US3889632A - Variable incidence drive for deposition tooling - Google Patents

Variable incidence drive for deposition tooling Download PDF

Info

Publication number
US3889632A
US3889632A US475005A US47500574A US3889632A US 3889632 A US3889632 A US 3889632A US 475005 A US475005 A US 475005A US 47500574 A US47500574 A US 47500574A US 3889632 A US3889632 A US 3889632A
Authority
US
United States
Prior art keywords
coating
axis
holder
frame
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US475005A
Inventor
Rolf H Brunner
William C Lester
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US475005A priority Critical patent/US3889632A/en
Priority to DE19752513604 priority patent/DE2513604A1/en
Priority to FR7513749A priority patent/FR2273372B1/fr
Priority to GB1791075A priority patent/GB1452720A/en
Priority to JP50053324A priority patent/JPS50159447A/ja
Application granted granted Critical
Publication of US3889632A publication Critical patent/US3889632A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates

Definitions

  • This invention relates to deposition toolings, and more particularly, to providing rotational motion to substrates to be coated, such as semiconductor wafers or substrates, during coating operations to obtain better coverage over surface topography and more uniform coatings thereon.
  • Vacuum coating of substrates from a suitable source material is extensively used for various applications.
  • such applications involve, among others, the deposition of non-metallic coatings on optical lenses, various coatings on paper, and in particular, the coating of electrically conductive metal and dielectric films on semiconductor substrates for enabling subsequent encapsulation and delineation of conductor patterns in semiconductor device fabrication.
  • Such systems comprise a deposition chamber under vacuum containing holders for the substrates to be coated within a coating stream generated by a spaced coating source also contained within the chamber.
  • a spaced coating source also contained within the chamber.
  • such systems can subdivide the deposition chamber into a coating chamber and a main or evaporation chamber, the latter containing a spaced source of coating material to be evaporated in a stream onto a substrate supported in the coating chamber which can controllably be placed in communication and isolation with respect to the evaporation chamber.
  • a vac uum gate valve can be normally employed intermediate the coating and evaporation chambers to either, in the open position, place them in communication with each other or, in the closed position, to isolate each from the other.
  • a vacuum source such as a diffusion pump, is normally connected to the evaporation chamber to maintain a continuous vacuum therein.
  • Each of such systems is characterized by substrate holding fixtures which are discretely mounted in a coating chamber requiring substantial disassembly of the coating apparatus for loading and unloading of workpieces, particularly where complex motion is desired for the substrates.
  • substrate holding fixtures which are discretely mounted in a coating chamber requiring substantial disassembly of the coating apparatus for loading and unloading of workpieces, particularly where complex motion is desired for the substrates.
  • substrate motions have been characterized with a corresponding simplicity.
  • fixtures for imparting complex motion to substrates, during coating operations can be made an integral part of the coating apparatus.
  • a fixture can be mounted on a hatch or closure member pivotally mounted adjacent an access port of a coating chamber, which on sealing closure therewith position the substrate in a coating stream generated from a suitable source.
  • the substrates can be angularly indexed or reciprocated in the coating stream on one axis with concurrent rotation of the substrates on a transverse or perpendicular axis.
  • the fixture can be provided with orbital motion of the substrates about an axis coextending with substrate rotational axis.
  • FIG. 1 is a schematic drawing in cross-section of one embodiment of the complex motion drive in accordance with this invention.
  • FIG. 2 is a diagrammatic view of a substrate holder for use in the embodiment of FIG. 1.
  • FIG. 3 is a more detailed schematic drawing of the complex motion drive of FIG. 1.
  • FIG. 4 illustrates a spatial variability of the substrate holder in the drive of FIG. 3.
  • FIG. 5 is a schematic drawing of a more complex motion drive embodiment of this invention incorporating the feature of orbital motion.
  • the vacuum coating apparatus 1 comprises a deposition chamber 2 in a vacuum environment generated by a vacuum pump 3 (e. g. a diffusion pump) through a vacuum access duct 4 in the lower wall of the chamber enclosure 5.
  • a vacuum pump 3 e. g. a diffusion pump
  • the deposition chamber 2 includes a conventional vapor or ion source 6 of the type shown in U.S. Pat. No. 3,710,072 which may be referred to for details of construction.
  • Source 6 will normally comprise a water cooled crucible 7 having coolant passages 8 through which a coolant may be circulated by suitable means, not shown.
  • Crucible 7 contains a molten pool 9 of evaporant material from which vapor of the coating is produced, as for example aluminum or copper aluminum alloy for coating of an electrically conductive film of semiconductor substrates 10 (see FIG. 2) in device fabrication.
  • the molten pool 9 is heated by an electron beam 11, deflected in an arcuate path by suitable magnetic field, from an electron beam gun l2.
  • an enclosing evaporant shield 13 Mounted in deposition chamber 2, about vacuum source 6, is an enclosing evaporant shield 13 having an opening 14 in top wall 15 thereof, for shaping the evaporant stream 16 of the coating material from source 6.
  • a shutter 18 is provided between the source material 16, at the shaping port 14, and the drive fixture 17.
  • the shutter 18 is mounted on a pivot shaft 19 extending through shield 15, the bottom wall 20 (of chamber 2) and in a vacuum tight bushing 21 secured thereto.
  • Deposition chamber 2 includes an access port 29 which serves to load and unload substrates into and out of the chamber.
  • the access port 29 is adapted to be opened and closed by a hatch door or cover member 30 pivotally mounted to a bracket 31 and having an annular groove 32 for mounting of an O-ring 33 or other suitable sealing means.
