US3873786A - Explosive type switch with circuit serving means - Google Patents
Explosive type switch with circuit serving means Download PDFInfo
- Publication number
- US3873786A US3873786A US35840773A US3873786A US 3873786 A US3873786 A US 3873786A US 35840773 A US35840773 A US 35840773A US 3873786 A US3873786 A US 3873786A
- Authority
- US
- United States
- Prior art keywords
- cylindrical portion
- explosive charge
- housing
- volume
- mechanical element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002360 explosive Substances 0.000 title claims abstract description 51
- 238000010304 firing Methods 0.000 claims abstract description 23
- 239000004020 conductor Substances 0.000 claims description 17
- 239000007789 gas Substances 0.000 claims description 15
- 238000006073 displacement reaction Methods 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 8
- 230000000977 initiatory effect Effects 0.000 claims description 3
- 239000003999 initiator Substances 0.000 abstract description 5
- 238000005474 detonation Methods 0.000 abstract description 4
- 238000010008 shearing Methods 0.000 description 8
- 238000004880 explosion Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- XTFIVUDBNACUBN-UHFFFAOYSA-N 1,3,5-trinitro-1,3,5-triazinane Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1 XTFIVUDBNACUBN-UHFFFAOYSA-N 0.000 description 1
- SPSSULHKWOKEEL-UHFFFAOYSA-N 2,4,6-trinitrotoluene Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O SPSSULHKWOKEEL-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000000028 HMX Substances 0.000 description 1
- AGUIVNYEYSCPNI-UHFFFAOYSA-N N-methyl-N-picrylnitramine Chemical group [O-][N+](=O)N(C)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O AGUIVNYEYSCPNI-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010616 electrical installation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- UZGLIIJVICEWHF-UHFFFAOYSA-N octogen Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UZGLIIJVICEWHF-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000000015 trinitrotoluene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D15/00—Shearing machines or shearing devices cutting by blades which move parallel to themselves
- B23D15/12—Shearing machines or shearing devices cutting by blades which move parallel to themselves characterised by drives or gearings therefor
- B23D15/14—Shearing machines or shearing devices cutting by blades which move parallel to themselves characterised by drives or gearings therefor actuated by fluid or gas pressure
- B23D15/145—Shearing machines or shearing devices cutting by blades which move parallel to themselves characterised by drives or gearings therefor actuated by fluid or gas pressure actuated by explosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/006—Explosive bolts; Explosive actuators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H39/00—Switching devices actuated by an explosion produced within the device and initiated by an electric current
- H01H39/006—Opening by severing a conductor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G1/00—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
- H02G1/005—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for cutting cables or wires, or splicing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/869—Means to drive or to guide tool
- Y10T83/8772—One tool edge of tool pair encompasses work [e.g., wire cutter]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/869—Means to drive or to guide tool
- Y10T83/8821—With simple rectilinear reciprocating motion only
- Y10T83/8858—Fluid pressure actuated
- Y10T83/8863—Explosive fluid
Definitions
- ABSTRACT A severing device is provided for severing a mechanical element such as a strip, bar or the like using pure shear forces generated by ignition of an explosive charge having an energy per unit of mass of more than 1,000 joules/gram and a detonation speed of over 3,000 ms.
- the mechanical element comprises a cylindrical portion and an annular portion which extends outwardly therefrom, the internal diameter of the annular portion being approximately equal to that of the cylindrical portion and a fracture initiator in the form of opposed grooves having the same diameter is located in the area joining the .two portions.
- the explosive charge, along with a firing unit'therefor, is located in a recess in the cylindrical portion of the element to be severed.
- the invention relates to a method and apparatus for severing a mechanical element, such as a wire, bar, strip or the like, using the energy of an explosive.
- the invention concerns severing or shearing an element or part which is introduced into a chamber together with an explosive charge the latter of which causes a shear pressure to be exerted on the element to be severed either directly, or indirectly through an intervening member, by means of the expanding gases released by the explosion of the charge.
- the invention provides a number of important advantages as compared with the prior art. For example, in accordance with one aspect of the invention, severing of the mechanical element, and, in a preferred embodiment, displacement of the severed portion of the element over a predetermined distance, takes place within a period of approximately seconds from the instant a firing signal is initiated.
