US3892908A - Coating of solid substrates with magnetically propelled particles - Google Patents
Coating of solid substrates with magnetically propelled particles Download PDFInfo
- Publication number
- US3892908A US3892908A US373028A US37302873A US3892908A US 3892908 A US3892908 A US 3892908A US 373028 A US373028 A US 373028A US 37302873 A US37302873 A US 37302873A US 3892908 A US3892908 A US 3892908A
- Authority
- US
- United States
- Prior art keywords
- coating
- particulate material
- substrate
- magnet elements
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 36
- 238000000576 coating method Methods 0.000 title claims description 48
- 239000011248 coating agent Substances 0.000 title claims description 42
- 239000002245 particle Substances 0.000 title claims description 18
- 239000007787 solid Substances 0.000 title abstract description 8
- 239000011236 particulate material Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 23
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- 230000005415 magnetization Effects 0.000 claims description 6
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 claims description 5
- 230000005672 electromagnetic field Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 229910052802 copper Inorganic materials 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 229910001220 stainless steel Inorganic materials 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010935 stainless steel Substances 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 229910052759 nickel Inorganic materials 0.000 description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 10
- 239000011521 glass Substances 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 229910000680 Aluminized steel Inorganic materials 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- -1 polytetrafluoroethylene Polymers 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010965 430 stainless steel Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- YMHOBZXQZVXHBM-UHFFFAOYSA-N 2,5-dimethoxy-4-bromophenethylamine Chemical compound COC1=CC(CCN)=C(OC)C=C1Br YMHOBZXQZVXHBM-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 241000545067 Venus Species 0.000 description 1
- YVIMHTIMVIIXBQ-UHFFFAOYSA-N [SnH3][Al] Chemical compound [SnH3][Al] YVIMHTIMVIIXBQ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 235000015107 ale Nutrition 0.000 description 1
- VRAIHTAYLFXSJJ-UHFFFAOYSA-N alumane Chemical compound [AlH3].[AlH3] VRAIHTAYLFXSJJ-UHFFFAOYSA-N 0.000 description 1
- XMVAAAZAGOWVON-UHFFFAOYSA-N aluminum barium Chemical compound [Al].[Ba] XMVAAAZAGOWVON-UHFFFAOYSA-N 0.000 description 1
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 1
- CYUOWZRAOZFACA-UHFFFAOYSA-N aluminum iron Chemical compound [Al].[Fe] CYUOWZRAOZFACA-UHFFFAOYSA-N 0.000 description 1
- IZJSTXINDUKPRP-UHFFFAOYSA-N aluminum lead Chemical compound [Al].[Pb] IZJSTXINDUKPRP-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- UNQHSZOIUSRWHT-UHFFFAOYSA-N aluminum molybdenum Chemical compound [Al].[Mo] UNQHSZOIUSRWHT-UHFFFAOYSA-N 0.000 description 1
- LNGCCWNRTBPYAG-UHFFFAOYSA-N aluminum tantalum Chemical compound [Al].[Ta] LNGCCWNRTBPYAG-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003984 copper intrauterine device Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- RTAQQCXQSZGOHL-OIOBTWANSA-N titanium-45 Chemical compound [45Ti] RTAQQCXQSZGOHL-OIOBTWANSA-N 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/16—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/90—Magnetic feature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
- Y10T428/257—Iron oxide or aluminum oxide
Definitions
- This invention relates to the coating of solid substrates with various materials. More particularly. the present invention is directed to the coating of various particulate materials on the surface of solid substrates by utilizing particles propelled by magnetic forces.
- An article may be coated to modify its surface properties such as corrosion resistance. electrical contact resistance. reflectivity. color. abrasion resistance. solderability. coefficient of friction. etc.
- Electroplating is limited in the number of metals which can be plated. causes hydrogen embrittlement and has the disadvantage of requiring a conductive substrate. thereby also precluding the coating of plastic by this technique unless the plastic substrate is provided with a conductive surface.
- Metal spraying applicable primarily for heavy deposits. produces a coating which is porous. dimensionally nonuniform. and usually requires thermal treatment to improve adherence. The finish of sprayed metal coatings is rough and unattractive.
- hot-dipped coatings are limited to low melting metals such as zinc. tin. lead and aluminum. Additionally. hot dipping requires an extremely clean. greaseand oxidefree surface to obtain a uniform adherent coating.
