US3881483A - Extracorporeal blood circuit - Google Patents
Extracorporeal blood circuit Download PDFInfo
- Publication number
- US3881483A US3881483A US396603A US39660373A US3881483A US 3881483 A US3881483 A US 3881483A US 396603 A US396603 A US 396603A US 39660373 A US39660373 A US 39660373A US 3881483 A US3881483 A US 3881483A
- Authority
- US
- United States
- Prior art keywords
- pump
- blood
- inlet
- blood circuit
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1698—Blood oxygenators with or without heat-exchangers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3623—Means for actively controlling temperature of blood
Definitions
- the present invention relates to an extracorporeal blood circuit connecting a membrane-containing blood oxygenating device to the vascular system of a patient, for assisting or replacing the pulmonary, cardiac or cardiopulmonary system.
- Extracorporeal blood circuits which util ise two circulating pumps located in series on either side of a membrane-containing blood oxygenator.
- a pipeline for partially recycling arterial blood through the oxygenator or complex control systems are required in order to maintain a definite pressure in the oxygenator, necessary for keeping the blood in the form of thin films of constant thickness.
- an extracorporeal blood circuit comprising, a blood oxygenator; a first peristaltic pump or tubular membrane and valve pump, having an inlet connectable to a patients blood circuit and an outlet connected in series with the oxygenator and a second peristaltic pump or tubular membrane and valve pump, having an inlet connected in series with the blood oxygenator and an outlet connectable to said patients blood circuit, the useful internal volume of the body of the first and second pumps, varying substantially proportionally to the pressure of the blood at the inlet, between minimum and maximum values, the maximum useful volume for the first pump and the minimum useful volume of the second pump being reached at a pressure of the blood at the inlet of the respective pump within the range of atmospheric pressure i mm of mercury.
- FIG. 1 is a schematic view of one embodiment of an extracorporeal blood circuit according to the invention.
- FIG. 2 shows the characteristic flow rate-pressure curve of a peristaltic pump which can be used in the circuit according to the invention.
- FIG. 3 shows the combination of the characteristic flow rate/pressure curves of two pumps located on either side of the blood oxygenator.
- blood oxygenator which has become accepted through use, denotes an exchanger of respiratory gas, that is to say not only an oxygen exchanger, but also an exchanger of carbon dioxide, water vapour and nitrogen and optionally of gases or vapours with medicinal and/or anaesthetic effects, and also possibly a heat exchanger.
- the extracorporeal blood circuit connects a blood oxygenator l of a type which is in itself known, comprising at least one membrane 2, to the venous-arterial system of a patient.
- a cannula 3 is introduced, for example, into the inferior vena cava.
- a cannula which contains a non-occlusive enlargement near its end is preferably used.
- This enlargement can consist of three radial resilient branches 5 which press against the venous walls and keep them spaced apart locally, which clears the orifice of the cannula.
- the branches can advantageously become smaller in order to pass through a collateral of smaller size 4 (for example, the femoral vein) sectioned for this purpose.
- the cannula 3 is connected to the inlet of the blood oxygenator 1 via a flexible tube 7, for example made of silicone elastomer, on which a first pump 6, of the peristaltic type or of the type with a tubular membrane and valves (also called a ventricular pump), is placed.
- a flexible tube 7 for example made of silicone elastomer, on which a first pump 6, of the peristaltic type or of the type with a tubular membrane and valves (also called a ventricular pump), is placed.
- a flexible tube 11 also made of silicone elastomer, connects the outlet of the blood oxygenator l to a cannula introduced into an artery 9, or preferably to a flared-out prosthesis 8 sutured to the artery, generally a femoral artery.
- a second pump 10 also of the peristaltic type or of the type with a tubular membrane and valves, is located on this tube 11.
- the artery is slit longitudinally and the prosthesis 8 is sutured obliquely onto the lips of the slit, so that it slopes in the direction of preferential flow.
- the two sides of the prosthesis move apart under the effect of the arterial pressure. After the prosthesis has been removed, the artery is made whole again in accordance with the usual practical procedure.
- the extracorporeal blood circuit represented by way of example is of the venous-arterial type, it is nec essary to control three different pressures, namely the blood pressure at the inlet of the pump 6, the pressure in the oxygenator and the arterial pressure of the patient, in order to keep them at the desired values.
- a manometer 17 is placed on the tube 7, immediately upstream of the inlet of the pump 6.
- this manometer measures the blood pressure through the walls of the flexible tube 7, which reduces the risks of blood coagulation.
- the manometer it is possible to use, for example, that described in French Pat. No. 7 I /43,88 1.
- a knowledge of the blood pressure at the inlet of the pump 6 makes it possible to know its flow rate.
- a manometer 14 makes it possible to check the blood pressure in the oxygenator.
- a device 21 for taking the arterial pressure of the patient makes it possible to keep the latter at the desired level, by acting, when necessary, either on the volume of blood by means of the bottle 16 and the pump 13, or on the vascular resistance of the patient.
- the blood must be injected into the patient at a temperature of approximately 37C.
- means for reheating and checking the temperature of the blood are provided, for example, on the tube 11.
- the reheating means advantageously consist of a heating element comprising an electrical resistance 18 surrounding the tube 11 or preferably embedded in its wall. This heating element is, for example, of the type described in French Pat. No. 7l/46,408.
- the probe 19 makes it possible to check (and if necessary to control) the reheating of the blood.
- the probe 20 makes it possible to avoid overheating the blood locally, which could arise if the blood flow rate were decreased or stopped momentarily.
- the internal walls, which are in contact with the blood, of the various components forming the circuit carry a smooth organosilicon coating applied in accordance with the process described in German patent application (DOS) No. 2,206,608.
- DOS German patent application
- the venous blood flows from the inferior vena cava, where it is at a pressure close to atmospheric pressure, via a cannula 3 and the tube 7 to the first peristaltic pump 6.
- the latter carries the blood along into the membrane-containing oxygenator 1 at a sufficient pressure to overcome the pressure drops of the apparatus.