- a further important feature of the invention is that devices built in accordance therewith vary from one another in response time only by a matter of microseconds.
- the invention is adapted for use in devices of limited size such as circuit-breakers for electrical installations.
- devices of limited size such as circuit-breakers for electrical installations.
- Other purposes or uses of the invention are set forth in, or will be apparent from, the description of two embodiments of the invention set forth hereinbelow.
- a element or part to be severed is subjected to pure shear stresses caused by the explosion of explosive materials having a useful energy per unit mass of over 1,000 joules/gram (j/g), and preferably between 2,000 and 5,000 j/g, and a rate of detonation of over 3,000 ms., preferably between 7,000 and 8,000 ms.
- the explosive materials are arranged or housed in a recess which opens onto a delim' ited surface of the element to be severed, or a movable part which bears directly or indirectly on the element to be severed, so that the initial volume of the gas from the explosion is at least equal to the volume covered by the delimited surface adjacent to the charge housing during the useful displacement of the severed portion of the element, or of the movable part.
- the severing method and apparatus of the invention utilizes the extraordinary effectiveness of pure shear so as to limit as much as possible the energy and time required.
- Aa is the elastic slip caused by a shear force T corresponding to, for a given cross section, the shear rupture stress P
- the relevant relationships can be expressed by the formula Aa/a P/G, where a is the thickness of the part and G is the cross-sectional modulus of elasticity or, more accurately, the shear modulus (G 0.38 E where E. Youngs Modulus).
- G the cross-sectional modulus of elasticity or, more accurately, the shear modulus (G 0.38 E where E. Youngs Modulus).
- P 350 Newtons/mm (N/mm and G 40,000 N/mm and, thus, assuming that the quantity PAu/a remains constant during shearing Aa/a 1.10".
- shear will be achieved as soon as the crystals have been displaced in the plane of the shear to a distance x (a)( 10), the shear energy
- the shear process of the invention is extremely rapid because of the short distance the shear forces act. Shearing is initiated as soon as the shear stress exceeds a particular threshold and hence it is desirable to reach this threshold as rapidly as possible.
- an explosive material is utilized which has a high rate of propagation and a high energy per unit mass as set forth above. Examples of such explosives are those known commercially as Hexogen, Octogen," Pentrite, Tetryl, Trinitrotoluene and the like.
- Such explosives ensures that prior to any geometrical change in the severing device due to displacement of the part to be severed, the gas pressure acting directly orindirectly on this part is raised within a time of less than one mi crosecond to a level higher than that corresponding to the shear threshold and is maintained at this level for the time necessary for the shearing process to take place.
- the sheared part be given the lowest possible mass consonant with effective operation and secondly, that the severing device be configured such that the efficiency of conversion ofthe internal energy of the explosive into mechanical and kinetic energy is as high as possible.
- the desired results discussed above can be achieved when the initial volume offered to or available to the explosive gases prior to any movement taking place is, at most, equal to the volume swept by the gases during the useful displacement of the sheared part.
- This initial volume can, at least, equal the covolume of the explosive material and this is a reason why, as discussed above, it is advantageous to use an explosive which has a high energy per unit of mass and a high rate of propagation.
- an ultra-high speed, high amperage circuit breaker wherein the element to be severed comprises a cylindrical portion and a coaxial annular portion, the internal diameter of the annular portion being approximately equal to the external diameter of the cylindrical portion, means for initiating fracture, in the form of opposed grooves of the same diameter, being located in the area or zone where the cylindrical and annular portions of the element to be severed are joined together.
- the cylindrical and annular portions are connected to respective terminals and the cylindrical portion is adapted to house the explosive charge and a firing unit therefor.
- the element to be severed is a conductive strip or bar which extends through an insulating cover of a metal housing.
- a conductive member located within the housing itself houses the explosive charge, a firing unit for the charge and a metal anvil which is displaced by explosion ofthe charge.
- An insulating member located between the anvil and the conductive bar is displaced with the anvil to a position between the ends of the bar, after the bar is severed, to prevent flashover.