- the process of mechanical plating has been known for perhaps a quarter of a century. The broad principles ofthe process are well known; see. e.g.. British Pat. No. 534.888. US. Pat. Nos. 2.689.808. and Re. 23.861, and other publications.
- the process is typically carried out by placing in a tumbling barrel metallic parts to be plated. plating metals in the form of minute malleable particles. impact media such as glass beads and cullet. water. and. optionally. a chemical promoter. As the tumbling barrel is rotated. the plating metal particles are hammered against the surface of the metallic parts to be plated. the impact media and the parts themselves serving to flatten the metal particles into a continuous coat.
- Mechanical plating may produce adequate results but is generally limited to only a few metals such as tin. zinc. cadmium. and brass.
- Mechanical plating may also be accomplished by projecting an air borne mixture of coatable particles and hard peening particles onto a substrate causing hammering of the coatable particles on the surface as a layer. Such a process is limited by the trajectory of the stream ofthe air borne mixture to relatively flat and uniformly shaped substrates.
- particulate material is plated on a substrate surface by exposing the surface in a confined volume containing small magnet elements mixed with the particulate material and establishing within an effective distance of the confined volume a magnetic field varying in direction with time.
- the magnetic field imparts motion to the magnet elements which in turn imparts a motion to the particulate material mixed therewith.
- These materials then impinge upon the surface of the substrate in a sufficient amount and with sufficient force to clean the surface and hammer the particulate material thereon to form a uniform coating. Microscopic examination of the coated surface. prior to completion of the coating. indeed reveals a multitude of flattened particles adhered to the substrate surface. in
- the present invention provides a coating process which permits simple or very complex shaped articles of plastic. metal. or any hard material to be coated with any of a variety of materials including plastics. metals. inorganic materials and others.
- the process utilizes simple economical apparatus and produces no undesirable waste products which require removal or disposal.
- the process which requires no toxic chemicals. does not utilize molten metal and therefore eliminating the danger of burns and fires caused thereby.
- the process can be used to coat fragile articles. very complex articles. and articles not capable of being coated by conventional techniques.
- the process provides uniform coatings of good quality from very thin to very thick. with no modification thereof merely by continuing coating for the appropriate time. No hydrogen embrittlement is produced by the process of the present invention.
- FIG. I is a plan view of a coating apparatus in accordance with the invention.
- FIG. 2 is a vertical section view. taken at lines 2-2 of the apparatus shown in FIG. 1.
- the apparatus utilized for coating in accordance with the invention is comprised of a magnetic field generating device I0 capable of producing a magnetic field which varies in direction with time.
- small magnet elements 11 capable of being moved by the magnetic field.
- particulate material 12 which is to be coated.
- a container 13 confines the mixture of magnet elements particulate material 12, and substrate 14 being coated. in a predetermined volume.
- magnetic field generating device 10 is shown as a solid annulus merely for purposes of illustration. and it will actually have other parts such as wires. cores. etc. as will be apparent from the description which follows.
- the magnetic field may be generated by means of osillators. oscillator/amplifier combinations. solid-state pulsating devices. motor generators. and mechanical vibrators.
- the magnetic field may also be provided by 7 means of air or metal core coils. stator devices or the like.
- the preferred device for generating the magnetic field is capable of generating a rotating magnetic field. With such a device. the field which is generated rotates about a central axis defined by the device itself.
- a preferred device for generating such a rotating magnetic field is described in assignees copending application to Lovness and Feldhaus. Ser. No. 334.000. filed Feb. 20. 1973. the disclosure of which is incorpo rated herein by reference.
- This device has at least four overlapping electrical coils arranged in a generally cir cular pattern of opposed pairs and energized by two or more oubof-phase sources of alternating current so that opposed coils are of opposite polarity and of the same phase.
- a rudimentary version of this type of field generator device is the stator of a two pole alternating current electric motor.
- the container or surface for confining the magnet elements and particulate coating material within a predetermined area should be formed of a non-magnetic ma terial such as glass. synthetic organic plastics. for example. polytetrafluoroethylene (e.g.. Teflon"). polyethylene. polypropylene. and the like. ceramics. nonmagnetic metals such as stainless steels. bronze. lead. etc.