  • the fixture 17 includes a substrate holder rotatably mounted by spindle 38 in a bearing 39 of yoke member 40 having one leg 41 secured to a pin 42 pivotally mounted through a bearing 43 in frame member 36.
  • a bevel gear 44 mounted at the outboard end of pin 42 is a bevel gear 44 in driven relationship with a mating bevel gear 45 on a drive shaft 46 extending through hatch 30 for external drive by a suitable gear train and motor means, not shown, for pivoting the support fixture 17 in any angular displacement or in reciprocating motion of the substrate holder within the evaporant path stream 16.
  • the angular displacement of the substrate holder 37 can be indexed or programmed to provide a corresponding fixed angle of incidence to the evaporant path 16, from horizontal to vertical; or the holder 17 can be reciprocated or oscillated to continuously vary the angle of incidence, during deposition, to optimize the coverage of complex geometry steps.
  • the holder 37 can be exercized through a series of sequential angles of incidence and wafer dwell times at the various angles.
  • a shaft 49 Rotatably secured through a bearing 47 in the other leg 48 of yoke 40, is a shaft 49 also rotatably extending through the bearing 50 in frame member 36A.
  • the outboard end of shaft 49 has secured to it a bevel gear 51 drivingly meshed with a mating bevel gear 52 on the end of a drive shaft 53 extending through hatch 30 for external rotational drive by a suitable motor means, not shown.
  • the inboard end of shaft 49 has secured to it a pulley 54 to drive the substrate holder 37 by means of a spring or elastic belt 55 which passes over idler pulley 56 and around driver pulley 57 secured to the end of spindle 38.
  • Holder 37 comprises a support base 58 having a plurality of finger grips 59 having pivoted clamping lips 60 positioned over the support face of base 58 by means of compression springs 61 which are secured between annular seats 62, secured to the back side of support base 58, and like registered annular seats 63 secured to lateral extensions 64, of grips 59, pivotally mounted to brackets 65, also secured to the back side of support base 58.
  • the lips 60 are formed with an angular configuration 66 to facilitate camming of grips 59 open if a tool is desired to be employed for positioning substrate 10 on holder 37.
  • Mechanical movement of the closure hatch or lid 30 can be effected by pivotally connecting mounting bracket 31 to a clevis member 67 on the end of a piston rod 68 of a pneumatic or hydraulic cylinder 69 suitably mounted (not shown) in any convenient manner to the vacuum coating apparatus.
  • hydraulic cylinder 69 can be activated to open hatch 30, with supplemental actuation of drive shaft 46 to pivot yoke 40 to the angular displacement necessary to position holder 37, in the horizontal position, particularly if mechanical means are employed for loading and unloading substrates.
  • any substrates on holder 37 may be removed, and a new substrate (e.g. a semiconductor wafer) mounted thereon, followed by closure of hatch 30, which will position the substrate in the evaporant path 16 on rotation of shutter out of in front of the shaping port 18 to permit the evaporant stream from vacuum source 6 to flow onto the substrate 10 mounted on holder 37.
  • a protective shield 70 is provided with an aperture 71 to restrict the deposition area of the evaporant stream 16 to substantially the substrate 10.
  • the drive shaft 46 can be actuated to position the substrate 10 to the desired angular orientation in evaporant stream 16; or for oscillation or reciprocation of the substrate in the evaporant stream.
  • the vacuum source can comprise a molten pool of 70 aluminum/30 copper alloy to coat an electrically conductive metal film on the wafer (e.g. substrate 10).
  • FIG. 4 illustrates a modification of the complex motion fixture in this embodiment enabling vertical dis placement of the holder 58 along the extension of spindle 38.
  • spindle 38 is bored to accommodate a stem 38A slideably secured within the spindle 38 by a set screw 72 after the spatial disposition of the holder 38 is obtained, as for example as shown in phantom in the drawing.
  • the exterior end of stem 38A is secured to holder 37.
  • FIG. 5 shows another embodiment of this invention in which orbital motions are provided for substrate holders 37A.
  • the stems 38B of a plurality of holders 37A are mounted through bearings 39A in a rotator stage 73, having a spindle 74 extending via bearings 75 and 75A through the cross-piece 76 of yoke 40A.
  • Secured to the bottom of cross-piece 76 is a stationary sun gear 77 peripherally extending from hollow shank 78 mounted about spindle 74.
  • the sun gear 77 is meshed with satellite gears 79 secured to the top of the holder stems 383.
  • the satellite gears 79 are driven about sun gear 77 to induce rotation of the holders 37A about a parallel axis.
  • Drive for the rotor stage 73 is obtained by means of the driven pulley 80 via a belt drive 81 (e.g. a steel band) which passes over a drive pulley 82 mounted to drive spindle 83 which extends through bearings 84 and 84A, and has secured to its opposite end a bevel gear 85 meshed with a second bevel gear 86 secured to the end of the drive shaft 49A.
  • a belt drive 81 e.g. a steel band
  • drive pulley 82 mounted to drive spindle 83 which extends through bearings 84 and 84A, and has secured to its opposite end a bevel gear 85 meshed with a second bevel gear 86 secured to the end of the drive shaft 49A.
  • Apparatus for coating a plurality of substantially planar substrates comprising A. a coating chamber;
  • a hatch means pivotally mounted on said wall for movement into open and closed position relative to said port with said closed position securing said hatch in sealing relationship with said coating chamber; oscillatory frame means supported on the inner wall of said hatch means;
  • K. coating means comprising a vapor source for evaporating and directing a stream of coating material onto said substrates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A coating apparatus, such as for vacuum deposition, in which an access port, of a deposition chamber, is provided with a hatch door having mounted on its inner surface workpiece supports adapted for turning on two mutually perpendicular axii within a stream of coating material. Included is a modification in which a plurality of supports are concentrically orbited about a third axis with the coating stream.