- FIG. 1 is a side elevational view, partially in section and partially broken away, of an ultra-high speed, high amperage circuit breaker in accordance with a first embodiment of the invention.
- FIG. 2 is a view similar to FIG. 1 of an ultra-high speed, high amperage circuit breaker in accordance with a second embodiment of the invention
- FIG. 3 is a view similar to that of FIG. 1 showing the circuit breaker of FIG. 1 in the actuated position thereof;
- FIG. 4 is a view similar to that of FIG. 2 showing the circuit breaker of FIG. 2 in the actuated position thereof.
- Circuit breaker includes upper and lower electrical terminals l2 and 14 which are adapted to be connected to the appropriate leads or conductors of the electrical system in which the relay is to be included.
- Terminal 12 is mounted on a metallic body member or casing 16 by mounting nuts 12A and 12B and is insulated from body member 16 by a set of first and second insulating washers 18A and 20A.
- Terminal I4 is mounted on a metallic cap member 22 by a pair of mounting nuts 14A and 14B and is insulated from cap member 22 by a further set of first and second insulating washers 18B and 208.
- An electrical contact 24, which is electrically connected to terminal 12, is formed by sectors cut out of a cylinder and held together by an annular spring 26.
- a metal fracture member or part 28 which is coaxial with, and is screwed, onto terminal 14, frictionally engages contact 7 when cap member 22 is screwed onto body member 16.
- Fracture member 28 is provided with grooves 28A and 28B which serve as so-called fracture initiators, grooves 28A and 28B providing beginnings for the fracture and defining and limiting the area in which the shear stresses are to act.
- Fracture member 28 also includes a recess 28C which serves as a housing for an explosive charge 30 and a charge initiator block or firing assembly 32. The latter is fitted with connections 34 which pass through member 28, contact 24 and body or casing 16 to a control unit 36.
- explosive charge 32 and firing assembly 34 are manufactured separately so that the two elements are brought into contact only just prior to closing and sealing of the relay. This approach both provides improved safety by reducing the possibility of an explosion occurring during handling and enables standardization of the firing assembly 34 so as to permit firing assembly 34 to be used with explosive packages of widely varying charges.
- An annular insulating washer 38 is positioned between member 28 and the innermost end of terminal 14.
- a lead ring 40 is positioned within contact 24 between contact 24 and terminal 12 which, as set forth hereinbelow, limits the travel of the upper portion of member 28 that is sheared off.
- a firing signal is transmitted from control unit 36, through leads 34, to firing assembly or initiator 15 to cause charge 30'to explode.
- the gas pressure from the explosion subjects member 28 to shear stresses in the area defined by grooves 28A and 28B, shearing or rupturing of the member 28 taking place as soon as these stresses exceed a particular level.
- the upper portion of member 28 is separated from the lower portion thereof and is driven upwardly at high speed. After traveling a preselected distance determined by the position of lead ring 40, the separated portion of member 28 impacts against ring 40 to cause permanent deformation of the latter, this effect being enhanced by the fact the upper edge of member 28 is of triangular profile in cross section,
- the actuated position of the circuit breaker of FIG. 1 is shown in FIG. 3.
- the term severance as used here means shearing of the portion of the member 28 between grooves 28A and 28B and the separation and displacement of the upper movable portion of member 28 for a distance of about 5mm.
- the calibrated strip can comprise a calibrated prismatic fuse.
- a metal casing or housing denoted 50, houses a metallic member 52 which includes a recess 52A which, in turn, houses a firing unit or assembly 54 of the exploded wire type, an explosive charge 56 and a metal anvil member 58.
- Firing unit 54 is connected through a pair of leads or wires 60 to a suitable actuator (not shown), wires 60 extending through a correspond ing pair of openings or holes 52B in member 52.
- firing unit 54 and explosive charge 56 are manufactured separately and are operatively connected together only at the final moment of assembly of the circuit-breaker.
- An insulating member 62 positioned above anvil member 58 includes a recess in the lower surface thereof inwhich the head of anvil 58 is received.
- Member 62 is constructed of a suitable insulating material such as Nylon or Celoron and hence serves in insulating anvil 58 from the conductor to be severed which is denoted 64 in FIG. 2.