- the compartments of the oxygenator reserved for the blood are kept full and the blood film of substantially constant thickness, the blood pressure being kept within a predetermined range indicated by the manometer 14.
- the oxygenated blood is recovered at' the outlet of the oxygenator by a second peristaltic pump 10 which brings it to a pressure enabling it to be injected into the arterial system of the patient through the prosthesis 8, after suitable reheating in the tube 11.
- the average blood flow rate is provided by the veins of the patient. It must be possible for this flow rate to vary in such a way as to prevent any increase in the venous pressure which could cause disturbances for the patient (and especially acute oedema of the lung); in order to prevent this, it is then convenient to increase the flow rate of the pumps 6 and 10, and in the opposite case, to decrease it if the venous pressure became too low, which could lead to the collapse of the veins or venous cavities.
- pumps are used, the body of which provides an internal volume which varies according to the blood pressure at the inlet, which is not generally the case with pumps of the peristaltic type or of the type with a tubular membrane and valves.
- pumps are used which provide, within the range of blood pressure at the inlet effectively used, a useful internal volume which is substantially proportional to the blood pressure at the inlet of the pump.
- Pumps such as those described in British Pat. No. 1,287,836 are preferably employed as peristaltic pumps.
- the two peristaltic pumps 6 and 10, connected in series, are generally driven synchronously, at one and the same rate or at different rates, in order to provide the same average flow rate.
- they revolve at rates which are always equal to one another, and to achieve this, they are advantageously mounted on the same drive shaft. These rates can be adjustable, but it is often of value to keep the rate constant.
- the peristaltic pumps can also be driven at the same rates, each by a separate motor but one which possesses the same rate/voltage characteristics, each motor being supplied by a (fixed or adjustable) common voltage source.
- pumps with a tubular membrane and valves, containing an inlet valve which is either automatic or preferably controlled.
- the controlled discharge valve can be of the same type as the inlet valve.
- These pumps can be connected either to separate pulse generators, synchronised on one and the same frequency, or preferably to a common pulse generator.
- the peristaltic pumps represented in FIG. 1 advantageously consist of a flexible peristaltic tube made of silicone elastomer stretched between two fixed points and revolving wheels.
- the peristaltic tube, between the wheels, generally has an elliptical cross-section which is flattened to a greater or lesser extent depending on the pressure at the inlet of the pump.
- the flow rate is a function of the pressure at the inlet of the pump, which can be seen clearly on the characteristic flow rate/intake pressure curve of such a pump, represented in FIG. 2.
- the pump provides a flow rate 0,, between two limiting values O and QM; the flow rate Q, being, within this range, substantially proportional to the pressure p,, at the inlet.
- the useful minimum pressure and the useful maximum pressure at the inlet of the pump will be denoted respectively by p and p
- Q and Q will be respectively the corresponding useful minimum and useful maximum flow rates.
- the useful minimum flow rate Q is obtained when the pressure at the inlet is sufficiently low for the tube to collapse and for its opposite walls to press against one another; the cross-section of the tube assumes a dumb-bell shape. Beyond, the cross-section of the tube becomes more flattened out, but under the effect of much lower intake pressures at the entrance of the pump, which corresponds to a rapid change in the slope of the curve.
- the useful maximum flow rate O is obtained when the pressure at the inlet of the pump is sufficiently high for the tube to assume a circular cross-section. Beyond, the tube can only expand, which requires considerably higher pressures and also corresponds to a rapid change in the slope of the curve.
- the flow rate of the pump 6 varies for a given level according to the venous pressure. Since the venous pressure at the level of the cannula 3 is close to atmospheric pressure, and since the, pressure of the blood at the inlet of the pump 6 differs therefrom by the pressure drops in the intermediate tube 5, partially compensated for by the difference in level between the cannula 3 and the pump 6, it is generally less than atmospheric pressure. Thus a pump 6 is chosen, the characteristic flow rate/pressure curve of which extends over a region of pressures which are preferably less than atmospheric pressure. The characteristic curve of the pump 6 is shown in FIG. 3.
- the useful region of the curve is between the points B, and B and the corresponding extreme useful pressures p and p are, for example, in this case, both less than atmospheric pressure (point 0, of abscissa zero).
- the pressure p like the maximum flow rate, is proportional to the speed at which the pump 6 rotates.
- the useful maximum pressure p is slightly less than atmospheric pressure, and generally less than 20 mm of mercury and preferably less than 10 mm of mercury below atmospheric pressure. This condition is achieved with a pump, the thinwalled peristaltic tube of which has, at rest, a circular cross-section (between the wheels, if what is involved is a rotating pump with wheels, as represented in FIG.
- this useful cross-section is the maximum and permits a useful maximum flow rate QM;-
- the peristaltic tube has a elliptical cross-section, with a surface area less than that of the circular crosssection of the same perimeter, corresponding to a flow rate Q
- the pressure 2 becomes equal to the useful minimum pressure p the peristaltic tube becomes more flattened and its cross-section becomes practically zero; the flow rate falls to the useful minimum flow rate Q1116.
- the pump 10 Since the pump 10 is mounted in series with the pump 6, it provides strictly the same average flow rate. The flow rate of the pump 10 is thus laid down by that of the pump 6, which itself depends on the venous pressure.
- the pumps 6 and 10 are generally located substantially at the same level as the oxygenator.
- the combination consisting of the pumps 6 and 10 and the oxygenator is generally placed below the patient, at an adjustable level, in order partially to compensate for pressure drops upstream from the pump 6 and thus to adjust the blood flow rate to the desired average value.
- a blood oxygenator consisting of an alternate stack of membranes and spacers
- the blood could rupture the membrane or overcome the hydrophobic nature of the microporous membranes and pass through them, for example under a pressure of 800 mm of mercury.
- the pressure of the blood in the oxygenator can be kept within a chosen range by means of a pump 10, the characteristic flow rate/pressure curve of which extends in a region of pressures which are essentially greater than atmospheric pressure.