Description

Brunner et al.
[ 1 VARIABLE INCIDENCE DRIVE FOR DEPOSITION TOOLING [75] Inventors: Rolf H. Brunner, Poughkeepsie;
William C. Lester, Hopewell Junction, both of NY.
[73] Assignee: International Business Machines Corporation, Armonk, NY.
122] Filed: May 31,1974
[21] Appl. No.1 475,005
[52] US. Cl ll8/49.I; 118/53 [51] Int. Cl. C230 13/08 [58] Field of Search ll8/5257, ll8/48-49.5, 500-503, 416; 117/107.]
[56] References Cited UNITED STATES PATENTS 1.003.441 9/1911 Eaton 118/238 X 2,369,155 2/1945 Marinsky ct a1 1 113/421 X 2,804.976 9/1957 Russcll et al 118/53 UX 1 1 June 17, 1975 2,824,029 2/1958 Zinty 118/53 UX 2.997.979 8/1961 Tassara... 118/49 3.046.157 7/1962 Nyman 118/53 UX 3,131,917 5/1964 Gessner ct a1. 118/59 X 3,236,205 2/1966 Kopito 1 l lit/49.1 3.297.475 1/1967 Flacchc t 118/53 X 3.673.984 7/1972 Coulombe... 118/416 3,752,691 8/1973 Little. Jr. 118/491 X Primary Examiner-Morris Kaplan Attorney, Agent, or FirmHenry Powers 7] ABSTRACT I Claim, 5 Drawing Figures VACUUM PUl lP PATENTEUJUN 17 I975 SHEET FIG. 3
VARIABLE INCIDENCE DRIVE FOR DEPOSITION TOOLING FIELD OF THE INVENTION This invention relates to deposition toolings, and more particularly, to providing rotational motion to substrates to be coated, such as semiconductor wafers or substrates, during coating operations to obtain better coverage over surface topography and more uniform coatings thereon.
BACKGROUND OF THE INVENTION Vacuum coating of substrates from a suitable source material is extensively used for various applications. Typically, such applications involve, among others, the deposition of non-metallic coatings on optical lenses, various coatings on paper, and in particular, the coating of electrically conductive metal and dielectric films on semiconductor substrates for enabling subsequent encapsulation and delineation of conductor patterns in semiconductor device fabrication.
Such systems comprise a deposition chamber under vacuum containing holders for the substrates to be coated within a coating stream generated by a spaced coating source also contained within the chamber. Alternately, such systems, as described in U.S. Pat. Nos. 3,5 24,426 and 3,641,973, can subdivide the deposition chamber into a coating chamber and a main or evaporation chamber, the latter containing a spaced source of coating material to be evaporated in a stream onto a substrate supported in the coating chamber which can controllably be placed in communication and isolation with respect to the evaporation chamber. A vac uum gate valve can be normally employed intermediate the coating and evaporation chambers to either, in the open position, place them in communication with each other or, in the closed position, to isolate each from the other. In any event, a vacuum source, such as a diffusion pump, is normally connected to the evaporation chamber to maintain a continuous vacuum therein.
Since the intensity in a cross-section of a stream of coating materia from a source thereof, varies in accordance with the cosine law of distribution, in order to prevent non-uniformity of deposition on substrates, particularly those with irregular surfaces, during coating operations, various arrang -rnents have proposed to subject the substrate to substantially the same amount of exposure in the coating stream. Some arrangements have proposed the pivoting of the substrates relative to the coating stream with simultaneous rotation thereof, to obtain optimized uniformity of the coating deposited across the surfaces of the wafer. Illustrative of the more simplified proposal are such as described in U.S. Pat. Nos. 2,351,537, 3,131,917, 3,297,475 and 3,756,847.
In order to further increase the uniformity of coating deposits, more complex arrangements for controlling the spatial disposition of substrates, in a coating stream, have been advanced. Such arrangements are typically designed with a fixture or rack adapted for rotation of each of a large number of substrates on an axis oblique to the coating stream with concurrent orbiting of the substrates about a second parallel axis, and rotation of the holders about and within the coating stream. Illustrative of these systems is that described in U.S. Pat. No. 3,598,083.
Each of such systems is characterized by substrate holding fixtures which are discretely mounted in a coating chamber requiring substantial disassembly of the coating apparatus for loading and unloading of workpieces, particularly where complex motion is desired for the substrates. Where simplified loading and unloading of workpieces is provided for, the substrate motions have been characterized with a corresponding simplicity.
SUMMARY OF THE INVENTION It has been discovered in accordance with this invention, that fixtures for imparting complex motion to substrates, during coating operations, can be made an integral part of the coating apparatus. In its simplest configuration, such a fixture can be mounted on a hatch or closure member pivotally mounted adjacent an access port of a coating chamber, which on sealing closure therewith position the substrate in a coating stream generated from a suitable source. In this configuration, the substrates can be angularly indexed or reciprocated in the coating stream on one axis with concurrent rotation of the substrates on a transverse or perpendicular axis. In the preferred form, for coating ofa plurality of substrates, the fixture can be provided with orbital motion of the substrates about an axis coextending with substrate rotational axis.
Other features, objects and advantages will become more apparent from the following more detailed description of the invention in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic drawing in cross-section of one embodiment of the complex motion drive in accordance with this invention.
FIG. 2 is a diagrammatic view of a substrate holder for use in the embodiment of FIG. 1.
FIG. 3 is a more detailed schematic drawing of the complex motion drive of FIG. 1.
FIG. 4 illustrates a spatial variability of the substrate holder in the drive of FIG. 3.
FIG. 5 is a schematic drawing of a more complex motion drive embodiment of this invention incorporating the feature of orbital motion.
DESCRIPTION OF PREFERRED EMBODIMENTS Although the vacuum coating apparatuses of this invention have a wide variety of applications, they will be described below in conjunction with the coating of electrically conductive metal films on semiconductor substrates for subsequent photolithographic delineation of conductor patterns in device fabrication.
Referring to the drawings, the vacuum coating apparatus 1 comprises a deposition chamber 2 in a vacuum environment generated by a vacuum pump 3 (e. g. a diffusion pump) through a vacuum access duct 4 in the lower wall of the chamber enclosure 5.
The deposition chamber 2 includes a conventional vapor or ion source 6 of the type shown in U.S. Pat. No. 3,710,072 which may be referred to for details of construction. Source 6 will normally comprise a water cooled crucible 7 having coolant passages 8 through which a coolant may be circulated by suitable means, not shown. Crucible 7 contains a molten pool 9 of evaporant material from which vapor of the coating is produced, as for example aluminum or copper aluminum alloy for coating of an electrically conductive film of semiconductor substrates 10 (see FIG. 2) in device fabrication. The molten pool 9 is heated by an electron beam 11, deflected in an arcuate path by suitable magnetic field, from an electron beam gun l2.
Mounted in deposition chamber 2, about vacuum source 6, is an enclosing evaporant shield 13 having an opening 14 in top wall 15 thereof, for shaping the evaporant stream 16 of the coating material from source 6.
In order to prevent the coating of drive fixture 17 in the closed position, a shutter 18 is provided between the source material 16, at the shaping port 14, and the drive fixture 17. The shutter 18 is mounted on a pivot shaft 19 extending through shield 15, the bottom wall 20 (of chamber 2) and in a vacuum tight bushing 21 secured thereto.
