US3877846A - Variable capacity screw compressor - Google Patents

Variable capacity screw compressor Download PDF

Info

Publication number
US3877846A
US3877846A US388600A US38860073A US3877846A US 3877846 A US3877846 A US 3877846A US 388600 A US388600 A US 388600A US 38860073 A US38860073 A US 38860073A US 3877846 A US3877846 A US 3877846A
Authority
US
United States
Prior art keywords
working fluid
grooves
casing
inlet
inlet passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US388600A
Inventor
Anders Lundberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stal Refrigeration AB
Original Assignee
Stal Refrigeration AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stal Refrigeration AB filed Critical Stal Refrigeration AB
Application granted granted Critical
Publication of US3877846A publication Critical patent/US3877846A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • F04C28/125Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves with sliding valves controlled by the use of fluid other than the working fluid

Definitions

  • ABSTRACT A variable capacity screw compressor comprising a casing, housing two intersecting bores defining a working chamber in which a pair of intermeshing screws comprising helical lands and intervening grooves are mounted to rotate and to compress a working fluid as it is being passed axially through the working chamber from a low pressure inlet wall to a high pressure outlet wall, the inlet wall having an inlet passage in substantially axial alignment with the axes of the rotary screws for filling the ends of the grooves facing the axial inlet passage with working fluid.
  • the capacity of the compressor to operate within a predetermined range of load variations from full load to no load conditions is regulated by a slide valve located on the high pressure side of the compressor and being axially displaceable in response to varying load conditions to expose a by-pass opening for venting partially compressed working fluid directly into the grooves of the compressor screws at a location between the bypass opening and the axially aligned inlet passage to thereby interrupt admission of cold working fluid into the grooves from the inlet passage.
  • an axially movable slide valve which forms part of the casing surface of the rotor housing, is located below and between the rotors, serving as adjustable exit for the tapped-off gas, which is led outside the rotor chamber casing, through channels provided in the compressor housing, and back to the inlet end piece.
  • the return channels also serve as draining passages for oil from the bearing on the outlet side and from any shaft seals, carrying the oil to the inlet gate, where it is drained into the operating chamber of the compressor, pumped out on the high pressure side, and separated from the gaseous working medium.
  • the tapped-off gas which is heated by the oil sprayed into the working chamber and by the heat of compression work which may be required to overcome the pressure drop in the gas being tapped off, squirts out and up into the inlet chamber together with possibly hot draining oil and thus heats up the intake or low pressure gas.
  • this occurrence works against the low temperature requirement of the intake gas and results in considerable heat losses with a consequent loss in efficiency.
  • the present invention overcomes the disadvantages of the prior art described above by, reducing the efficiency loss resulting from the heat loss when the compressor is under partial load while permitting a simplified construction of the rotor housing and inlet end piece.
  • the invention is based on the concept that a portion of partially compressed working medium is by-passed to the inlet side which implies that the slide valve must be arranged on the high pressure side. Furthermore, the by-passed medium must not be returned to the inlet chamber but to an opening in the cylindrical casing surrounding the working chamber in order to produce the intended effect and the inlet passage must be located in the end wall of the casing so as to extend substantially in axial alignment with the rotors.
  • the present invention provides at least one opening in the rotor chamber casing surface of the compressor housing, through which tapped-off gas is reintroduced into the rotor chamber, instead of being brought back to the inlet gate, as in the prior art.
  • This opening is located approximately along a helical line on the casing surface which corresponds to the path of the helical ribs of one of the rotors and which passes through the rear edge of the inlet gate. Therefore, the opening will be in communication with the particular helically shaped rotor space which at that specific moment is being closed off by the rear edge of the inlet gate after filling from the inlet gate has been completed.
  • the tapped-off gas from the unloading valve will be supplied through the casing opening to the various helical rotor spaces during the final stage of their intake or suction process, so that the mixing of cold intake gas with hot exhaust gas in the inlet end piece is avoided, and the resultant disadvantages eliminated.
  • FIG. 1 is a partial longitudinal sectional view of a compressor constructed according to this invention
  • FIG. 2 is a transverse sectional view, showing the inlet end piece of the compressor as seen from the inside;
  • FIG. 3 is a transverse section view, showing the outlet end piece of the compressor as seen from the inside;
  • FIG. 4 is a cross-sectional view through the compressor of this invention.