- the conductor 64 preferably comprises a calibrated fuse which, in an exemplary embodiment, is 25mm. in width and 2.5 mm. thick.
- Conductor 64 includes first and second spaced perforations or points of weakness 64A and 648 which are spaced apart a distance equal to the width of insulating member 62 and located opposite the parallel edges or side walls of member 62.
- a cover 66 which is preferably constructed of an insulating material such as Nylon or Celoron, screws onto casing 50 and includes a pair of openings 66A and 66B through which conductor 64 extends. Cover 66 defines a space 68 above conductor 64 as indicated in FIG. 2.
- the term severance as used here means the shearing of the conductor as well as the displacement of the sheared part of the conductor over a distance of 5mm.
- insulating member 62 may be lined on its surface in contact with the conductor 64 by a metal blade (not shown) to enhance the shear effect.
- the severance energy required may also be reduced by subjecting the conductor or fuse to the overcurrent to which the circuit-breaker responds since the thermal energy developed in the fuse will lessen the necessary shear energy.
- the circuit breaker of FlG. 2 can be modified where desired so that the severed or sheared portion of conductor 64 comes into contact with a set of normally open terminals at the end of its travel to thereby complete a control of measuring circuit.
- Devices incorporating the invention possess a number of other advantages in addition to the capability of operating with a very short time period (about seconds) and the interchangeability of the devices owing to the very small differences (less than a few microseconds) in operating times from device to device.
- such devices are suitable for utilization in any application where the switching components are inaccessible during use, e.g., undersea work at great depths,-underground work and space applications.
- the devices are capable of use in any electrical circuit requiring an ultrarapid response in the event of an overload, the practically simultaneous operation characteristics thereof enabling power to be interrupted, or connected, at a considerably higher level than would conventionally be the case.
- a device for severing a mechanical element comprising an electrical current conductor including a cylindrical portion and a coaxial annular portion extending outwardly from said cylindrical portion, the internal diameter of the annular portion being approximately equal to the external diameter of said cylindrical portion, said device comprising an explosive charge having an energy per unit of mass in excess of 1,000 joules/- gram and a speed of propagation in excess of 3,000 ms, firing means for detonating said charge, housing means for housing and supporting the mechanical element and said explosive charge including a first electrical terminal connected to said annular portion of said mechanical element and a second electrical terminal connected to said cylindrical portion of said mechanical clement, said mechanical element including means for initiating fracture comprising means defining first and second coaxial grooves located in the area joining said cylindrical portion and said annular portion, and said cylindrical portion including recess means for housing said explosive charge and said firing means such that the initial volume presented to the explosive gases, defined by the volume of said explosive charge and the housing therefor, is no greater than the volume swept by the gas during the useful displacement of the
- a device as claimed in claim 1 wherein said explosive charge has an energy per unit mass of between approximately 2,000 and 5,000 joules/gram and a speed of propagation of 7,000 to 8,000 ms.
- a device as claimed in claim 1 further comprising a deformable annulus positioned in the path of said cylindrical portion of the element to be severed for absorbing the kinetic energy of said cylindrical portion when the latter is sheared from said annular portion.
- said housing means comprises a metal case and a cap secured to said case, one of said first and second terminals being insulatingly mounted on said case and the other of said terminals being insulatingly mounted on said cap.