Deposition chamber 2 includes an access port 29 which serves to load and unload substrates into and out of the chamber. The access port 29 is adapted to be opened and closed by a hatch door or cover member 30 pivotally mounted to a bracket 31 and having an annular groove 32 for mounting of an O-ring 33 or other suitable sealing means.
Located on the inner surface of hatch 30 are frame members 36 and 36A for suspension of the drive fixture 17. The fixture 17 includes a substrate holder rotatably mounted by spindle 38 in a bearing 39 of yoke member 40 having one leg 41 secured to a pin 42 pivotally mounted through a bearing 43 in frame member 36. Mounted at the outboard end of pin 42 is a bevel gear 44 in driven relationship with a mating bevel gear 45 on a drive shaft 46 extending through hatch 30 for external drive by a suitable gear train and motor means, not shown, for pivoting the support fixture 17 in any angular displacement or in reciprocating motion of the substrate holder within the evaporant path stream 16. The angular displacement of the substrate holder 37 can be indexed or programmed to provide a corresponding fixed angle of incidence to the evaporant path 16, from horizontal to vertical; or the holder 17 can be reciprocated or oscillated to continuously vary the angle of incidence, during deposition, to optimize the coverage of complex geometry steps. In programmed pivoting of fixture 17, the holder 37 can be exercized through a series of sequential angles of incidence and wafer dwell times at the various angles.
Rotatably secured through a bearing 47 in the other leg 48 of yoke 40, is a shaft 49 also rotatably extending through the bearing 50 in frame member 36A. The outboard end of shaft 49 has secured to it a bevel gear 51 drivingly meshed with a mating bevel gear 52 on the end of a drive shaft 53 extending through hatch 30 for external rotational drive by a suitable motor means, not shown.
The inboard end of shaft 49 has secured to it a pulley 54 to drive the substrate holder 37 by means of a spring or elastic belt 55 which passes over idler pulley 56 and around driver pulley 57 secured to the end of spindle 38.
Holder 37 comprises a support base 58 having a plurality of finger grips 59 having pivoted clamping lips 60 positioned over the support face of base 58 by means of compression springs 61 which are secured between annular seats 62, secured to the back side of support base 58, and like registered annular seats 63 secured to lateral extensions 64, of grips 59, pivotally mounted to brackets 65, also secured to the back side of support base 58. As will be noted, the lips 60 are formed with an angular configuration 66 to facilitate camming of grips 59 open if a tool is desired to be employed for positioning substrate 10 on holder 37.
Mechanical movement of the closure hatch or lid 30 can be effected by pivotally connecting mounting bracket 31 to a clevis member 67 on the end of a piston rod 68 of a pneumatic or hydraulic cylinder 69 suitably mounted (not shown) in any convenient manner to the vacuum coating apparatus.
In operation, for loading of a substrate, hydraulic cylinder 69 can be activated to open hatch 30, with supplemental actuation of drive shaft 46 to pivot yoke 40 to the angular displacement necessary to position holder 37, in the horizontal position, particularly if mechanical means are employed for loading and unloading substrates. At this point, any substrates on holder 37 may be removed, and a new substrate (e.g. a semiconductor wafer) mounted thereon, followed by closure of hatch 30, which will position the substrate in the evaporant path 16 on rotation of shutter out of in front of the shaping port 18 to permit the evaporant stream from vacuum source 6 to flow onto the substrate 10 mounted on holder 37. To protect major portions of the drive fixture from undesired deposition of the coating material, a protective shield 70 is provided with an aperture 71 to restrict the deposition area of the evaporant stream 16 to substantially the substrate 10.
For the coating operation, the drive shaft 46 can be actuated to position the substrate 10 to the desired angular orientation in evaporant stream 16; or for oscillation or reciprocation of the substrate in the evaporant stream. For photolithographic delineation of conductor pattern on semiconductor devices, the vacuum source can comprise a molten pool of 70 aluminum/30 copper alloy to coat an electrically conductive metal film on the wafer (e.g. substrate 10).
FIG. 4 illustrates a modification of the complex motion fixture in this embodiment enabling vertical dis placement of the holder 58 along the extension of spindle 38. For this purpose, spindle 38 is bored to accommodate a stem 38A slideably secured within the spindle 38 by a set screw 72 after the spatial disposition of the holder 38 is obtained, as for example as shown in phantom in the drawing. As will be understood, the exterior end of stem 38A is secured to holder 37.
FIG. 5 shows another embodiment of this invention in which orbital motions are provided for substrate holders 37A. In this embodiment, the stems 38B of a plurality of holders 37A, are mounted through bearings 39A in a rotator stage 73, having a spindle 74 extending via bearings 75 and 75A through the cross-piece 76 of yoke 40A. Secured to the bottom of cross-piece 76 is a stationary sun gear 77 peripherally extending from hollow shank 78 mounted about spindle 74. The sun gear 77 is meshed with satellite gears 79 secured to the top of the holder stems 383. As can be seen, when the rotorstage 73 is rotated to orbit the holders about the axis of spindle 74, the satellite gears 79 are driven about sun gear 77 to induce rotation of the holders 37A about a parallel axis.
Drive for the rotor stage 73 is obtained by means of the driven pulley 80 via a belt drive 81 (e.g. a steel band) which passes over a drive pulley 82 mounted to drive spindle 83 which extends through bearings 84 and 84A, and has secured to its opposite end a bevel gear 85 meshed with a second bevel gear 86 secured to the end of the drive shaft 49A. By means of the foregoing tional axisof holders 37 and 37A, as well as the axis 1 rotor shaft 74 where orbital motion is included in the system.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope of the invention.
What is claimed is:
1. Apparatus for coating a plurality of substantially planar substrates comprising A. a coating chamber;
B. a port in a wall of said chamber;
C. a hatch means pivotally mounted on said wall for movement into open and closed position relative to said port with said closed position securing said hatch in sealing relationship with said coating chamber; oscillatory frame means supported on the inner wall of said hatch means;
E. means supporting said frame additionally supporting means to oscillate said frame;
F. rotatable means supported within the said frame and mounting a plurality of substrate holders in a substantially common plane on a circle concentric with the axis of said rotatable means;
0. means rotating said rotatable means whereby to orbit said holders about said axis, said axis being normal to the axis of said oscillation;
H. rotary means carried on said rotatable means and operatively associated with said holders whereby to rotate each said holder about its own axis which is normal to the axis of said oscillation;
I. drive means common to each said rotary and rotatable means whereby to simultaneously effect said holder orbital and rotative movements;
J. said holder orbital and rotative and said frame oscillatory movements occurring simultaneously; and
K. coating means comprising a vapor source for evaporating and directing a stream of coating material onto said substrates.