  • FIG. 5 is a developed plan view of the inside surface of the female rotor chamber casing of the compressor.
  • FIG. 6 is a developed plan view similar to FIG. 5 showing both rotor chamber casings developed from 7a to 7b of FIG. 5.
  • FIGS. 1-4 show the screw compressor of this invention with inlet end wall 1, rotor housing 2, outlet housing wall 3, and helical rotors 4a and 4b mounted within rotor casing portion 4 of rotor housing 2.
  • Gaseous working medium unloading means is here illustrated as axially movable slide valve 5.
  • the gas is drawn into the compressor and the helical grooves therein through intake connection 6 by means of inlet gate 7 which is located in the inlet end plane of rotors 4a and 4b and in axial alignment with the axes thereof whereby the gas will pass into the grooves in an axial direction from the end facing the inlet gate 7.
  • slide valve 5 rests against stop 8; during partial load conditions, slide valve 5 is displaced axially from stop 8 and a bypass opening 9 is created to permit exhaust gas to flow out into rotor housing 2.
  • the tapped-off gas proceeds through conventional closed channels in housing 2 to opening 10 located in the wall of casing 4 of the rotor chamber and is drawn into the thread volume of rotors 4a and 4b.
  • inlet gate 7 may be clearly seen in FIG. 2, which shows the inlet end wall 1 as seen from inside rotor housing 2.
  • FIG. 3 shows outlet gate 12 in outlet end wall 3, as seen from inside rotor housing 2.
  • Outlet gate 12 is provided in its lower portion with a recess complementary to and adapted to receive slide valve 5.
  • the positions of male helical rotor 4a, female helical rotor 4b and slide valve 5 relative to each other can readily be observed in FIG. 4, as well as outwardly extending ribs or lands 13 of female rotor 4b, which define intervening spaces or grooves 15.
  • FIG. 5 is a developed plan view of the inside surface of rotor chamber 4 of housing 2.
  • Unbroken double lines 13 indicate the location of the ribs or lands of female rotor 4b as they extend across the surface of casing 4 in the direction of the arrow.
  • Broken line 14 indicates the line on the surface of casing 4 where the rotors diverge (see FIG. 4), i.e., the upper middle edge of rotor housing 4 and where spaces or grooves 15 between rotor lands 13 of rotor 4b are blocked off by the projecting lands of male rotor 4a.
  • exhaust or recirculation opening 10 should be located along line 11 so that opening 10 is closed off from any given groove 15 no later than simultaneously with the closing off of this same groove 15 by rear edge 7a from inlet gate 7. In this way the tapped-off exhaust gas will be supplied to spaces 15 during the final stage of the intake process for each space 15. Therefore, depending on the degree to which slide valve is opened in response to varying load conditions, more or less of the tapped-off exhaust gas will be drawn directly into grooves 15 through casing opening block off gas from intake gate 7, thus controlling the capacity of the compressor.
  • grooves are filled with working medium from the end facing the inlet and passed axially through the working space until one of the corresponding lands a, b, c, d or e is about to pass the upper edge of the exhaust port 10.
  • the corresponding groove becomes aligned with the by-pass opening 9 exposed by the axial displacement of slide valve 5, allowing partially compressed working fluid to enter the inlet end of the groove and thus preventing further working fluid from being drawn into the groove from the axial inlet gate.
  • the partially compressed working fluid entering the groove acts as a stopper or plug. Obviously some mixing will take place between the partially compressed by-passed working fluid and the working fluid ahead of the by-pass, as well as with the non-compressed medium entering through the gate 7.
  • FIG. 6 shows both intersecting bores of the casing developed from to 7b and which include a second opening or port 10. It will be clear that the double lines in the lower half of FIG. 6 represent the lands 13 between the grooves 15 in the female rotor 4b, while the double lines in the upper half represent the narrow grooves 16 between the lands 17 of the male rotor shown in FIG. 4.
  • a variable capacity screw compressor comprising: a. a casing, housing two intersecting bores defining a working chamber in which a pair of intermeshing screws having helical lands and intervening grooves are mounted to rotate and compress a working fluid as it is being passed axially through said working chamber from a low pressure inlet wall to a high pressure outlet wall, said walls being located at opposite axial ends of said casing; b. an inlet passage in said inlet wall located in substantially axial alignment with the axes of said screws for admitting working fluid into the ends of valve to vent partially compressed air from the" working chamber; 7
  • variable capacity screw compressor according to claim 1, in which the means for passing the vented working fluid comprises a port in the working chamber casing, said port being so located that the leading flank of the lands of said screws will commence to pass across the rear edge of said axial inlet passage as the 7 following grooves become aligned with said port.
  • a variable capacity screw compressor in which a port is provided in said casing for each of the two bores.
  • variable capacity screw compressor in which the width of the port in the casing is of the same order of magnitude as the distance between the leading flanks of two successive lands. 7

