Expired
- 1974-01-04 FR FR7400347A patent/FR2213516B1/fr not_active Expired
- 1974-01-05 JP JP49005068A patent/JPS5234354B2/ja not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2862815A (en) * | 1953-10-01 | 1958-12-02 | Rca Corp | Electrophotographic member |
US3041166A (en) * | 1958-02-12 | 1962-06-26 | Xerox Corp | Xerographic plate and method |
US2962376A (en) * | 1958-05-14 | 1960-11-29 | Haloid Xerox Inc | Xerographic member |
US3312548A (en) * | 1963-07-08 | 1967-04-04 | Xerox Corp | Xerographic plates |
US3460476A (en) * | 1965-12-27 | 1969-08-12 | Xerox Corp | Imaging process |
US3607388A (en) * | 1967-03-18 | 1971-09-21 | Tokyo Shibaura Electric Co | Method of preparing photoconductive layers on substrates |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4336558A (en) * | 1980-04-23 | 1982-06-22 | American Hoechst Corp. | Imaging system and method with reduced moire interference |
US4548886A (en) * | 1982-06-08 | 1985-10-22 | Canon Kabushiki Kaisha | Radiation sensitive organic thin film comprising an azulenium salt |
US4565761A (en) * | 1982-06-08 | 1986-01-21 | Canon Kabushiki Kaisha | Electrophotographic process utilizing an azulenium salt-containing photosensitive member |
Also Published As
Publication number | Publication date |
---|---|
FR2213516B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1978-03-24 |
FR2213516A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1974-08-02 |
NL7400135A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1974-03-25 |
JPS49104594A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1974-10-03 |
DE2400368C3 (de) | 1978-10-19 |
JPS5234354B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1977-09-02 |
GB1447655A (en) | 1976-08-25 |
DE2400368A1 (de) | 1974-07-18 |
CA1017434A (en) | 1977-09-13 |
DE2400368B2 (de) | 1978-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3525612A (en) | Electrophotographic reproduction process employing a light sensitive material and a photoconductive material | |
US2937944A (en) | Xerographic light-sensitive member and process therefor | |
US3898083A (en) | High sensitivity visible infrared photoconductor | |
CA1075068A (en) | Imaging system | |
US3379527A (en) | Photoconductive insulators comprising activated sulfides, selenides, and sulfoselenides of cadmium | |
US3685989A (en) | Ambipolar photoreceptor and method of imaging | |
US3008825A (en) | Xerographic light-sensitive member and process therefor | |
US3719481A (en) | Electrostatographic imaging process | |
US3903107A (en) | Direct alpha to X phase conversion of metal containing phthalocyanine | |
US3712810A (en) | Ambipolar photoreceptor and method | |
US3615413A (en) | Indium doping of selenium-arsenic photoconductive alloys | |
US4296191A (en) | Two-layered photoreceptor containing a selenium-tellurium layer and an arsenic-selenium over layer | |
CA1057557A (en) | Xerographic photoreceptor device containing interlocking continuous chains of photoconductor | |
US3507646A (en) | Electrophotographic process using a single phase photoconductive glass imaging layer | |
US3867143A (en) | Electrophotographic photosensitive material | |
US3498835A (en) | Method for making xerographic plates | |
US3966470A (en) | Photo-conductive coating containing Ge, S, and Pb or Sn | |
US3490903A (en) | Alloys of antimony and selenium used in photoconductive elements | |
US3709683A (en) | Infrared sensitive image retention photoreceptor | |
US3975635A (en) | Xeroradiographic plate | |
US3645729A (en) | Method of transferring electrostatic latent images using multiple photoconductive layers | |
US3506595A (en) | Photoconductive insulating material | |
JP2819580B2 (ja) | 光導電体及びその製造方法 | |
JPS61103156A (ja) | 電子写真用感光体 | |
SU935865A1 (ru) | Электрофотографический материал |