- any one of a variety of particulate materials of varying degrees of hardness and shape is contemplated for use us the coating material of the present invention.
- the coating materials are metal powders but other materials have also been found suitable for coating.
- Illustrative of metal powders which may be coated are aluminum. iron. lead. zinc. cadmium. copper. indium. tantalum. chromium. magnesium. nickel. tungsten. silver. and gold.
- Illustrative metal alloy powders which have been found useful for coating include stainless steels. aluminum/zinc alloys. and tin/lead alloys.
- Non-metal powders found useful for coating in the present invention include graphite. molybdenum disulfide. and organic resins such as polytetrafiuoroethylene and polyvinyl chloride.
- the shape of the particulate material being coated need not be in any particular form since it has been found virtually all shapes will provide a suitable coating. e.g.. round. flake. etc.
- the particulate material may range in size from 0.1 micron or less in maximum dimension to several hundred microns or more; preferably the particle size is within the range of 0.5 to 50 microns.
- the mass of each magnet element is preferably at least twice the mass of each individual fragment of particulate material being coated or else very large magnetic forces are required to provide uniform and permanent coatings.
- the process of the inven tion utilizes small magnet elements. each of which is an individual minute permanent magnet and hence susceptible to the influence of a moving magnetic field.
- Such elements include gamma iron oxide (F6 03).
- hard barium ferrite. (Ba0.6Ee particulate aluminumnickelcobalt alloys. or mixtures thereof.
- Suitable magnet elements have been found to have a magnetization (M) in excess of l0 gauss per gram. magnetization being a measure of the magnetic field intensity of the material from which the particles are prepared.
- Hard barium ferrite has a magnetization of about 70 gauss/gm and gamma iron oxide has a magnetization of about 50 gauss/gm.
- suitable LII all
- magnet elements should have a magnetic coercivity (defined as the opposite sign field necessary to reduce the magnetization to zero) greater than the magnetic field (H) applied to cause physical movement ofthe element.
- Magnetic fields of about to about 600 oer steds and higher have been used to move the particles.
- Hard barium ferrite has a magnetic coercivity ofabout 3000 oersteds and the gamma iron oxide has a magnetic cocrcivity of about 300 oersteds.
- Magnet elements having a magnetic coercivity less than about l00 oersteds have been found not to be particularly suited for use in the invention because application of external magnetic fields sufficiently strong to move the elements causes demagnetization.
- the size of the magnet elements will vary over a considerable range depending upon the coatable particulate material and upon the particular substrate being coated. As previously stated, the mass of the magnet elements being used should be at least twice the mass of the particulate material being coated. Typically. the size ofthe magnet elements will vary between 1 micron in maximum extent to about several hundred microns or more. The size ofthe magnet elements should be sufficiently small to enter any openings or perforations in the article being coated. if it is desired to coat the inner surface of such openings.
- the amount of magnet elements used with the coat able particulate material will also vary depending upon the coatable particulate material being used and upon the substrate being coated. Functionally stated. the total mass of magnet elements is that sufficient to cause the coatable particulate material to impinge upon the surface of the substrate being coated and to provide a coating thereon. Since the magnet elements should be at least twice the mass of the coatable particulate material. the total mass of the magnet elements will likewise be at least twice the mass of the coatable particulate material. Usually an excess of the amount of coatable particulate material desired to be coated on the substrate is used or eventually added during the coating operation.
- the magnet elements coatable particulate material mixture may be used with other substances.
- a suitable abrasive material in the mixture may be used with the magnet elements coatable particulate material mixture.
- the mixture may contain hard dense particles such as glass beads. metal shot. ceramic beads and the like to aid in hammering the particulate material onto the surface of the substrate.
- the process of the invention is generally carried out under normal atmospheric conditions. however. for some materials (either coatable materials or substrates) it may be desirable to coat in an inert atmosphere such as dry nitrogen. argon. or helium. or to carry out the entire operation in a vacuum or near va cumm. For example. when utilizing magnesium powder as the coatable particulate material. it is preferred to carry out the process in a dry inert atmosphere. Addi- 5 tionally. while it is generally unnecessary. various coating additives or promoters may also be utilized in the process. Such materials may provide a more uniform coating for some coatable particulate materials and for erating device and barium ferrite magnetic particles The rotating magnetic field generating device. originally the stator of a c horsepower electric motor.