- the characteristic curve of a pump 10 is shown in FIG. 3.
- the useful region of the curve is between the points C and C and the corresponding useful extreme pressures p and p are, for example, in this case, both greater than atmospheric pressure.
- the useful minimum pressure p is advantageous for the useful minimum pressure p to be equal to or slightly greater than atmospheric pressure, and generally less than mm of mercury, and preferably less than 10 mm, above atmospheric pressure.
- This condition is achieved with a pump, the peristaltic tube of which, at rest, has a flattened crosssection; this cross-section is practically the minimum and allows a minimum useful flow rate Q
- the tube of the pump 10 is quite thin-walled to enable the useful maximum flow rate OM10 to be reached for a useful maximum pressure p generally less than 200 mm of mercury above atmospheric pressure and preferably of the order of 50 mm of mercury.
- the tube of the pump 10 will have a more or less flattened cross-section, corresponding to pressures, at the outlet of the oxygenator, of between 0 and, for example, 50 mm of mercury above atmospheric pressure.
- the maximum pressure at the inlet of the oxygenator depends on the pressure drops in the latter, which are generally less than mm of mercury for blood flow rates of the order of 600 millilitres/minute in an oxygenator with a surface area of 0.5 m
- the first condition is that the useful maximum flow rate capacity of the pump 10 placed at the outlet of the oxygenator is greater than that of the pump 6 placed at the inlet of the oxygenator.
- the pump 10 can be driven at a speed which is greater, by a fixed percentage, than that of the pump 6. If a peristaltic pump with a rotor is used, it is possible to equip the pump 10 with a rotor of diameter greater than that of the pump 6.
- the two pumps are equipped with identical rotors revolving at the same speed being mounted on a common shaft and these rotors act on different tubes, the internal perimeter of a cross-section of the tube of the pump 10 being greater than that of a cross-section of the tube of the pump 6.
- several of these arrangements can be combined with one another.
- the second condition is that the useful minimum flow rate capacity of the pump 10 placed at the outlet of the oxygenator is less than the useful minimum flow rate capacity of the pump 6 placed at the inlet of the oxygenator.
- a tube for the pump 10 can be chosen with more flexible walls than those of the tube of the pump 6.
- the cross-section provided by the flattened tube 10 at a pressure close to atmospheric pressure forms a dumb-bell or cross-section less than that of the tube of the pump 6 for the useful minimum pressure upstream from the latter.
- a tube is chosen for the pump 10 which is substantially flat at rest and which requires a smaller force to achieve the limiting dumb-bell shape than does the tube of the pump 6 which is circular at rest. It is possible to use a tube with thinner walls for the pump 10 than for the pump 6 and to combine thin walls and flat shape.
- Peristaltic pumps are generally preferred during cardiac or cardiopulmonary replacements. However, during assistances, there is the danger of competition between the more or less pulsed flow rate of such pumps and that originating from the heart beats of the patient.
- pumps are generally chosen from amongst membrane pumps adapted for blood flow. They are known by the name of ventricular pumps or pumps with a tubular membrane and valves. Pumps such as those described in French Pat. No. 72/07,863 can advantageously be used.
- These pumps are equipped with controlled valves upstream and downstream.
- the maximum volume of the arterial ventricle forming the pump is greater by 50 percent at most and preferably by 20 percent at most than the maximum volume of the venous ventricle forming the pump 6.
- the generally rigid casings of these pumps are advantageously connected, in opposite phases, to one and the same pulse generator.
- the start of systole can be induced either by an electrocardiographic signal, or preferably by the passage of the arterial pressure of the patient below a definite threshold.
- the control of the intake and discharge pressures of either pump can be effected by controlling the pressures of the drive gaseous fluid. This is thus again a method of functioning comparable to that of peristaltic pumps with a flow rate which is a function of the upstream pressure.
- the pump 6 can be operated so that it functions at its maximum flow rate (it acts as a flow rate limiting device) and the latter is adjusted by controlling the speed of rotation of the pump.
- the extracorporeal circuit can comprise several auxiliary combinations, arranged in parallel, each consisting of a blood oxygenator located between two pumps 6 and 10.
- auxiliary combinations are connected by taps 22 and 23 to the main circuit represented in FIG. 1. They can be brought into operation or shortcircuited in order rapidly to meet variable requirements of the patient.
- the extracorporeal blood circuit according to the invention uses pumps which cause a very small degree of haemolysis and since it avoids any direct recycling of the blood, it can be used advantageously for a long period. Since the pumps are self-regulating, it provides great simplicity, reliability and safety, particularly with respect to injection of air, since the pumps act as bubble traps.
- the blood oxygenating device If the blood oxygenating device is equipped with microporous membranes and if a gas stream passes through it under a pressure less than atmospheric pressure, it can reabsorb the bubbles introduced accidentally into the blood before the inlet of the oxygenator, and does so the better, the finer are these bubbles.
- the oxygenator behaves better than the bubble traps usually employed (operating by gravity or by Archimedes thrust), the latter acting the better, the larger are the bubbles; thus, under these preferential conditions, there is no need to place such a bubble trap in the circuit.
- EXAMPLE 1 The circuit is the same as that represented in FIG. 1, with the exception of the means for driving the pumps 6 and 10.
- the pumps are in effect driven at speeds which can be adjusted between 0 and 40 revolutions/- minute by direct current motors supplied by a common voltage source.
- the pumps 6 and 10 are of the type described in British Pat. No. 1,287,836 the peristaltic tubes being made of silicone elastomer.
- the tube of the pump 6 has an internal diameter of 10 mm and an external diameter of 12.6 mm; the periphery of the threewheel rotor describes a circle of diameter 140 mm.
- the tube of the pump 10 has an internal diameter of l 1.25 mm and an external diameter of 14.1 mm; the periphery of the rotor describes a circle of diameter 140 mm.
- the pump 10 is placed at a height of 50 cm above the blood oxygenator.