Claims (1)

1. Apparatus for coating a plurality of substantially planar substrates comprising A. a coating chamber; B. a port in a wall of said chamber; C. a hatch means pivotally mounted on said wall for movement into open and closed position relative to said port with said closed position securing said hatch in sealing relationship with said coating chambeR; oscillatory frame means supported on the inner wall of said hatch means; E. means supporting said frame additionally supporting means to oscillate said frame; F. rotatable means supported within the said frame and mounting a plurality of substrate holders in a substantially common plane on a circle concentric with the axis of said rotatable means; G. means rotating said rotatable means whereby to orbit said holders about said axis, said axis being normal to the axis of said oscillation; H. rotary means carried on said rotatable means and operatively associated with said holders whereby to rotate each said holder about its own axis which is normal to the axis of said oscillation; I. drive means common to each said rotary and rotatable means whereby to simultaneously effect said holder orbital and rotative movements; J. said holder orbital and rotative and said frame oscillatory movements occurring simultaneously; and K. coating means comprising a vapor source for evaporating and directing a stream of coating material onto said substrates.
US475005A 1974-05-31 1974-05-31 Variable incidence drive for deposition tooling Expired - Lifetime US3889632A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US475005A US3889632A (en) 1974-05-31 1974-05-31 Variable incidence drive for deposition tooling
DE19752513604 DE2513604A1 (en) 1974-05-31 1975-03-27 DEVICE FOR COATING SUBSTRATES
FR7513749A FR2273372B1 (en) 1974-05-31 1975-04-24
GB1791075A GB1452720A (en) 1974-05-31 1975-04-30 Coating apparatus
JP50053324A JPS50159447A (en) 1974-05-31 1975-05-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US475005A US3889632A (en) 1974-05-31 1974-05-31 Variable incidence drive for deposition tooling