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary-Type Compressors (AREA)

Abstract

A variable capacity screw compressor comprising a casing, housing two intersecting bores defining a working chamber in which a pair of intermeshing screws comprising helical lands and intervening grooves are mounted to rotate and to compress a working fluid as it is being passed axially through the working chamber from a low pressure inlet wall to a high pressure outlet wall, the inlet wall having an inlet passage in substantially axial alignment with the axes of the rotary screws for filling the ends of the grooves facing the axial inlet passage with working fluid. The capacity of the compressor to operate within a predetermined range of load variations from full load to no load conditions is regulated by a slide valve located on the high pressure side of the compressor and being axially displaceable in response to varying load conditions to expose a by-pass opening for venting partially compressed working fluid directly into the grooves of the compressor screws at a location between the bypass opening and the axially aligned inlet passage to thereby interrupt admission of cold working fluid into the grooves from the inlet passage.

Description

1451 Apr. 15, 1975 [54] VARIABLE CAPACITY SCREW COMPRESSOR Anders Lundberg, Norrkoping, Sweden [75] Inventor:
[73] Assignee: Stal-Refrigeration AB, Norrkoping,
Sweden [22] Filed: Aug. 15, 1973 [21] Appl. No.: 388,600
[30] Foreign Application Priority Data Aug. 28, 1972 Sweden 11092/72 [52] US. Cl 417/440; 418/201 [51] Int. Cl F01c 1/16; F040 17/12; F04b 23/00 [58] Field of Search 418/159, 197, 201-203;
[56] References Cited UNITED STATES PATENTS 3,088,658 5/1963 Wagenius 418/201 3,088,659 5/1963 Nilsson et a1. 418/201 FOREIGN PATENTS OR APPLICATIONS 218,309 11/1961 Austria 418/159 Primary Examiner-John J. Vrablik Attorney, Agent, or Firm-Eric Y. Munson [57] ABSTRACT A variable capacity screw compressor comprising a casing, housing two intersecting bores defining a working chamber in which a pair of intermeshing screws comprising helical lands and intervening grooves are mounted to rotate and to compress a working fluid as it is being passed axially through the working chamber from a low pressure inlet wall to a high pressure outlet wall, the inlet wall having an inlet passage in substantially axial alignment with the axes of the rotary screws for filling the ends of the grooves facing the axial inlet passage with working fluid. The capacity of the compressor to operate within a predetermined range of load variations from full load to no load conditions is regulated by a slide valve located on the high pressure side of the compressor and being axially displaceable in response to varying load conditions to expose a by-pass opening for venting partially compressed working fluid directly into the grooves of the compressor screws at a location between the bypass opening and the axially aligned inlet passage to thereby interrupt admission of cold working fluid into the grooves from the inlet passage.
4 Claims, 6 Drawing Figures VARIABLE CAPACITY SCREW COMPRESSOR BACKGROUND OF THE INVENTION In modern screw compressors of known design, capacity control is achieved by tapping off or bypassing a certain amount of the partially compressed gaseous working medium from the rotor operating chamber of the compressor and returning the unloaded or bypassed gas to the inlet end for admixture with the intake gas, which is introduced through the inlet gate located axially at the inlet plane of the rotors. To accomplish this control, an axially movable slide valve, which forms part of the casing surface of the rotor housing, is located below and between the rotors, serving as adjustable exit for the tapped-off gas, which is led outside the rotor chamber casing, through channels provided in the compressor housing, and back to the inlet end piece.
In some compressor designs, the return channels also serve as draining passages for oil from the bearing on the outlet side and from any shaft seals, carrying the oil to the inlet gate, where it is drained into the operating chamber of the compressor, pumped out on the high pressure side, and separated from the gaseous working medium. It may well happen in conventional compressors of this type that, during unloading, the tapped-off gas, which is heated by the oil sprayed into the working chamber and by the heat of compression work which may be required to overcome the pressure drop in the gas being tapped off, squirts out and up into the inlet chamber together with possibly hot draining oil and thus heats up the intake or low pressure gas. Especially in low temperature installations, this occurrence works against the low temperature requirement of the intake gas and results in considerable heat losses with a consequent loss in efficiency.