- the latter consists of two identical combinations each comprising 16 microporous membranes and seven spacers stacked and clamped between two end plates; it is of the type described in French Pat. No. 1,597,874. Its surface area of exchange is 1 m At constant load, it opposes the blood with a pressure drop of 50 mm of mercury.
- This circuit was used for cardiopulmonary assistance for a period of 12 hours. At the end of the treatment, it was found that the degree of haemolysis of the blood was less than 0.5 percent.
- the blood pressure inside the blood oxygenator was kept within the range 50-150 mm of mercury. For an average blood flow rate of 800 millilitres/minute, 40 millilitres/minute of oxygen and 60 millilitres/minute of carbon dioxide were transferred.
- EXAMPLE 2 The circuit and the pumps 6 and 10 are similar to those of Example 1 and are the same as in FIG. 1.
- the rotors of the pumps 6 and 10 are mounted on a common shaft driven by a single motor 12 at a speed which can be adjusted between 0 and 40 revolutions/minute.
- Each rotor comprises three wheels at and the two rotors are 60 apart from one another.
- the tube of the pump 6 has a circular cross-section at rest.
- the internal diameter of the tube is 15.8 mm and the external diameter is 20 mm.
- the tube of the pump is elliptical at rest.
- the internal long axis and short axis of the ellipse are respectively 24 and 4 mm. When deformed under pressure, this tube assumes a circular cross-section of internal diameter 16.8 mm and of external diameter mm.
- the useful diameter of the rotors of the pumps 6 and 10 is 190 mm.
- the oxygenator has a membrane surface area of 3 m This combination is used for subtotal cardiopulmonary replacement on an adult patient for a period of 52 hours.
- the blood flow rate is adjusted to an average value of 2 litres/minute and average transfers of 130 millilitres/minute of oxygen and l50 millilitres/minute of carbon dioxide are observed.
- the pressure and haemolysis conditions are the same as in Example 1.
- a second identical combination is ready for use if the transfers prove to be momentarily insufficient.
- An extracorporeal blood circuit comprising, in combination:
- a first peristaltic pump including a variable tube means of a type having a capacity variable between maximum and minimum values in proportion to the pump inlet pressure, the maximum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
- a second peristaltic pump including a variable tube means ofa type having a capacity variable between maximum and minimum values in proportion to the pump inlet pressure, the minimum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
- An extracorporeal blood circuit comprising, in combination:
- a first tubular variable membrane and valve pump of a type having a capacity variable between maximum and minimum values in proportion to the inlet pressure of the pump, the maximum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
- a second tubular variable membrane and valve pump of a type having a capacity variable between maximum and minimum values in proportion to the inlet pressure, the minimum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
- An extracorporeal blood circuit comprising; in
- a second peristaltic pump of a type having a capacity which is variable in proportion to the pump inlet pressure and having a tube of substantially ellipitical cross-section at rest, the internal perimeter of the tube of the second pump being greater than that of the tube of the first pump, so that the maximum capacity of the first pump and the minimum capacity of the second pump is reached at a pump inlet pressure of atmospheric pressure 1": mm of mercury;
- An extracorporeal blood circuit comprising, in combination:
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- External Artificial Organs (AREA)
- Vehicle Body Suspensions (AREA)
- Reciprocating Pumps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7232286A FR2198759B1 (sv) | 1972-09-12 | 1972-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3881483A true US3881483A (en) | 1975-05-06 |
Family
ID=9104158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US396603A Expired - Lifetime US3881483A (en) | 1972-09-12 | 1973-09-12 | Extracorporeal blood circuit |
Country Status (20)
Country | Link |
---|---|
US (1) | US3881483A (sv) |
JP (2) | JPS5330277B2 (sv) |
BE (1) | BE804735A (sv) |
BR (1) | BR7307021D0 (sv) |
CA (1) | CA1028913A (sv) |
CH (2) | CH575764A5 (sv) |
DD (1) | DD107210A5 (sv) |
DE (2) | DE2345994C3 (sv) |
DK (1) | DK142803B (sv) |
ES (1) | ES418707A1 (sv) |
FR (1) | FR2198759B1 (sv) |
GB (2) | GB1437493A (sv) |
IE (1) | IE40136B1 (sv) |
IL (1) | IL43202A (sv) |
IT (2) | IT1001541B (sv) |
LU (1) | LU68403A1 (sv) |
NL (1) | NL157805B (sv) |
NO (1) | NO133574C (sv) |
SE (2) | SE401091B (sv) |
ZA (1) | ZA737272B (sv) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3955557A (en) * | 1973-10-01 | 1976-05-11 | Hiroyuki Takagi | Blood pump for use in an artificial heart or such purpose |
US4083777A (en) * | 1976-09-07 | 1978-04-11 | Union Carbide Corporation | Portable hemodialysis system |
FR2364662A2 (fr) * | 1976-09-17 | 1978-04-14 | Inst Nat Sante Rech Med | Appareil de reinstillation pour la reanimation generale et digestive |