- a i h have f layer of lush Sca
- the magnet elements Werc ban P layer Extremely lhlck layer? of Surface ium ferrite speaker magnets which had been crushed to tamination are preferably removed prior to commence- 5 provide a particle Size which passed through a 5 mam f Coaung to Shorten the amount lequlred Standard Screen mesh size of [2 and were retained on to acheve a 40 mesh (approximately 0.42 mm).
- the powdered aluminum was that 50M by US and is not desired, magnet elements encased in a pro- Bronze Powder Company as Venus Aluminum POW tective shell such as a hard polymeric resin coating may def Atomized N0 610 medium mesh having a particle be used A typuial Cmmng of polyurethane: size of about microns and a bulk powder density of Substrates which can be coated or plated in accor- 1.0 g/CC About 2.5 grams of powdflred Iuminum were dance with the present invention include any hard ma- 35 used terial Such materials include metals.
- EXAMPLES l69-l74 The following examples show the effective weight ratio of particulate material to magnet elements useful in the invention.
- a copper piece was attached inside the container consisting of an 8 ounce paper drinking cup which also contained I00 grams of magnet elements.
- the rotating magnetic field generating device was operated at l l amperes for 30 minutes in each case.
- the amount of aluminum powder used for each example is shown in the table below.
- the efficacy of coating is reduced somewhat if the weight of particulate material is greater than about l/lOth the weight of the magnet elements, indicating that it is preferred to maintain a relatively small amount of particulate material with respect to the magnet elements.
- a process for coating particulate material upon the surface of a substrate comprising:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Chemically Coating (AREA)
- Surface Treatment Of Glass (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Hard Magnetic Materials (AREA)
- Paints Or Removers (AREA)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US373028A US3892908A (en) | 1973-06-25 | 1973-06-25 | Coating of solid substrates with magnetically propelled particles |
NL7406046A NL7406046A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1973-06-25 | 1974-05-06 | |
ES427310A ES427310A1 (es) | 1973-06-25 | 1974-06-15 | Un procedimiento y un aparato para aplicar como revestimi- ento un material constituido por particulas sobre la super- ficie de un substrato. |
BR4954/74A BR7404954A (pt) | 1973-06-25 | 1974-06-18 | Processo e aparelho para revestir a superfiecie de um substrato com material em particulas e mistura de materiais para uso no processo |
FR7421815A FR2235738B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1973-06-25 | 1974-06-24 | |
JP7220674A JPS538537B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1973-06-25 | 1974-06-24 | |
AU70418/74A AU477086B2 (en) | 1973-06-25 | 1974-06-24 | Coating of solid substrates with magnetically propelled particles |
GB2797974A GB1467449A (en) | 1973-06-25 | 1974-06-24 | Coating of solid substrates with magnetically propelled particles |
BE145806A BE816770A (fr) | 1973-06-25 | 1974-06-24 | Perfectionnements a l'application de matieres en particules sur des supports |
DE19742430794 DE2430794C3 (de) | 1973-06-25 | 1974-06-24 | Verfahren zur Herstellung von Überzügen auf Substratoberflächen durch Aufbringen eines Gemisches aus einem teilchenförmigen unmagnetischen Beschichtungsmittel und einem teilchenförmigen magnetischen Material in einem magnetischen Feld |
IT51698/74A IT1016155B (it) | 1973-06-25 | 1974-06-24 | Procedimento ed apparecchio per rivestire sottostrati solidi con particelle magneticamente propulse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US373028A US3892908A (en) | 1973-06-25 | 1973-06-25 | Coating of solid substrates with magnetically propelled particles |