SUMMARY OF THE INVENTION The present invention overcomes the disadvantages of the prior art described above by, reducing the efficiency loss resulting from the heat loss when the compressor is under partial load while permitting a simplified construction of the rotor housing and inlet end piece.
The invention is based on the concept that a portion of partially compressed working medium is by-passed to the inlet side which implies that the slide valve must be arranged on the high pressure side. Furthermore, the by-passed medium must not be returned to the inlet chamber but to an opening in the cylindrical casing surrounding the working chamber in order to produce the intended effect and the inlet passage must be located in the end wall of the casing so as to extend substantially in axial alignment with the rotors.
More specifically, the present invention provides at least one opening in the rotor chamber casing surface of the compressor housing, through which tapped-off gas is reintroduced into the rotor chamber, instead of being brought back to the inlet gate, as in the prior art. This opening is located approximately along a helical line on the casing surface which corresponds to the path of the helical ribs of one of the rotors and which passes through the rear edge of the inlet gate. Therefore, the opening will be in communication with the particular helically shaped rotor space which at that specific moment is being closed off by the rear edge of the inlet gate after filling from the inlet gate has been completed.
Thus, the tapped-off gas from the unloading valve will be supplied through the casing opening to the various helical rotor spaces during the final stage of their intake or suction process, so that the mixing of cold intake gas with hot exhaust gas in the inlet end piece is avoided, and the resultant disadvantages eliminated.
This invention will be described in full detail with reference to the accompanying drawings, which illustrate a preferred embodiment of the novel concepts contained herein.
DRAWINGS FIG. 1 is a partial longitudinal sectional view of a compressor constructed according to this invention;
FIG. 2 is a transverse sectional view, showing the inlet end piece of the compressor as seen from the inside;
FIG. 3 is a transverse section view, showing the outlet end piece of the compressor as seen from the inside;
FIG. 4 is a cross-sectional view through the compressor of this invention; and
FIG. 5 is a developed plan view of the inside surface of the female rotor chamber casing of the compressor.
FIG. 6 is a developed plan view similar to FIG. 5 showing both rotor chamber casings developed from 7a to 7b of FIG. 5.
DESCRIPTION FIGS. 1-4 show the screw compressor of this invention with inlet end wall 1, rotor housing 2, outlet housing wall 3, and helical rotors 4a and 4b mounted within rotor casing portion 4 of rotor housing 2. Gaseous working medium unloading means is here illustrated as axially movable slide valve 5. The gas is drawn into the compressor and the helical grooves therein through intake connection 6 by means of inlet gate 7 which is located in the inlet end plane of rotors 4a and 4b and in axial alignment with the axes thereof whereby the gas will pass into the grooves in an axial direction from the end facing the inlet gate 7. At full capacity, slide valve 5 rests against stop 8; during partial load conditions, slide valve 5 is displaced axially from stop 8 and a bypass opening 9 is created to permit exhaust gas to flow out into rotor housing 2. The tapped-off gas proceeds through conventional closed channels in housing 2 to opening 10 located in the wall of casing 4 of the rotor chamber and is drawn into the thread volume of rotors 4a and 4b.
The shape of inlet gate 7 may be clearly seen in FIG. 2, which shows the inlet end wall 1 as seen from inside rotor housing 2. Similarly, FIG. 3 shows outlet gate 12 in outlet end wall 3, as seen from inside rotor housing 2. Outlet gate 12 is provided in its lower portion with a recess complementary to and adapted to receive slide valve 5. The positions of male helical rotor 4a, female helical rotor 4b and slide valve 5 relative to each other can readily be observed in FIG. 4, as well as outwardly extending ribs or lands 13 of female rotor 4b, which define intervening spaces or grooves 15.
The location of exhaust opening 10 is governed by the principle illustrated in FIG. 5, which is a developed plan view of the inside surface of rotor chamber 4 of housing 2. Unbroken double lines 13 indicate the location of the ribs or lands of female rotor 4b as they extend across the surface of casing 4 in the direction of the arrow. Broken line 14 indicates the line on the surface of casing 4 where the rotors diverge (see FIG. 4), i.e., the upper middle edge of rotor housing 4 and where spaces or grooves 15 between rotor lands 13 of rotor 4b are blocked off by the projecting lands of male rotor 4a. As rotor 4b is turned in the direction of the arrow, the end of grooves 15 are exposed and extended sequentially so that gas is drawn in from inlet gate 7 and passed into the ends of the grooves in an axial direction. This intake continues until the particular land 13 defining the rear flank of a specific groove 15 reaches the rear edge 7a of inlet gate 7 whereupon the groove 15 in question is closed off. It is clear that the length of the rotors and the pitch of their helical configuration are chosen so that the closing position for any land 13, indicated by broken line 11 (see also FIG. 1) extends from rear edge 7a of inlet gate 7 to the outlet end of line 14.