- a device for severing a mechanical element comprising a current carrying conductive strip, said device comprising an explosive charge having an energy per unit of mass in excess of 1,000 joules/gram and a speed of propagation in excess of 3,000 ms, firing means for detonating said charge, means for housing the mechanical element to be severed including a conductive case and an insulating cover secured to said case, the said current carrying conductive strip extending through said cover, said housing means further comprising a conductive member located within said case and including means for housing said explosive charge and a conductive anvil member which is displaced responsive to ignition of said charge and an insulating member located between said anvil member and said conductive strip; the initial volume presented to the explosive gases defined by the volume of said explosive charge and the housing therefor being no greater than the volume swept by the gas during the useful displacement of the sheared portion of the element to be severed, said swept volume being equivalent to the volume of the cylinder having a diameter equal to the internal diameter of the anvil housing means and a height equal to the
- a device as claimed in claim 6 wherein said explosive charge has an energy per unit mass of between approximately 2,000 and 5,000 joules/gram and a speed of propagation of 7,000 to 8,000 ms.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Fuses (AREA)
- Automotive Seat Belt Assembly (AREA)
- Shearing Machines (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7222959A FR2200770A5 (xx) | 1972-06-26 | 1972-06-26 | |
FR7300809A FR2213829B2 (xx) | 1972-06-26 | 1973-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3873786A true US3873786A (en) | 1975-03-25 |
Family
ID=26217181
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US35840773 Expired - Lifetime US3873786A (en) | 1972-06-26 | 1973-05-08 | Explosive type switch with circuit serving means |
US43330174 Expired - Lifetime US3895552A (en) | 1972-06-26 | 1974-01-14 | Explosive type severing device for cables, rods and the like |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US43330174 Expired - Lifetime US3895552A (en) | 1972-06-26 | 1974-01-14 | Explosive type severing device for cables, rods and the like |
Country Status (6)
Country | Link |
---|---|
US (2) | US3873786A (xx) |
BE (2) | BE794113A (xx) |
DE (2) | DE2317930C2 (xx) |
FR (2) | FR2200770A5 (xx) |
GB (1) | GB1441963A (xx) |
NL (2) | NL7303259A (xx) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4224487A (en) * | 1978-02-23 | 1980-09-23 | Simonsen Bent P | Fast acting explosive circuit interrupter |
US5070787A (en) * | 1988-06-24 | 1991-12-10 | The Board Of Regents Of The University Of Texas System | Method and apparatus for switching an electrical circuit |
EP0929090A2 (en) * | 1998-01-08 | 1999-07-14 | Harness System Technologies Research, Ltd. | Circuit breaker |
US5990572A (en) * | 1997-02-28 | 1999-11-23 | Harness System Technologies Research, Ltd. | Electric circuit breaker for vehicle |
US6194988B1 (en) * | 1998-06-30 | 2001-02-27 | Yazaki Corporation | Low melting point element fusion apparatus and circuit breaker including the same |
US6222439B1 (en) * | 1998-02-17 | 2001-04-24 | Sumitomo Wiring Systems, Ltd. | Circuit breaking device |
US6275136B1 (en) * | 1998-11-16 | 2001-08-14 | Yazaki Corporation | Circuit breaker |
US6388554B1 (en) * | 1999-03-10 | 2002-05-14 | Yazaki Corporation | Circuit breaker device |
US6411190B1 (en) * | 1999-08-03 | 2002-06-25 | Yazaki Corporation | Circuit breaker |