Publications (1)
Publication Number | Publication Date |
---|---|
US3892908A true US3892908A (en) | 1975-07-01 |
Family
ID=23470622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US373028A Expired - Lifetime US3892908A (en) | 1973-06-25 | 1973-06-25 | Coating of solid substrates with magnetically propelled particles |
Country Status (10)
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3985649A (en) * | 1974-11-25 | 1976-10-12 | Eddelman Roy T | Ferromagnetic separation process and material |
US4024295A (en) * | 1975-04-07 | 1977-05-17 | Minnesota Mining And Manufacturing Company | Coating process utilizing propelled particles |
US4142479A (en) * | 1975-10-06 | 1979-03-06 | Daidotokushuko Kabushikikaisha | Magnetic separators and apparatus for making the same |
US4189507A (en) * | 1975-01-13 | 1980-02-19 | Gosudarstvenny Nauchnoissledovatelsky Institmashinovedenia | Method for balancing rotors |
US4486641A (en) * | 1981-12-21 | 1984-12-04 | Ruffini Robert S | Inductor, coating and method |
US4873605A (en) * | 1986-03-03 | 1989-10-10 | Innovex, Inc. | Magnetic treatment of ferromagnetic materials |
US4952463A (en) * | 1985-10-29 | 1990-08-28 | Okura Techno-Research Kabushiki Kaisha (Okura Techno-Research Company Ltd.) | Ferrite-ceramic composite powder and method of manufacturing the same |
US5030301A (en) * | 1990-09-28 | 1991-07-09 | Honeywell, Inc. | Oxidizer coated metal fuels with means to prevent auto-ignition |
US5110774A (en) * | 1985-11-29 | 1992-05-05 | Atsushi Ogura | Homogeneous solid solution material and method of manufacturing the same |
US5120611A (en) * | 1985-10-29 | 1992-06-09 | Atsushi Ogura | Metal oxide ceramic composite powder and method of manufacturing the same |
US5418811A (en) * | 1992-04-08 | 1995-05-23 | Fluxtrol Manufacturing, Inc. | High performance induction melting coil |
US5699842A (en) * | 1996-04-12 | 1997-12-23 | Xerox Corporation | Magnetic filling and mixing apparatus and processes thereof |
US5817374A (en) * | 1996-05-31 | 1998-10-06 | Electrox Corporation | Process for patterning powders into thick layers |
US6037019A (en) * | 1995-08-24 | 2000-03-14 | 3M Innovative Properties Company | Process for making particle-coated solid substrates |
US6144544A (en) * | 1996-10-01 | 2000-11-07 | Milov; Vladimir N. | Apparatus and method for material treatment using a magnetic field |
US20020174878A1 (en) * | 1998-08-21 | 2002-11-28 | Life Technologies, Inc. | Apparatus for washing magnetic particles |
GB2375977A (en) * | 2001-05-11 | 2002-12-04 | Visteon Global Tech Inc | Manufacturing magneto-rheological or electro-rheological substance impregnated materials |
US6581740B2 (en) | 2001-05-11 | 2003-06-24 | Visteon Global Technologies, Inc. | Multiple disc clutch pack having rheological film layer |
US20040123877A1 (en) * | 2002-12-30 | 2004-07-01 | Brown Dale G. | Coated multifilament dental devices overcoated with imbedded particulate |
US20050250028A1 (en) * | 2004-05-07 | 2005-11-10 | Qian Julie Y | Positively charged coated electrographic toner particles and process |
US20070036026A1 (en) * | 2005-05-16 | 2007-02-15 | Laibinis Paul E | Magnetic Particle Systems and Methods |
US7183030B2 (en) | 2004-05-07 | 2007-02-27 | Samsung Electronics Company | Negatively charged coated electrographic toner particles and process |
US20070215553A1 (en) * | 2004-01-28 | 2007-09-20 | Yellen Benjamin B | Magnetic Fluid Manipulators and Methods for Their Use |
US20090188520A1 (en) * | 2008-01-30 | 2009-07-30 | Whitehill Oral Technologies, Inc. | Coated dental devices with ablative abrasives |
US20100157724A1 (en) * | 2006-06-21 | 2010-06-24 | Amar Rida | Device and Method for Manipulating and Mixing Magnetic Particles in a Liquid Medium |
US20100159556A1 (en) * | 2008-12-19 | 2010-06-24 | Amar Rida | Method for Manipulating Magnetic Particles in a Liquid Medium |