It is also clear that exhaust or recirculation opening 10 should be located along line 11 so that opening 10 is closed off from any given groove 15 no later than simultaneously with the closing off of this same groove 15 by rear edge 7a from inlet gate 7. In this way the tapped-off exhaust gas will be supplied to spaces 15 during the final stage of the intake process for each space 15. Therefore, depending on the degree to which slide valve is opened in response to varying load conditions, more or less of the tapped-off exhaust gas will be drawn directly into grooves 15 through casing opening block off gas from intake gate 7, thus controlling the capacity of the compressor.
With further reference to FIG. 5, it will be apparent that at A the groove is so short that its crosssectional area will be substantially reduced. However, at B the groove has acquired its maximum crosssectional area as its length increases progressively from B,C,D and E. By reason of the axial inlet gate 7, the
grooves are filled with working medium from the end facing the inlet and passed axially through the working space until one of the corresponding lands a, b, c, d or e is about to pass the upper edge of the exhaust port 10. At the moment of passage of the land, the corresponding groove becomes aligned with the by-pass opening 9 exposed by the axial displacement of slide valve 5, allowing partially compressed working fluid to enter the inlet end of the groove and thus preventing further working fluid from being drawn into the groove from the axial inlet gate. In other words, the partially compressed working fluid entering the groove acts as a stopper or plug. Obviously some mixing will take place between the partially compressed by-passed working fluid and the working fluid ahead of the by-pass, as well as with the non-compressed medium entering through the gate 7. However, the effect of such mixing may be disregarded as the consequence thereof is insignificant in comparison with the effect that would result from by-passed fluid being blown back through gate 7 and inlet 6. It should be understood that if the by-passed working fluid should be blown back through the port 10, it would have very little time to expand in the groove and escape therefrom before the groove is again closed when the land at d passesthe rear edge 7a.
FIG. 6 shows both intersecting bores of the casing developed from to 7b and which include a second opening or port 10. It will be clear that the double lines in the lower half of FIG. 6 represent the lands 13 between the grooves 15 in the female rotor 4b, while the double lines in the upper half represent the narrow grooves 16 between the lands 17 of the male rotor shown in FIG. 4.
I claim: 1. A variable capacity screw compressorcomprising: a. a casing, housing two intersecting bores defining a working chamber in which a pair of intermeshing screws having helical lands and intervening grooves are mounted to rotate and compress a working fluid as it is being passed axially through said working chamber from a low pressure inlet wall to a high pressure outlet wall, said walls being located at opposite axial ends of said casing; b. an inlet passage in said inlet wall located in substantially axial alignment with the axes of said screws for admitting working fluid into the ends of valve to vent partially compressed air from the" working chamber; 7
e. means for passing said vented partially compressed 1 working fluid directly into the grooves of said 1 screws at a location between said by-pass opening and said axially. aligned inlet passagewhereby to interrupt admission of low pressure working fluid.
2. A variable capacity screw compressor according to claim 1, in which the means for passing the vented working fluid comprises a port in the working chamber casing, said port being so located that the leading flank of the lands of said screws will commence to pass across the rear edge of said axial inlet passage as the 7 following grooves become aligned with said port.
3. A variable capacity screw compressor according to claim 2, in which a port is provided in said casing for each of the two bores.
4. A variable capacity screw compressor according to claim 2, in which the width of the port in the casing is of the same order of magnitude as the distance between the leading flanks of two successive lands. 7