US6445563B1 (en) * | 1999-08-25 | 2002-09-03 | Yazaki Corporation | Power circuit breaker using temperature-sensive fuse |
US6448884B1 (en) * | 1999-08-27 | 2002-09-10 | Yazaki Corporation | Circuit breaker |
US6483420B1 (en) * | 1999-08-03 | 2002-11-19 | Yazaki Corporation | Circuit breaker |
US6496098B1 (en) * | 1997-07-04 | 2002-12-17 | Dynamit Nobel Gmbh Explosivstoff-Und Systemtechnik | Pyrotechnic active element |
US6556119B1 (en) * | 1998-04-19 | 2003-04-29 | Trw Automotive Electronics & Components Gmbh & Co. Kg | High current intensity fuse device |
WO2003067621A1 (de) * | 2002-02-10 | 2003-08-14 | Peter Lell | Elektrisches schaltglied, insbesondere zum schalten hoher ströme |
US20040041682A1 (en) * | 2002-08-29 | 2004-03-04 | Pasha Brian D. | Battery circuit disconnect device |
US20040112239A1 (en) * | 2002-07-11 | 2004-06-17 | Brent Parks | Assemblies including extendable, reactive charge-containing actuator devices |
US20050073387A1 (en) * | 2003-06-26 | 2005-04-07 | Gerhard Kordel | Chisel for a pyromechanical disconnecting device |
US20050083165A1 (en) * | 2003-10-17 | 2005-04-21 | Tirmizi Abrar A. | Pyrotechnic circuit breaker |
US20060027120A1 (en) * | 2002-07-11 | 2006-02-09 | Smith Bradley W | Assemblies including extendable, reactive charge-containing actuator devices |
US20060049027A1 (en) * | 2004-09-08 | 2006-03-09 | Iversen Arthur H | Fast acting, low cost, high power transfer switch |
US20060145808A1 (en) * | 2003-02-26 | 2006-07-06 | Von Behr Diedrich | Pyromechanical separating device with a specially shaped current conductor rail |
WO2006092231A1 (de) * | 2005-03-02 | 2006-09-08 | Rheinmetall Waffe Munition Gmbh | Munition, insbesondere programmierbare grosskalibrige munition |
US20080191830A1 (en) * | 2004-09-09 | 2008-08-14 | Lisa Dräxlmaier GmbH | Load Shedder |
US20100073120A1 (en) * | 2007-03-26 | 2010-03-25 | Robert Bosch Gmbh | Thermal fuse for use in electric modules |
CN101178993B (zh) * | 2007-12-07 | 2010-04-14 | 合肥南南电力保护设备有限公司 | 大电流快速开断体 |
US20100328014A1 (en) * | 2009-06-29 | 2010-12-30 | Toyoda Gosei Co., Ltd. | Electric circuit breaker apparatus for vehicle |
US20130056344A1 (en) * | 2010-03-15 | 2013-03-07 | Herakles | Electric circuit breaker with pyrotechnic actuation |
US20130255464A1 (en) * | 2010-12-27 | 2013-10-03 | Daikin Industries, Ltd. | Cutter |
US20130255463A1 (en) * | 2010-12-27 | 2013-10-03 | Daikin Industries, Ltd. | Cutter |
US20130263715A1 (en) * | 2010-12-27 | 2013-10-10 | Daikin Industries, Ltd. | Cutter |
US20140061011A1 (en) * | 2012-08-29 | 2014-03-06 | Toyoda Gosei Co., Ltd. | Conduction breaking device |
US20160336131A1 (en) * | 2015-05-13 | 2016-11-17 | Lisa Draexlmaier Gmbh | Fuse having an explosion chamber |
US20170263403A1 (en) * | 2014-09-09 | 2017-09-14 | Airbus Safran Launchers Sas | Pyrotechnic circuit breaker with improved cut of the blade |
US20170263402A1 (en) * | 2014-09-09 | 2017-09-14 | Airbus Safran Launchers Sas | Pyrotechnic circuit breaker having an improved structure for accommodating a bus bar, and assembly method thereof |
US20180166246A1 (en) * | 2015-05-18 | 2018-06-14 | Gigavac, Llc | Mechanical fuse device |
US20190108957A1 (en) * | 2017-10-11 | 2019-04-11 | Key Safety Systems, Inc. | High voltage electric line cutter device |
US10763064B2 (en) * | 2018-12-12 | 2020-09-01 | Key Safety Systems, Inc. | Electric fuse box or junction box assembly with a high voltage electric line cutter device |
CN113935074A (zh) * | 2021-09-17 | 2022-01-14 | 北京理工大学 | 一种用于存储器瞬态自毁系统的安全控制芯片 |
US11387061B2 (en) | 2015-05-18 | 2022-07-12 | Gigavac, Llc | Passive triggering mechanisms for use with switching devices incorporating pyrotechnic features |