US4192302A (en) * | 1978-09-12 | 1980-03-11 | Boddie Arthur W | Hepatic isolation and perfusion circuit assembly |
US4490135A (en) * | 1982-09-24 | 1984-12-25 | Extracorporeal Medical Specialties, Inc. | Single needle alternating blood flow system |
US4492531A (en) * | 1982-04-30 | 1985-01-08 | Kuraray Co., Ltd. | Apparatus for producing a controlled pulsed liquid flow |
US4529397A (en) * | 1982-02-09 | 1985-07-16 | Sartorius Gmbh | Cardioplegic controlling and regulating system |
US4540399A (en) * | 1983-02-01 | 1985-09-10 | Ken Litzie | Emergency bypass system |
US4776837A (en) * | 1983-06-21 | 1988-10-11 | Kopp Klaus F | Single lumen catheter fluid treatment |
US4778445A (en) * | 1984-07-09 | 1988-10-18 | Minnesota Mining And Manufacturing Company | Centrifugal blood pump with backflow detection |
US4787883A (en) * | 1986-03-10 | 1988-11-29 | Kroyer K K K | Extracorporal thermo-therapy device and method for curing diseases |
US4828543A (en) * | 1986-04-03 | 1989-05-09 | Weiss Paul I | Extracorporeal circulation apparatus |
US4908014A (en) * | 1986-03-10 | 1990-03-13 | Kroyer K K K | Extracorporal thermo-therapy device and method for curing diseases |
US5254094A (en) * | 1989-07-17 | 1993-10-19 | Starkey David L | Physiological fluid warmer |
US5391142A (en) * | 1992-07-29 | 1995-02-21 | Organetics, Ltd. | Apparatus and method for the extracorporeal treatment of the blood of a patient having a medical condition |
US5540653A (en) * | 1992-10-23 | 1996-07-30 | Datascope Investment Corp. | Preassembled bypass circuit |
US5827222A (en) * | 1990-10-10 | 1998-10-27 | Life Resuscitation Technologies, Inc. | Method of treating at least one of brain and associated nervous tissue injury |
DE19723671A1 (de) * | 1997-06-05 | 1998-12-10 | Stoeckert Instr Gmbh | Herz-Lungen-Maschine mit nicht-geradlinig angeordneten Blutpumpen |
US5957879A (en) * | 1997-01-24 | 1999-09-28 | Heartport, Inc. | Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart |
WO2000009200A1 (en) | 1998-08-12 | 2000-02-24 | Coaxia, Inc. | Intravascular methods and apparatus for isolation and selective cooling of the cerebral vasculature during surgical procedures |
USRE36774E (en) * | 1989-10-01 | 2000-07-11 | Baxter Healthcare Corporation | Cylindrical blood heater/oxygenator |
USRE37379E1 (en) | 1991-02-14 | 2001-09-18 | Wayne State University | High pressure gas exchanger |
US6312647B1 (en) | 1994-12-09 | 2001-11-06 | Wayne State University | Method for enriching a fluid with oxygen |
US6485450B1 (en) | 1998-03-16 | 2002-11-26 | Life Science Holdings, Inc. | Brain resuscitation apparatus and method |
US6572821B2 (en) * | 2000-04-11 | 2003-06-03 | Stöckert Instrumente GmbH | Heart-lung machine including compressed fluid actuated control members |
US6582387B2 (en) | 2001-03-20 | 2003-06-24 | Therox, Inc. | System for enriching a bodily fluid with a gas |
US6602468B2 (en) | 1999-09-30 | 2003-08-05 | Therox, Inc. | Method of blood oxygenation |
US20030204172A1 (en) * | 2002-04-25 | 2003-10-30 | Steppe Dennis L. | Aspiration system |
US20040054348A1 (en) * | 2002-09-12 | 2004-03-18 | Michael Hogendijk | Catheter having a compliant member configured to regulate aspiration rates |
US6736790B2 (en) | 1998-02-25 | 2004-05-18 | Denise R. Barbut | Method and system for selective or isolated integrate cerebral perfusion and cooling |
US20040168934A1 (en) * | 2001-07-06 | 2004-09-02 | Lukas Schaupp | Method for measuring the concentration of substances in living organisms using microdialysis and a device for carrying out said method |
US7008535B1 (en) | 2000-08-04 | 2006-03-07 | Wayne State University | Apparatus for oxygenating wastewater |
US20080125697A1 (en) * | 2006-09-14 | 2008-05-29 | Alcon, Inc. | Method of controlling an irrigation/aspiration system |
US20090259089A1 (en) * | 2008-04-10 | 2009-10-15 | Daniel Gelbart | Expandable catheter for delivery of fluids |
US20110154888A1 (en) * | 2008-09-17 | 2011-06-30 | Arkray, Inc. | Analysis device |
US20110154910A1 (en) * | 2008-09-17 | 2011-06-30 | Arkray, Inc. | Analysis device and analysis method |
US20110201988A1 (en) * | 2008-10-14 | 2011-08-18 | Mattias Holmer | Blood treatment apparatus and method |
WO2013119482A1 (en) * | 2012-02-06 | 2013-08-15 | Michael Friedman | Apparatus and methods for controlled delivery of heated fluids to a subject |
ITBO20120197A1 (it) * | 2012-04-12 | 2013-10-13 | Medical Service S R L | Apparecchiatura utilizzabile in procedure di ventilazione meccanica o assistita |
US20150104329A1 (en) * | 2013-10-14 | 2015-04-16 | Elwha, Llc | Peristaltic pump systems and methods |
US20150104330A1 (en) * | 2013-10-14 | 2015-04-16 | Elwha, Llc | Peristaltic pump systems and methods |
CN105536086A (zh) * | 2016-02-23 | 2016-05-04 | 南京医科大学第一附属医院 | 一种多功能ecmo循环管道及利用其进行体外膜肺氧合的方法 |
US9561315B1 (en) * | 2013-02-19 | 2017-02-07 | Jay Vincelli | Miniaturized cardiopulmonary bypass circuit for a mouse model |
US10786618B2 (en) | 2015-06-01 | 2020-09-29 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for extracorporeal support |
EP3741403A1 (en) | 2015-06-01 | 2020-11-25 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for extracorporeal support |