Publications (1)

Publication Number Publication Date
US3889632A true US3889632A (en) 1975-06-17

Family

ID=23885855

Family Applications (1)

Application Number Title Priority Date Filing Date
US475005A Expired - Lifetime US3889632A (en) 1974-05-31 1974-05-31 Variable incidence drive for deposition tooling

Country Status (5)

Country Link
US (1) US3889632A (en)
JP (1) JPS50159447A (en)
DE (1) DE2513604A1 (en)
FR (1) FR2273372B1 (en)
GB (1) GB1452720A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983838A (en) * 1975-12-31 1976-10-05 International Business Machines Corporation Planetary evaporator
US3986478A (en) * 1975-05-15 1976-10-19 Motorola, Inc. Vapor deposition apparatus including orbital substrate holder
US4062319A (en) * 1975-12-18 1977-12-13 Western Electric Co., Inc. Vacuum treating apparatus
US4108107A (en) * 1976-04-01 1978-08-22 Airco, Inc. Rotatable substrate holder for use in vacuum
US4237662A (en) * 1978-04-04 1980-12-09 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Structural members, method and apparatus
US4269137A (en) * 1979-03-19 1981-05-26 Xerox Corporation Pretreatment of substrates prior to thin film deposition
US4310614A (en) * 1979-03-19 1982-01-12 Xerox Corporation Method and apparatus for pretreating and depositing thin films on substrates
US4583488A (en) * 1984-03-23 1986-04-22 International Business Machines Corporation Variable axis rotary drive vacuum deposition system
US4798165A (en) * 1985-10-07 1989-01-17 Epsilon Apparatus for chemical vapor deposition using an axially symmetric gas flow
US4816133A (en) * 1987-05-14 1989-03-28 Northrop Corporation Apparatus for preparing thin film optical coatings on substrates
US5370739A (en) * 1992-06-15 1994-12-06 Materials Research Corporation Rotating susceptor semiconductor wafer processing cluster tool module useful for tungsten CVD
US5476520A (en) * 1989-07-10 1995-12-19 Applied Materials, Inc. Shield assembly for semiconductor wafer supports
FR2732362A1 (en) * 1995-03-31 1996-10-04 Balzers Hochvakuum Planetary cathodic sputter deposition station for optical or opthalmic lenses
EP0739001A2 (en) * 1995-04-17 1996-10-23 Read-Rite Corporation Deposition of insulating thin film by plurality of ion beams
DE19701419A1 (en) * 1997-01-17 1998-07-23 Geesthacht Gkss Forschung Substrate holding unit
US6082296A (en) * 1999-09-22 2000-07-04 Xerox Corporation Thin film deposition chamber
EP1168421A2 (en) 2000-06-30 2002-01-02 Tokyo Electron Limited Liquid processing apparatus
US20020073751A1 (en) * 2000-12-19 2002-06-20 Wilson Larry Stephen Retaining device for personal vehicle with handlebars
US20050150461A1 (en) * 2004-01-08 2005-07-14 Samsung Electronics Co., Ltd. Apparatus of depositing thin film with high uniformity
US20050241586A1 (en) * 2004-04-30 2005-11-03 Hon Hai Precision Industry Co., Ltd. Vacuum vapor deposition apparatus
EP1748090A1 (en) * 2005-07-28 2007-01-31 Leybold Optics GmbH Substrates heat treatment apparatus
WO2011116563A1 (en) * 2010-03-23 2011-09-29 东莞宏威数码机械有限公司 Vacuum vapor deposition apparatus
US20110315078A1 (en) * 2010-06-29 2011-12-29 Hon Hai Precision Industry Co., Ltd. Coating system
US20120067279A1 (en) * 2010-09-21 2012-03-22 Hon Hai Precision Industry Co., Ltd. Conveying device and deposition device using same
CN104084351A (en) * 2014-07-04 2014-10-08 长兴宏能电热膜元件厂 Rotary mechanism for facilitating film spraying of electric heating pipe
US9230846B2 (en) * 2010-06-07 2016-01-05 Veeco Instruments, Inc. Multi-wafer rotating disc reactor with inertial planetary drive
US20200251303A1 (en) * 2017-03-27 2020-08-06 Hitachi High-Tech Science Corporation Charged particle beam apparatus
US20220349043A1 (en) * 2019-11-14 2022-11-03 Safran Electronics & Defense Tiltable and rotatable substrate carrier and multi-layer vacuum deposition system comprising same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2944180A1 (en) * 1979-11-02 1981-05-07 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt METHOD FOR PRODUCING AN INSULATION LAYER COVERING A SEMICONDUCTOR BODY ON ONE SIDE
US4609564C2 (en) * 1981-02-24 2001-10-09 Masco Vt Inc Method of and apparatus for the coating of a substrate with material electrically transformed into a vapor phase
US4596719A (en) * 1981-02-24 1986-06-24 Wedtech Corp. Multilayer coating method and apparatus
US4537794A (en) * 1981-02-24 1985-08-27 Wedtech Corp. Method of coating ceramics
US4351855A (en) * 1981-02-24 1982-09-28 Eduard Pinkhasov Noncrucible method of and apparatus for the vapor deposition of material upon a substrate using voltaic arc in vacuum
GB2139248A (en) * 1983-05-04 1984-11-07 Gen Electric Co Plc Copper alloy solderable contact pad produced by vapour deposition
IL74360A (en) * 1984-05-25 1989-01-31 Wedtech Corp Method of coating ceramics and quartz crucibles with material electrically transformed into a vapor phase
JPS61227165A (en) * 1985-03-29 1986-10-09 Mitsubishi Electric Corp Vapor deposition device
DE3803411A1 (en) * 1988-02-05 1989-08-17 Leybold Ag DEVICE FOR HOLDING WORKPIECES
JPH02305438A (en) * 1989-05-19 1990-12-19 Mitsubishi Electric Corp Vacuum deposition device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1003441A (en) * 1910-11-04 1911-09-19 Levi F Eaton Blackleading-machine.
US2369155A (en) * 1941-12-22 1945-02-13 Marinsky Davis Method of conditioning wound strand bodies
US2804976A (en) * 1954-02-03 1957-09-03 Kaiser Aluminium Chem Corp Method and apparatus for treating material
US2824029A (en) * 1956-03-16 1958-02-18 Magnus Chemical Company Inc Method and apparatus for washing machine parts
US2997979A (en) * 1958-09-15 1961-08-29 Tassara Luigi Apparatus for applying metallic film to electrical components and the like
US3046157A (en) * 1958-05-07 1962-07-24 Philips Corp Method for coating the inner wall of a tube intended for electric discharge lamps with a uniform liquid layer as well as an arrangement for the application of the method
US3131917A (en) * 1958-09-09 1964-05-05 Gessner Siegfried Device for adjusting the spatial position of articles to be treated in a treatment chamber
US3236205A (en) * 1961-04-24 1966-02-22 Baird Atomic Inc High temperature furnace
US3297475A (en) * 1963-05-27 1967-01-10 New York Air Brake Co Coating method and apparatus employing rotating workholder
US3673984A (en) * 1970-08-28 1972-07-04 Dart Ind Inc Dip coating machine
US3752691A (en) * 1971-06-29 1973-08-14 Xerox Corp Method of vacuum evaporation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1003441A (en) * 1910-11-04 1911-09-19 Levi F Eaton Blackleading-machine.
US2369155A (en) * 1941-12-22 1945-02-13 Marinsky Davis Method of conditioning wound strand bodies
US2804976A (en) * 1954-02-03 1957-09-03 Kaiser Aluminium Chem Corp Method and apparatus for treating material
US2824029A (en) * 1956-03-16 1958-02-18 Magnus Chemical Company Inc Method and apparatus for washing machine parts
US3046157A (en) * 1958-05-07 1962-07-24 Philips Corp Method for coating the inner wall of a tube intended for electric discharge lamps with a uniform liquid layer as well as an arrangement for the application of the method
US3131917A (en) * 1958-09-09 1964-05-05 Gessner Siegfried Device for adjusting the spatial position of articles to be treated in a treatment chamber
US2997979A (en) * 1958-09-15 1961-08-29 Tassara Luigi Apparatus for applying metallic film to electrical components and the like
US3236205A (en) * 1961-04-24 1966-02-22 Baird Atomic Inc High temperature furnace
US3297475A (en) * 1963-05-27 1967-01-10 New York Air Brake Co Coating method and apparatus employing rotating workholder
US3673984A (en) * 1970-08-28 1972-07-04 Dart Ind Inc Dip coating machine
US3752691A (en) * 1971-06-29 1973-08-14 Xerox Corp Method of vacuum evaporation