US11443910B2 (en) | 2019-09-27 | 2022-09-13 | Gigavac, Llc | Contact levitation triggering mechanisms for use with switching devices incorporating pyrotechnic features |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4062112A (en) * | 1977-02-17 | 1977-12-13 | Lake Hilton J | Explosively operated wire cutter |
FR2456585A1 (fr) * | 1979-05-16 | 1980-12-12 | Pyromeca | Dispositif pyrotechnique de cisaillement de pieces resistantes allongees |
DE8705445U1 (de) * | 1987-04-11 | 1988-08-11 | Robert Krups Gmbh & Co Kg, 42719 Solingen | Schutzeinrichtung für elektrisch betriebene Geräte |
US5097786A (en) * | 1988-09-27 | 1992-03-24 | Sheffield Woodrow W | Method and apparatus for erecting and removing offshore structures |
US5036588A (en) * | 1989-10-02 | 1991-08-06 | The United States Of America As Represented By The Secretary Of The Navy | Nonvolatile, fast response wire cutter |
US5060837A (en) * | 1990-10-29 | 1991-10-29 | G & H Technology, Inc. | Method and apparatus for severing an optical fiber |
FR2668803A1 (fr) * | 1990-11-06 | 1992-05-07 | Europ Agence Spatiale | Dispositif de protection contre les eclats produits par un boulon a rupture commandee. |
DE4413847B4 (de) * | 1993-05-03 | 2004-09-09 | Volkswagen Ag | Einrichtung für Kraftfahrzeuge zur unfallbedingten Trennung einer elektrischen Energiequelle von einem Bordnetz |
DE4430284B4 (de) * | 1993-12-24 | 2006-03-30 | Volkswagen Ag | Einrichtung für Kraftfahrzeuge zur unfallbedingten Trennung einer elektrischen Energiequelle von einem Bordnetz |
DE4422249A1 (de) * | 1994-06-24 | 1996-02-15 | Temic Bayern Chem Airbag Gmbh | Vorrichtung zum Unterbrechen des Stromflusses in dem Massekabel einer Kraftfahrzeugbatterie |
DE4438157C1 (de) * | 1994-10-26 | 1995-12-07 | Daimler Benz Aerospace Ag | Pyrotechnische Trennvorrichtung |
JP3373102B2 (ja) * | 1996-01-31 | 2003-02-04 | 株式会社東芝 | 移動式炉心内計装系の切断弁 |
US5703315A (en) * | 1996-04-25 | 1997-12-30 | Loral Vought Systems Corporation | Device and method for transversely cutting a band |
NO984024D0 (no) * | 1998-09-02 | 1998-09-02 | Lenni Arnt Madsen | Anordning for automatisk kutting av minus- og/eller pluss-kabelen fra batteriet i et kj°ret°y |
DE19902073A1 (de) * | 1999-01-20 | 2000-08-10 | Bosch Gmbh Robert | Elektrischer Leiter mit Zündeinrichtung |
DE29904474U1 (de) * | 1999-03-12 | 2000-08-31 | Weidmüller Interface GmbH & Co, 32760 Detmold | Vorrichtung zum Durchschneiden von strangförmigem Gut |
DE29920021U1 (de) * | 1999-11-15 | 2001-05-10 | Weidmüller Interface GmbH & Co, 32760 Detmold | Vorrichtung zum Durchtrennen von strangförmigem Gut |
US6843157B2 (en) * | 2002-06-13 | 2005-01-18 | Autoliv Asp, Inc. | Severing vehicle battery cable |
EP1447640B1 (de) * | 2003-02-04 | 2007-12-05 | Delphi Technologies, Inc. | Pyromechanisches Trennelement |
DE102004023415A1 (de) * | 2003-07-29 | 2005-03-31 | Dynamit Nobel Ais Gmbh Automotive Ignition Systems | Pyrotechnisch angetriebene Trennvorrichtung zum Trennen von massiven, kompakten Materialien |
EP1502683B1 (de) * | 2003-07-29 | 2007-09-19 | Delphi Technologies, Inc. | Pyrotechnisch angetriebene Trennvorrichtung zum Trennen von massiven, kompakten Materialien |
DE602004000965T2 (de) * | 2003-08-11 | 2007-01-18 | B & B Controls | Schneidevorrichtung für ein Fallschirmseil |
US7934682B2 (en) * | 2006-10-13 | 2011-05-03 | Manfredi Dario P | Aircraft safety system |
DE102009037396B4 (de) | 2009-08-13 | 2012-08-16 | Wafios Ag | Pyrotechnisch betätigte Schneidvorrichtung |