US11147906B2 (en) | 2015-11-04 | 2021-10-19 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for flow stagnation control |
US11369726B2 (en) | 2015-11-04 | 2022-06-28 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for providing zones of selective thermal therapy |
WO2023083415A1 (de) * | 2021-11-09 | 2023-05-19 | Rheinisch Westfälische Technische Hochschule (Rwth) Aachen | Vorrichtung zur anreicherung von fluiden mit anreicherungsgas, verwendung, verfahren und anreicherungsgerät |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2287241A2 (fr) * | 1974-10-09 | 1976-05-07 | Rhone Poulenc Ind | Circuit sanguin extracorporel |
DE2754894C2 (de) * | 1977-12-09 | 1983-10-13 | Fresenius AG, 6380 Bad Homburg | Vorrichtung zum Bilanzieren einer einem Patienten entnommenen Flüssigkeit mit einer Ersatzflüssigkeit |
DE2754810C3 (de) * | 1977-12-09 | 1980-12-11 | Dr. Eduard Fresenius Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg, 6380 Bad Homburg | Hämofiltrationsgerät |
JPS565698A (en) * | 1979-06-27 | 1981-01-21 | Hitachi Ltd | Hydroextracting tank in synthetic resin |
JPS568098A (en) * | 1979-07-02 | 1981-01-27 | Hitachi Ltd | Hydroextracting tank in synthetic resin |
DE3276390D1 (en) * | 1981-09-10 | 1987-06-25 | Intermedicat Gmbh | Method for the selective extracorporeal precipitation of low-density lipoproteins from serum or plasma |
FR2519555A1 (fr) * | 1982-01-11 | 1983-07-18 | Rhone Poulenc Sa | Appareillage et procede de plasmapherese alternative avec appareil a membrane |
US4469659B1 (en) * | 1982-04-26 | 1997-07-29 | Cobe Lab | Sampling device for blood oxygenator |
FR2548907B1 (fr) * | 1983-07-13 | 1985-11-08 | Rhone Poulenc Sa | Procede de plasmapherese et appareillage utilisable notamment pour ce procede |
IT8453709V0 (it) * | 1984-08-07 | 1984-08-07 | Hospal Dasco Spa | Apparecchiatura di tipo perfezionato per la circolazione di un liquido lungo una linea tubolare |
US5578267A (en) * | 1992-05-11 | 1996-11-26 | Minntech Corporation | Cylindrical blood heater/oxygenator |
US6723284B1 (en) | 1997-04-11 | 2004-04-20 | University Of Pittsburgh | Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing |
US6106776A (en) * | 1997-04-11 | 2000-08-22 | University Of Pittsburgh | Membrane apparatus with enhanced mass transfer via active mixing |
US6454999B1 (en) | 1998-12-30 | 2002-09-24 | Cardiovention, Inc. | Integrated blood pump and oxygenator system having extended blood flow path |
US6428747B1 (en) | 1998-12-30 | 2002-08-06 | Cardiovention, Inc. | Integrated extracorporeal blood oxygenator, pump and heat exchanger system |
US6224829B1 (en) | 1998-12-30 | 2001-05-01 | Cadiovention, Inc. | Integrated blood oxygenator and pump system having means for reducing fiber breakage |
US6379618B1 (en) * | 1998-12-30 | 2002-04-30 | Cardiovention, Inc. | Integrated blood oxygenator and pump system having means for reducing microbubble generation |
DE20011060U1 (de) | 2000-06-23 | 2000-09-28 | JOSTRA AG, 72145 Hirrlingen | Vorrichtung zur Unterstützung der Lungenfunktion eines Patienten |
DE102019131369A1 (de) * | 2019-11-20 | 2021-05-20 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Oxygenatorvorrichtung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2721732A (en) * | 1952-01-03 | 1955-10-25 | Nat Res Dev | Apparatus for mixing liquids and gases |
US2927582A (en) * | 1956-03-19 | 1960-03-08 | Research Corp | Pump-oxygenator |
US3017885A (en) * | 1959-03-30 | 1962-01-23 | Robicsek Francis | Blood flow meter |
US3359910A (en) * | 1965-06-10 | 1967-12-26 | Little Inc A | Apparatus for programming fluid flow |
-
1972
- 1972-09-12 FR FR7232286A patent/FR2198759B1/fr not_active Expired
-
1973
- 1973-09-04 NL NL7312213.A patent/NL157805B/xx not_active IP Right Cessation
- 1973-09-10 DD DD173384A patent/DD107210A5/xx unknown
- 1973-09-11 DK DK500073AA patent/DK142803B/da unknown
- 1973-09-11 BR BR7021/73A patent/BR7307021D0/pt unknown
- 1973-09-11 CH CH1297073A patent/CH575764A5/xx not_active IP Right Cessation
- 1973-09-11 BE BE135558A patent/BE804735A/xx not_active IP Right Cessation
- 1973-09-11 LU LU68403A patent/LU68403A1/xx unknown
- 1973-09-11 CA CA180,739A patent/CA1028913A/en not_active Expired
- 1973-09-11 NO NO3550/73A patent/NO133574C/no unknown
- 1973-09-11 GB GB4273273A patent/GB1437493A/en not_active Expired
- 1973-09-11 IL IL43202A patent/IL43202A/en unknown
- 1973-09-11 SE SE7312376A patent/SE401091B/sv unknown
- 1973-09-11 CH CH23675A patent/CH573051A5/xx not_active IP Right Cessation
- 1973-09-11 GB GB493375A patent/GB1437494A/en not_active Expired
- 1973-09-12 DE DE2345994A patent/DE2345994C3/de not_active Expired
- 1973-09-12 IE IE1622/73A patent/IE40136B1/xx unknown
- 1973-09-12 IT IT28852/73A patent/IT1001541B/it active
- 1973-09-12 ZA ZA737272*A patent/ZA737272B/xx unknown
- 1973-09-12 US US396603A patent/US3881483A/en not_active Expired - Lifetime
- 1973-09-12 DE DE19737333119U patent/DE7333119U/de not_active Expired
- 1973-09-12 ES ES418707A patent/ES418707A1/es not_active Expired
- 1973-09-12 JP JP10228273A patent/JPS5330277B2/ja not_active Expired
-
1975
- 1975-01-09 SE SE7500214A patent/SE414705B/sv unknown
- 1975-12-01 IT IT29870/75A patent/IT1059535B/it active
-
1977
- 1977-02-25 JP JP52019419A patent/JPS6042724B2/ja not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2721732A (en) * | 1952-01-03 | 1955-10-25 | Nat Res Dev | Apparatus for mixing liquids and gases |