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3986478A (en) * 1975-05-15 1976-10-19 Motorola, Inc. Vapor deposition apparatus including orbital substrate holder
US4062319A (en) * 1975-12-18 1977-12-13 Western Electric Co., Inc. Vacuum treating apparatus
US3983838A (en) * 1975-12-31 1976-10-05 International Business Machines Corporation Planetary evaporator
US4108107A (en) * 1976-04-01 1978-08-22 Airco, Inc. Rotatable substrate holder for use in vacuum
US4122221A (en) * 1976-04-01 1978-10-24 Airco, Inc. Orbiting and rotating substrate
US4237662A (en) * 1978-04-04 1980-12-09 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Structural members, method and apparatus
US4269137A (en) * 1979-03-19 1981-05-26 Xerox Corporation Pretreatment of substrates prior to thin film deposition
US4310614A (en) * 1979-03-19 1982-01-12 Xerox Corporation Method and apparatus for pretreating and depositing thin films on substrates
US4583488A (en) * 1984-03-23 1986-04-22 International Business Machines Corporation Variable axis rotary drive vacuum deposition system
US4798165A (en) * 1985-10-07 1989-01-17 Epsilon Apparatus for chemical vapor deposition using an axially symmetric gas flow
US4816133A (en) * 1987-05-14 1989-03-28 Northrop Corporation Apparatus for preparing thin film optical coatings on substrates
US5476520A (en) * 1989-07-10 1995-12-19 Applied Materials, Inc. Shield assembly for semiconductor wafer supports
US5370739A (en) * 1992-06-15 1994-12-06 Materials Research Corporation Rotating susceptor semiconductor wafer processing cluster tool module useful for tungsten CVD
US6123814A (en) * 1995-03-31 2000-09-26 Balzers Aktiengesellschaft Coating station
FR2732362A1 (en) * 1995-03-31 1996-10-04 Balzers Hochvakuum Planetary cathodic sputter deposition station for optical or opthalmic lenses
EP0739001A2 (en) * 1995-04-17 1996-10-23 Read-Rite Corporation Deposition of insulating thin film by plurality of ion beams
EP0739001A3 (en) * 1995-04-17 1998-05-13 Read-Rite Corporation Deposition of insulating thin film by plurality of ion beams
DE19701419A1 (en) * 1997-01-17 1998-07-23 Geesthacht Gkss Forschung Substrate holding unit
US6082296A (en) * 1999-09-22 2000-07-04 Xerox Corporation Thin film deposition chamber
EP1168421A2 (en) 2000-06-30 2002-01-02 Tokyo Electron Limited Liquid processing apparatus
US6776173B2 (en) * 2000-06-30 2004-08-17 Tokyo Electron Limited Liquid processing apparatus
US20050103364A1 (en) * 2000-06-30 2005-05-19 Yuji Kamikawa Liquid processing apparatus
US7284560B2 (en) 2000-06-30 2007-10-23 Toktyo Electron Limited Liquid processing apparatus
EP1168421A3 (en) * 2000-06-30 2005-10-19 Tokyo Electron Limited Liquid processing apparatus
US20020073751A1 (en) * 2000-12-19 2002-06-20 Wilson Larry Stephen Retaining device for personal vehicle with handlebars
US6966952B2 (en) * 2004-01-08 2005-11-22 Samsung Electronics Co., Ltd. Apparatus of depositing thin film with high uniformity
US20050150461A1 (en) * 2004-01-08 2005-07-14 Samsung Electronics Co., Ltd. Apparatus of depositing thin film with high uniformity
US20050241586A1 (en) * 2004-04-30 2005-11-03 Hon Hai Precision Industry Co., Ltd. Vacuum vapor deposition apparatus
EP1748090A1 (en) * 2005-07-28 2007-01-31 Leybold Optics GmbH Substrates heat treatment apparatus
WO2011116563A1 (en) * 2010-03-23 2011-09-29 东莞宏威数码机械有限公司 Vacuum vapor deposition apparatus
US9230846B2 (en) * 2010-06-07 2016-01-05 Veeco Instruments, Inc. Multi-wafer rotating disc reactor with inertial planetary drive
US20110315078A1 (en) * 2010-06-29 2011-12-29 Hon Hai Precision Industry Co., Ltd. Coating system
US20120067279A1 (en) * 2010-09-21 2012-03-22 Hon Hai Precision Industry Co., Ltd. Conveying device and deposition device using same
US8601974B2 (en) * 2010-09-21 2013-12-10 Hon Hai Precision Industry Co., Ltd. Conveying device having carrier with revolving frame and deposition device using same
CN104084351A (en) * 2014-07-04 2014-10-08 长兴宏能电热膜元件厂 Rotary mechanism for facilitating film spraying of electric heating pipe
US20200251303A1 (en) * 2017-03-27 2020-08-06 Hitachi High-Tech Science Corporation Charged particle beam apparatus
US20220349043A1 (en) * 2019-11-14 2022-11-03 Safran Electronics & Defense Tiltable and rotatable substrate carrier and multi-layer vacuum deposition system comprising same
US11643718B2 (en) * 2019-11-14 2023-05-09 Safran Electronics & Defense Tiltable and rotatable substrate carrier and multi-layer vacuum deposition system comprising same