Claims (4)

1. A variable capacity screw compressor comprising: a. a casing, housing two intersecting bores defining a working chamber in which a pair of intermeshing screws having helical lands and intervening grooves are mounted to rotate and compress a working fluid as it is being passed axially through said working chamber from a low pressure inlet wall to a high pressure outlet wall, said walls being located at opposite axial ends of said casing; b. an inlet passage in said inlet wall located in substantially axial alignment with the axes of said screws for admitting working fluid into the ends of the grooves facing said inlet passage as they become exposed during rotation; c. a slide valve comprising a portion of the casing located on the high pressure side of said working chamber and being axially displaceable therein in response to varying load conditions; d. said slide valve being effective to expose a by-pass opening in said working chamber to a degree corresponding to the axial displacement of the slide valve to vent partially compressed air from the working chamber; e. means for passing said vented partially compressed working fluid directly into the grooves of said screws at a location between said by-pass opening and said axially aligned inlet passage whereby to interrupt admission of low pressure working fluid.
2. A variable capacity screw compressor according to claim 1, in which the means for passing the vented working fluid comprises a port in the working chamber casing, said port being so located that the leading flank of the lands of said screws will commence to pass across the rear edge of said axial inlet passage as the following grooves become aligned with said port.
3. A variable capacity screw compressor according to claim 2, in which a port is provided in said casing for each of the two bores.
4. A variable capacity screw compressor according to claim 2, in which the width of the port in the casing is of the same order of magnitude as the distance between the leading flanks of two successive lands.
US388600A 1972-08-28 1973-08-15 Variable capacity screw compressor Expired - Lifetime US3877846A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE11092/72A SE366374B (en) 1972-08-28 1972-08-28

Publications (1)

Publication Number Publication Date
US3877846A true US3877846A (en) 1975-04-15

Family

ID=20293344

Family Applications (1)

Application Number Title Priority Date Filing Date
US388600A Expired - Lifetime US3877846A (en) 1972-08-28 1973-08-15 Variable capacity screw compressor

Country Status (5)

Country Link
US (1) US3877846A (en)
JP (1) JPS52251B2 (en)
GB (1) GB1444373A (en)
SE (1) SE366374B (en)
SU (1) SU873894A3 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003199A (en) * 1976-03-01 1977-01-18 General Motors Corporation Turbine engine with air brake
US4004864A (en) * 1974-07-01 1977-01-25 Svenska Rotor Maskiner Aktiebolag Method for modifying a compressing apparatus unit
EP0171180A1 (en) * 1984-07-04 1986-02-12 Kabushiki Kaisha Kobe Seiko Sho Screw compressor
US4770615A (en) * 1985-10-21 1988-09-13 Hitachi, Ltd. Screw compressor with scavenging port
US5052901A (en) * 1988-04-25 1991-10-01 Svenska Rotor Maskiner Ab Lift valve in a rotary screw machine
US6082985A (en) * 1997-09-10 2000-07-04 Kabushiki Kaisha Kobe Seiko Sho Screw compressor
US20110256011A1 (en) * 2008-11-20 2011-10-20 Aaf Mcquay Incorporated Screw compressor
US9057373B2 (en) 2011-11-22 2015-06-16 Vilter Manufacturing Llc Single screw compressor with high output
CN105386980A (en) * 2015-11-30 2016-03-09 珠海格力电器股份有限公司 Screw compressor and air conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191715U (en) * 1987-12-07 1989-06-15