US2927582A (en) * | 1956-03-19 | 1960-03-08 | Research Corp | Pump-oxygenator |
US3017885A (en) * | 1959-03-30 | 1962-01-23 | Robicsek Francis | Blood flow meter |
US3359910A (en) * | 1965-06-10 | 1967-12-26 | Little Inc A | Apparatus for programming fluid flow |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3955557A (en) * | 1973-10-01 | 1976-05-11 | Hiroyuki Takagi | Blood pump for use in an artificial heart or such purpose |
US4083777A (en) * | 1976-09-07 | 1978-04-11 | Union Carbide Corporation | Portable hemodialysis system |
FR2364662A2 (fr) * | 1976-09-17 | 1978-04-14 | Inst Nat Sante Rech Med | Appareil de reinstillation pour la reanimation generale et digestive |
US4192302A (en) * | 1978-09-12 | 1980-03-11 | Boddie Arthur W | Hepatic isolation and perfusion circuit assembly |
US4529397A (en) * | 1982-02-09 | 1985-07-16 | Sartorius Gmbh | Cardioplegic controlling and regulating system |
US4492531A (en) * | 1982-04-30 | 1985-01-08 | Kuraray Co., Ltd. | Apparatus for producing a controlled pulsed liquid flow |
US4490135A (en) * | 1982-09-24 | 1984-12-25 | Extracorporeal Medical Specialties, Inc. | Single needle alternating blood flow system |
US4540399A (en) * | 1983-02-01 | 1985-09-10 | Ken Litzie | Emergency bypass system |
US4776837A (en) * | 1983-06-21 | 1988-10-11 | Kopp Klaus F | Single lumen catheter fluid treatment |
US4778445A (en) * | 1984-07-09 | 1988-10-18 | Minnesota Mining And Manufacturing Company | Centrifugal blood pump with backflow detection |
US4787883A (en) * | 1986-03-10 | 1988-11-29 | Kroyer K K K | Extracorporal thermo-therapy device and method for curing diseases |
US4908014A (en) * | 1986-03-10 | 1990-03-13 | Kroyer K K K | Extracorporal thermo-therapy device and method for curing diseases |
US4828543A (en) * | 1986-04-03 | 1989-05-09 | Weiss Paul I | Extracorporeal circulation apparatus |
US5254094A (en) * | 1989-07-17 | 1993-10-19 | Starkey David L | Physiological fluid warmer |
USRE36774E (en) * | 1989-10-01 | 2000-07-11 | Baxter Healthcare Corporation | Cylindrical blood heater/oxygenator |
US5827222A (en) * | 1990-10-10 | 1998-10-27 | Life Resuscitation Technologies, Inc. | Method of treating at least one of brain and associated nervous tissue injury |
USRE37379E1 (en) | 1991-02-14 | 2001-09-18 | Wayne State University | High pressure gas exchanger |
US5391142A (en) * | 1992-07-29 | 1995-02-21 | Organetics, Ltd. | Apparatus and method for the extracorporeal treatment of the blood of a patient having a medical condition |
US5540653A (en) * | 1992-10-23 | 1996-07-30 | Datascope Investment Corp. | Preassembled bypass circuit |
US6312647B1 (en) | 1994-12-09 | 2001-11-06 | Wayne State University | Method for enriching a fluid with oxygen |
US6443922B1 (en) | 1997-01-24 | 2002-09-03 | Heartport, Inc. | Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart |
US6974434B2 (en) | 1997-01-24 | 2005-12-13 | Heartport, Inc. | Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart |
US5957879A (en) * | 1997-01-24 | 1999-09-28 | Heartport, Inc. | Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart |
US20020176797A1 (en) * | 1997-01-24 | 2002-11-28 | Roberts Craig P. | Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart |
DE19723671C2 (de) * | 1997-06-05 | 2001-07-19 | Stoeckert Instr Gmbh | Herz-Lungen-Maschine mit mehr als zwei Blutpumpen |
DE19723671A1 (de) * | 1997-06-05 | 1998-12-10 | Stoeckert Instr Gmbh | Herz-Lungen-Maschine mit nicht-geradlinig angeordneten Blutpumpen |
US20040138608A1 (en) * | 1998-02-25 | 2004-07-15 | Barbut Denise R. | Method and system for selective or isolated integrate cerebral perfusion and cooling |
US6736790B2 (en) | 1998-02-25 | 2004-05-18 | Denise R. Barbut | Method and system for selective or isolated integrate cerebral perfusion and cooling |
US6485450B1 (en) | 1998-03-16 | 2002-11-26 | Life Science Holdings, Inc. | Brain resuscitation apparatus and method |
WO2000009200A1 (en) | 1998-08-12 | 2000-02-24 | Coaxia, Inc. | Intravascular methods and apparatus for isolation and selective cooling of the cerebral vasculature during surgical procedures |
US6759008B1 (en) | 1999-09-30 | 2004-07-06 | Therox, Inc. | Apparatus and method for blood oxygenation |
US6602468B2 (en) | 1999-09-30 | 2003-08-05 | Therox, Inc. | Method of blood oxygenation |
US6572821B2 (en) * | 2000-04-11 | 2003-06-03 | Stöckert Instrumente GmbH | Heart-lung machine including compressed fluid actuated control members |
US7008535B1 (en) | 2000-08-04 | 2006-03-07 | Wayne State University | Apparatus for oxygenating wastewater |
US7294278B2 (en) | 2000-08-04 | 2007-11-13 | Wayne State University | Method for oxygenating wastewater |
US20040019319A1 (en) * | 2001-03-20 | 2004-01-29 | Derek Daw J. | Method for enriching a bodily fluid with a gas |
US6582387B2 (en) | 2001-03-20 | 2003-06-24 | Therox, Inc. | System for enriching a bodily fluid with a gas |
US6974435B2 (en) | 2001-03-20 | 2005-12-13 | Therox, Inc | Method for enriching a bodily fluid with a gas |
US20040168934A1 (en) * | 2001-07-06 | 2004-09-02 | Lukas Schaupp | Method for measuring the concentration of substances in living organisms using microdialysis and a device for carrying out said method |