US20140307519A1 (en) * | 2013-04-10 | 2014-10-16 | Xerox Corporation | Method and system for magnetic actuated mixing |
US8870446B2 (en) | 2006-06-21 | 2014-10-28 | Spinomix S.A. | Device and method for manipulating and mixing magnetic particles in a liquid medium |
US20150290651A1 (en) * | 2014-04-09 | 2015-10-15 | Xerox Corporation | Magnetic milling systems and methods |
US9968959B2 (en) | 2004-12-30 | 2018-05-15 | Nordson Corporation | Component delivery system utilizing film bags |
US10625293B2 (en) | 2004-12-30 | 2020-04-21 | Nordson Corporation | Component delivery system utilizing film bags |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2743972C2 (de) * | 1977-09-30 | 1986-09-25 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Verfahren zur Herstellung von kunststoffgebundenen Magnetkörpern |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2735231A (en) * | 1953-05-22 | 1956-02-21 | Reflectone Corp | simjian |
US2880554A (en) * | 1956-01-03 | 1959-04-07 | Reflectone Corp | Treating or polishing apparatus |
US3219318A (en) * | 1961-08-22 | 1965-11-23 | Hershler Abe | Fluid treating method and apparatus |
US3318284A (en) * | 1964-01-30 | 1967-05-09 | Hitachi Ltd | Apparatus for developing electrostatic images of records |
US3423880A (en) * | 1965-10-24 | 1969-01-28 | Abe Hershler | Surface-treating device |
US3439899A (en) * | 1967-02-27 | 1969-04-22 | Magneto Dynamics Inc | Method for the production and control of fluidized beds |
US3455276A (en) * | 1967-05-23 | 1969-07-15 | Minnesota Mining & Mfg | Magnetically responsive powder applicator |
-
1973
- 1973-06-25 US US373028A patent/US3892908A/en not_active Expired - Lifetime
-
1974
- 1974-05-06 NL NL7406046A patent/NL7406046A/xx unknown
- 1974-06-15 ES ES427310A patent/ES427310A1/es not_active Expired
- 1974-06-18 BR BR4954/74A patent/BR7404954A/pt unknown
- 1974-06-24 GB GB2797974A patent/GB1467449A/en not_active Expired
- 1974-06-24 AU AU70418/74A patent/AU477086B2/en not_active Expired
- 1974-06-24 BE BE145806A patent/BE816770A/xx unknown
- 1974-06-24 IT IT51698/74A patent/IT1016155B/it active
- 1974-06-24 FR FR7421815A patent/FR2235738B1/fr not_active Expired
- 1974-06-24 JP JP7220674A patent/JPS538537B2/ja not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2735231A (en) * | 1953-05-22 | 1956-02-21 | Reflectone Corp | simjian |
US2880554A (en) * | 1956-01-03 | 1959-04-07 | Reflectone Corp | Treating or polishing apparatus |
US3219318A (en) * | 1961-08-22 | 1965-11-23 | Hershler Abe | Fluid treating method and apparatus |
US3318284A (en) * | 1964-01-30 | 1967-05-09 | Hitachi Ltd | Apparatus for developing electrostatic images of records |
US3423880A (en) * | 1965-10-24 | 1969-01-28 | Abe Hershler | Surface-treating device |
US3439899A (en) * | 1967-02-27 | 1969-04-22 | Magneto Dynamics Inc | Method for the production and control of fluidized beds |
US3455276A (en) * | 1967-05-23 | 1969-07-15 | Minnesota Mining & Mfg | Magnetically responsive powder applicator |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3985649A (en) * | 1974-11-25 | 1976-10-12 | Eddelman Roy T | Ferromagnetic separation process and material |
US4189507A (en) * | 1975-01-13 | 1980-02-19 | Gosudarstvenny Nauchnoissledovatelsky Institmashinovedenia | Method for balancing rotors |
US4024295A (en) * | 1975-04-07 | 1977-05-17 | Minnesota Mining And Manufacturing Company | Coating process utilizing propelled particles |
US4142479A (en) * | 1975-10-06 | 1979-03-06 | Daidotokushuko Kabushikikaisha | Magnetic separators and apparatus for making the same |
US4486641A (en) * | 1981-12-21 | 1984-12-04 | Ruffini Robert S | Inductor, coating and method |
US4952463A (en) * | 1985-10-29 | 1990-08-28 | Okura Techno-Research Kabushiki Kaisha (Okura Techno-Research Company Ltd.) | Ferrite-ceramic composite powder and method of manufacturing the same |