Also Published As

Publication number Publication date
GB1452720A (en) 1976-10-13
FR2273372A1 (en) 1975-12-26
JPS50159447A (en) 1975-12-24
DE2513604A1 (en) 1975-12-11
FR2273372B1 (en) 1977-04-15

Similar Documents

Publication Publication Date Title
US3889632A (en) Variable incidence drive for deposition tooling
CA1118714A (en) Vacuum treating apparatus
JP2021528561A (en) Sedimentary system with shield mount
EP0435577B1 (en) Method and apparatus for coating receptor substrates in an enclosed planetary array
US3598083A (en) Complex motion mechanism for thin film coating apparatuses
US5674368A (en) Film forming apparatus
US4187801A (en) Method and apparatus for transporting workpieces
JP2913745B2 (en) Vacuum deposition equipment
KR101235539B1 (en) Lift-off deposition system featuring a density optimized hula substrate holder in a conical deposition chamber
JPS6040532A (en) Apparatus for handing and coating disc or wafer
US6241824B1 (en) Apparatus for the coating of substrates in a vacuum chamber
US5138974A (en) Vacuum apparatus for coating an optical substrate
US3926147A (en) Glow discharge-tumbling vapor deposition apparatus
US3921572A (en) Vacuum coating apparatus
KR19980042562A (en) Film deposition method and sputtering device
US3516386A (en) Thin film deposition fixture
JP5028584B2 (en) Vacuum deposition apparatus for liquid crystal alignment film and film forming method thereof
US3859956A (en) Multiworkpiece condensation coating apparatus
US5074246A (en) Device to cover a flat surface with a layer of uniform thickness
US4583488A (en) Variable axis rotary drive vacuum deposition system
JPH08236449A (en) Vapor-depositing device
US20030075102A1 (en) System for inverting substrates
US20190338410A1 (en) Alternating tangent mounted evaporative deposition source mechanism for rapid cycle coating
JP2752409B2 (en) Vacuum deposition equipment
JPH032946B2 (en)