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088658A (en) * 1959-06-04 1963-05-07 Svenska Rotor Maskiner Ab Angularly adjustable slides for screw rotor machines
US3088659A (en) * 1960-06-17 1963-05-07 Svenska Rotor Maskiner Ab Means for regulating helical rotary piston engines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088658A (en) * 1959-06-04 1963-05-07 Svenska Rotor Maskiner Ab Angularly adjustable slides for screw rotor machines
US3088659A (en) * 1960-06-17 1963-05-07 Svenska Rotor Maskiner Ab Means for regulating helical rotary piston engines

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004864A (en) * 1974-07-01 1977-01-25 Svenska Rotor Maskiner Aktiebolag Method for modifying a compressing apparatus unit
US4003199A (en) * 1976-03-01 1977-01-18 General Motors Corporation Turbine engine with air brake
EP0171180A1 (en) * 1984-07-04 1986-02-12 Kabushiki Kaisha Kobe Seiko Sho Screw compressor
US4770615A (en) * 1985-10-21 1988-09-13 Hitachi, Ltd. Screw compressor with scavenging port
US5052901A (en) * 1988-04-25 1991-10-01 Svenska Rotor Maskiner Ab Lift valve in a rotary screw machine
US6082985A (en) * 1997-09-10 2000-07-04 Kabushiki Kaisha Kobe Seiko Sho Screw compressor
US20110256011A1 (en) * 2008-11-20 2011-10-20 Aaf Mcquay Incorporated Screw compressor
US8702408B2 (en) * 2008-11-20 2014-04-22 Aaf Mcquay Incorporated Slide for use in a screw compressor
AU2009316974B2 (en) * 2008-11-20 2014-09-18 Aaf Mcquay Incorporated Screw compressor
US9057373B2 (en) 2011-11-22 2015-06-16 Vilter Manufacturing Llc Single screw compressor with high output
CN105386980A (en) * 2015-11-30 2016-03-09 珠海格力电器股份有限公司 Screw compressor and air conditioning system

Also Published As

Publication number Publication date
SU873894A3 (en) 1981-10-15
JPS52251B2 (en) 1977-01-06
JPS4959309A (en) 1974-06-08
SE366374B (en) 1974-04-22
GB1444373A (en) 1976-07-28

Similar Documents

Publication Publication Date Title
US3314597A (en) Screw compressor
FI59651C (en) STYRORGAN FOER SKRUVKOMPRESSOR
US3088659A (en) Means for regulating helical rotary piston engines
KR950002056B1 (en) Refrigeration plant and rotary positive displacement machine
US4383805A (en) Gas compressor of the scroll type having delayed suction closing capacity modulation
US3151806A (en) Screw type compressor having variable volume and adjustable compression
US3807911A (en) Multiple lead screw compressor
US3467300A (en) Two-stage compressor
US3877846A (en) Variable capacity screw compressor
US3295752A (en) Rotary vane compressor
US2481527A (en) Rotary multiple helical rotor machine
US3677664A (en) Rotary mechanical pumps of the screw type
US2111568A (en) Rotary compressor
US4222716A (en) Combined pressure matching and capacity control slide valve assembly for helical screw rotary machine
CA2742729C (en) Screw compressor
US4455131A (en) Control device in a helical screw rotor machine for regulating the capacity and the built-in volume ratio of the machine
US2620968A (en) Machine of the screw-compressor type
CA2885727C (en) Apparatus and method for enhancing compressor efficiency
US3527548A (en) Screw compressor with capacity control
US4770615A (en) Screw compressor with scavenging port
US2705922A (en) Fluid pump or motor of the rotary screw type
US3116871A (en) Rotary gas motor and compressor with conical rotors
JP3026819B2 (en) Rotary compressor with oil discharge device
US3138320A (en) Fluid seal for compressor
US3108740A (en) Regulating means for rotary piston compressors