US5120611A (en) * | 1985-10-29 | 1992-06-09 | Atsushi Ogura | Metal oxide ceramic composite powder and method of manufacturing the same |
US5110774A (en) * | 1985-11-29 | 1992-05-05 | Atsushi Ogura | Homogeneous solid solution material and method of manufacturing the same |
US4873605A (en) * | 1986-03-03 | 1989-10-10 | Innovex, Inc. | Magnetic treatment of ferromagnetic materials |
EP0477962A1 (en) * | 1990-09-28 | 1992-04-01 | Alliant Techsystems Inc. | Oxidizer coated metal fuels with means to prevent auto-ignition |
US5030301A (en) * | 1990-09-28 | 1991-07-09 | Honeywell, Inc. | Oxidizer coated metal fuels with means to prevent auto-ignition |
US5418811A (en) * | 1992-04-08 | 1995-05-23 | Fluxtrol Manufacturing, Inc. | High performance induction melting coil |
US5588019A (en) * | 1992-04-08 | 1996-12-24 | Fluxtrol Manufacturing, Inc. | High performance induction melting coil |
US6037019A (en) * | 1995-08-24 | 2000-03-14 | 3M Innovative Properties Company | Process for making particle-coated solid substrates |
US5699842A (en) * | 1996-04-12 | 1997-12-23 | Xerox Corporation | Magnetic filling and mixing apparatus and processes thereof |
US5817374A (en) * | 1996-05-31 | 1998-10-06 | Electrox Corporation | Process for patterning powders into thick layers |
US6144544A (en) * | 1996-10-01 | 2000-11-07 | Milov; Vladimir N. | Apparatus and method for material treatment using a magnetic field |
US6776174B2 (en) | 1998-08-21 | 2004-08-17 | Paul E. Nisson | Apparatus for washing magnetic particles |
US20020174878A1 (en) * | 1998-08-21 | 2002-11-28 | Life Technologies, Inc. | Apparatus for washing magnetic particles |
US6581740B2 (en) | 2001-05-11 | 2003-06-24 | Visteon Global Technologies, Inc. | Multiple disc clutch pack having rheological film layer |
GB2375977B (en) * | 2001-05-11 | 2003-08-13 | Visteon Global Tech Inc | Method for manufacturing magneto-rheological or electro-rheological substance-impregnated materials |
GB2375977A (en) * | 2001-05-11 | 2002-12-04 | Visteon Global Tech Inc | Manufacturing magneto-rheological or electro-rheological substance impregnated materials |
US20040123877A1 (en) * | 2002-12-30 | 2004-07-01 | Brown Dale G. | Coated multifilament dental devices overcoated with imbedded particulate |
US7152611B2 (en) | 2002-12-30 | 2006-12-26 | International Tape Partners, Llc | Coated multifilament dental devices overcoated with imbedded particulate |
US8398295B2 (en) * | 2004-01-28 | 2013-03-19 | Drexel University | Magnetic fluid manipulators and methods for their use |
US8678640B2 (en) | 2004-01-28 | 2014-03-25 | Drexel University | Magnetic fluid manipulators and methods for their use |
US9415398B2 (en) | 2004-01-28 | 2016-08-16 | Drexel University | Magnetic fluid manipulators and methods for their use |
US20070215553A1 (en) * | 2004-01-28 | 2007-09-20 | Yellen Benjamin B | Magnetic Fluid Manipulators and Methods for Their Use |
US7183030B2 (en) | 2004-05-07 | 2007-02-27 | Samsung Electronics Company | Negatively charged coated electrographic toner particles and process |
US20050250028A1 (en) * | 2004-05-07 | 2005-11-10 | Qian Julie Y | Positively charged coated electrographic toner particles and process |
US10525500B2 (en) | 2004-12-30 | 2020-01-07 | Nordson Corporation | Component delivery system utilizing film bags |
US9968959B2 (en) | 2004-12-30 | 2018-05-15 | Nordson Corporation | Component delivery system utilizing film bags |
US10625293B2 (en) | 2004-12-30 | 2020-04-21 | Nordson Corporation | Component delivery system utilizing film bags |
US20070036026A1 (en) * | 2005-05-16 | 2007-02-15 | Laibinis Paul E | Magnetic Particle Systems and Methods |
US8999732B2 (en) | 2006-06-21 | 2015-04-07 | Spinomix, S.A. | Method for manipulating magnetic particles in a liquid medium |
US8870446B2 (en) | 2006-06-21 | 2014-10-28 | Spinomix S.A. | Device and method for manipulating and mixing magnetic particles in a liquid medium |