US7022071B2 (en) * | 2001-07-06 | 2006-04-04 | Lukas Schaupp | Method for measuring the concentration of substances in living organisms using microdialysis and a device for carrying out said method |
US20030204172A1 (en) * | 2002-04-25 | 2003-10-30 | Steppe Dennis L. | Aspiration system |
US20040054348A1 (en) * | 2002-09-12 | 2004-03-18 | Michael Hogendijk | Catheter having a compliant member configured to regulate aspiration rates |
WO2004024210A3 (en) * | 2002-09-12 | 2004-06-24 | Arteria Medical Science Inc | Compliant member for catheter to regulate aspiration rates |
US6887220B2 (en) * | 2002-09-12 | 2005-05-03 | Gore Enterprise Holdings, Inc. | Catheter having a compliant member configured to regulate aspiration rates |
US20080125697A1 (en) * | 2006-09-14 | 2008-05-29 | Alcon, Inc. | Method of controlling an irrigation/aspiration system |
US8465467B2 (en) | 2006-09-14 | 2013-06-18 | Novartis Ag | Method of controlling an irrigation/aspiration system |
US20090259089A1 (en) * | 2008-04-10 | 2009-10-15 | Daniel Gelbart | Expandable catheter for delivery of fluids |
US20110154888A1 (en) * | 2008-09-17 | 2011-06-30 | Arkray, Inc. | Analysis device |
US20110154910A1 (en) * | 2008-09-17 | 2011-06-30 | Arkray, Inc. | Analysis device and analysis method |
US8578789B2 (en) * | 2008-09-17 | 2013-11-12 | Arkray, Inc. | Analysis device and analysis method |
US8485999B2 (en) * | 2008-10-14 | 2013-07-16 | Gambro Lundia Ab | Blood treatment apparatus and method |
US20110201988A1 (en) * | 2008-10-14 | 2011-08-18 | Mattias Holmer | Blood treatment apparatus and method |
WO2013119482A1 (en) * | 2012-02-06 | 2013-08-15 | Michael Friedman | Apparatus and methods for controlled delivery of heated fluids to a subject |
ITBO20120197A1 (it) * | 2012-04-12 | 2013-10-13 | Medical Service S R L | Apparecchiatura utilizzabile in procedure di ventilazione meccanica o assistita |
US9561315B1 (en) * | 2013-02-19 | 2017-02-07 | Jay Vincelli | Miniaturized cardiopulmonary bypass circuit for a mouse model |
US9541081B2 (en) * | 2013-10-14 | 2017-01-10 | Elwha Llc | Peristaltic pump systems and methods |
US20150104330A1 (en) * | 2013-10-14 | 2015-04-16 | Elwha, Llc | Peristaltic pump systems and methods |
US20150104329A1 (en) * | 2013-10-14 | 2015-04-16 | Elwha, Llc | Peristaltic pump systems and methods |
US9624920B2 (en) * | 2013-10-14 | 2017-04-18 | Elwha Llc | Peristaltic pump systems and methods |
US10786618B2 (en) | 2015-06-01 | 2020-09-29 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for extracorporeal support |
EP3741403A1 (en) | 2015-06-01 | 2020-11-25 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for extracorporeal support |
US11147906B2 (en) | 2015-11-04 | 2021-10-19 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for flow stagnation control |
US11369726B2 (en) | 2015-11-04 | 2022-06-28 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for providing zones of selective thermal therapy |
CN105536086A (zh) * | 2016-02-23 | 2016-05-04 | 南京医科大学第一附属医院 | 一种多功能ecmo循环管道及利用其进行体外膜肺氧合的方法 |
WO2023083415A1 (de) * | 2021-11-09 | 2023-05-19 | Rheinisch Westfälische Technische Hochschule (Rwth) Aachen | Vorrichtung zur anreicherung von fluiden mit anreicherungsgas, verwendung, verfahren und anreicherungsgerät |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3881483A (en) | Extracorporeal blood circuit | |
CA1042747A (en) | Cardiopulmonary bypass system | |
US5011469A (en) | Peripheral cardiopulmonary bypass and coronary reperfusion system | |
US4828543A (en) | Extracorporeal circulation apparatus | |
US4650457A (en) | Apparatus for extracorporeal lung assist | |
US5383854A (en) | Portable and modular cardiopulmonary bypass apparatus and associated aortic balloon catheter and associated method | |
US6406267B1 (en) | Extracorporeal circulation pump | |
EP0283850B1 (en) | Device for the extra-corporeal oxygenation of blood and for cardiovascular assistance | |
CN210020563U (zh) | 一种经皮左心辅助循环系统 | |
US7122151B2 (en) | Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing | |
US3416664A (en) | Artificial kidney | |
US5634892A (en) | Extracorporeal membrane oxygenator | |
JPH09122228A (ja) | 遠心ポンプ駆動制御装置および体外循環血液回路用送血装置 | |
JP2002528147A (ja) | 能動的混合を介して向上した物質移動、熱伝達及びポンプ能力を有する膜装置 | |
JP2007075541A (ja) | 体外循環補助装置 | |
US20040134486A1 (en) | Method and apparatus for conducting total liquid ventilation with control of residual volume and ventilation cycle profile | |
Galletti | Cardiopulmonary bypass: a historical perspective | |
JP2888609B2 (ja) | 血液補助循環装置 | |
Sinard et al. | Review articles: Extracorporeal membrane oxygenation (ECMO): prolonged bedside cardiopulmonary bypass | |
MXPA04000801A (es) | Anastomosis auricular-arterial de bajo flujo para revascularizacion del miocardio auxiliada por bomba sin derivacion cardiopulmonar. | |
Phillipp et al. | Pumpless extracorporeal lung assist | |
Galletti et al. | Cardiopulmonary bypass: the historical foundation, the future promise | |
JPH0464706B2 (sv) | ||
JPS60236659A (ja) | 血液体外循環装置 | |
JPS6354392B2 (sv) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RHONE-POULENC S.A. 69330 MEYZIEU PARIS FRANCE A FR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RHONE-POULENC S.A.;REEL/FRAME:004070/0218 Effective date: 19821201 |