US8585279B2 (en) * | 2006-06-21 | 2013-11-19 | Spinomix S.A. | Device and method for manipulating and mixing magnetic particles in a liquid medium |
US20100157724A1 (en) * | 2006-06-21 | 2010-06-24 | Amar Rida | Device and Method for Manipulating and Mixing Magnetic Particles in a Liquid Medium |
US20090188520A1 (en) * | 2008-01-30 | 2009-07-30 | Whitehill Oral Technologies, Inc. | Coated dental devices with ablative abrasives |
US20100159556A1 (en) * | 2008-12-19 | 2010-06-24 | Amar Rida | Method for Manipulating Magnetic Particles in a Liquid Medium |
US20140307519A1 (en) * | 2013-04-10 | 2014-10-16 | Xerox Corporation | Method and system for magnetic actuated mixing |
US9358513B2 (en) * | 2013-04-10 | 2016-06-07 | Xerox Corporation | Method and system for magnetic actuated mixing |
US9656225B2 (en) * | 2013-04-10 | 2017-05-23 | Xerox Corporation | Method and system for magnetic actuated mixing |
US20150290651A1 (en) * | 2014-04-09 | 2015-10-15 | Xerox Corporation | Magnetic milling systems and methods |
Also Published As
Publication number | Publication date |
---|---|
AU7041874A (en) | 1976-01-08 |
JPS538537B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1978-03-29 |
FR2235738B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1978-01-13 |
BR7404954A (pt) | 1976-02-24 |
BE816770A (fr) | 1974-12-24 |
ES427310A1 (es) | 1976-07-16 |
DE2430794B2 (de) | 1977-02-24 |
DE2430794A1 (de) | 1975-01-09 |
FR2235738A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1975-01-31 |
IT1016155B (it) | 1977-05-30 |
NL7406046A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1974-12-30 |
GB1467449A (en) | 1977-03-16 |
AU477086B2 (en) | 1976-10-14 |
JPS5049126A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1975-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3892908A (en) | Coating of solid substrates with magnetically propelled particles | |
US6037019A (en) | Process for making particle-coated solid substrates | |
US4024295A (en) | Coating process utilizing propelled particles | |
MXPA98001197A (en) | Process for the manufacture of solid coated substrates of particu | |
US5273782A (en) | Coated parts with film having powder-skeleton structure, and method for forming coating | |
US4017265A (en) | Ferromagnetic memory layer, methods of making and adhering it to substrates, magnetic tapes, and other products | |
US3928159A (en) | Method for forming protective film by ionic plating | |
CA2051545A1 (en) | Permanent magnet having high corrosion resistance, a process for making the same and a process for making a bonded magnet having high corrosion resistance | |
US3855016A (en) | Acicular cobalt powders having high squarenesss ratios | |
JPS6258631B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | ||
US3251711A (en) | Methods of mechanically plating metal objects with copper and alloys thereof | |
EP1048749B1 (en) | Process for forming metal layer on surface of resin molded product | |
US3525635A (en) | Magnetic recording media | |
US3751345A (en) | Method of producing a magnetic storage medium | |
JP3143684B2 (ja) | 粒状体のコーティング方法及び磁性金属コーティングによる複合めっき方法 | |
JP2612494B2 (ja) | プラスチック磁石の製造方法 | |
DE2430794C3 (de) | Verfahren zur Herstellung von Überzügen auf Substratoberflächen durch Aufbringen eines Gemisches aus einem teilchenförmigen unmagnetischen Beschichtungsmittel und einem teilchenförmigen magnetischen Material in einem magnetischen Feld | |
Miyabayashi et al. | The Structure of Electroless Co--P--Ag Films.(Retroactive Coverage) | |
JPS57105839A (en) | Photo-thermal magnetic recording medium | |
JPH11233324A (ja) | 高耐食性R−Fe−B系ボンド磁石とその製造方法 | |
JP2001011651A (ja) | 樹脂成形体表面への金属層の形成方法 | |
JPS63209114A (ja) | 耐酸化性に優れたr・t・b系磁石の製造方法 | |
JPS57164420A (en) | Magnetic recording medium | |
Nitta et al. | Liquid phase and vapor phase deposition techniques for coating metals on metallic/non-metallic powders | |
JPH02187923A (ja) | 磁気記録媒体の製造方法及びその装置 |