DE102015009278B4 (de) * | 2015-07-21 | 2017-04-27 | Jenoptik Advanced Systems Gmbh | Seilschneidsystem für eine Seilwinde und Verfahren zum Betreiben einer Seilschneideinheit für eine Seilwinde |
CN105458388A (zh) * | 2016-01-19 | 2016-04-06 | 江苏宏威重工机床制造有限公司 | 应力场热松弛优化的液压剪板机 |
DE102016122424B4 (de) * | 2016-11-22 | 2023-06-07 | Auto-Kabel Management Gmbh | Trennvorrichtung mit Lichtbogenunterbrechung |
US11072030B2 (en) * | 2017-11-20 | 2021-07-27 | Barton G. Selby | Aquatic animal detangling device of benthic gear and mooring lines |
RU2705859C1 (ru) * | 2018-06-04 | 2019-11-12 | Акционерное общество "Научно-производственное предприятие "Краснознаменец" | Болт разрывной с системой обтюрации |
RU2740458C1 (ru) * | 2020-07-08 | 2021-01-14 | Акционерное общество "Научно-производственное предприятие "Краснознаменец" | Болт разрывной |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2365364A (en) * | 1943-06-26 | 1944-12-19 | Temple Velocity Equipment Inc | Outlet valve |
US2929892A (en) * | 1957-11-19 | 1960-03-22 | Raymond Engineering Lab Inc | Explosive actuated switch |
US3277255A (en) * | 1963-10-22 | 1966-10-04 | Bofors Ab | Single use circuit breaker |
US3393605A (en) * | 1967-08-31 | 1968-07-23 | Paul E. Parnell | Explosively actuated device for high pressure environment |
US3640169A (en) * | 1970-07-24 | 1972-02-08 | Us Air Force | Pyrotechnic remote cutter |
US3732129A (en) * | 1967-12-22 | 1973-05-08 | Dynamit Nobel Ag | Explosive charges initiated by exploding wires |
US3742859A (en) * | 1965-04-02 | 1973-07-03 | Us Navy | Explosive charge |
US3745276A (en) * | 1972-03-01 | 1973-07-10 | Cartridge Actuated Devices | Circuit breaking device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US346170A (en) * | 1886-07-27 | lester osgood | ||
US3125108A (en) * | 1964-03-17 | Interstage explosively operated hy- | ||
US2495953A (en) * | 1946-08-26 | 1950-01-31 | Austin Frank | Wire line cutter |
US2970506A (en) * | 1956-06-22 | 1961-02-07 | Mine Safety Appliances Co | Explosively actuated cable cutting tool using a live cartridge for producing gaseous pressure |
US3119298A (en) * | 1960-08-04 | 1964-01-28 | Hi Shear Corp | Explosively separable fastener |
US3246396A (en) * | 1963-04-11 | 1966-04-19 | Mine Safety Appliances Co | Explosive cutting tool for cable and the like |
US3452631A (en) * | 1967-04-17 | 1969-07-01 | Atlas Chem Ind | Reefing line cutter |
US3523477A (en) * | 1969-01-15 | 1970-08-11 | Us Army | Subminiature reefing line cutter |
US3707896A (en) * | 1970-05-26 | 1973-01-02 | Kh Aviatsionnyj Institut | Machine for working metals by impulses |
US3739673A (en) * | 1972-01-12 | 1973-06-19 | Mine Safety Appliances Co | Water pressure actuated electric switch for cable cutter |
-
1972
- 1972-06-26 FR FR7222959A patent/FR2200770A5/fr not_active Expired
-
1973
- 1973-01-11 FR FR7300809A patent/FR2213829B2/fr not_active Expired
- 1973-01-16 BE BE794113D patent/BE794113A/xx not_active IP Right Cessation
- 1973-03-08 NL NL7303259A patent/NL7303259A/xx active Search and Examination
- 1973-04-10 DE DE2317930A patent/DE2317930C2/de not_active Expired
- 1973-05-08 US US35840773 patent/US3873786A/en not_active Expired - Lifetime
- 1973-06-15 GB GB1620873A patent/GB1441963A/en not_active Expired
- 1973-12-14 NL NL7317153A patent/NL7317153A/xx active Search and Examination
-
1974
- 1974-01-11 DE DE2401358A patent/DE2401358C2/de not_active Expired
- 1974-01-11 BE BE139727A patent/BE809647R/xx not_active IP Right Cessation
- 1974-01-14 US US43330174 patent/US3895552A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2365364A (en) * | 1943-06-26 | 1944-12-19 | Temple Velocity Equipment Inc | Outlet valve |
US2929892A (en) * | 1957-11-19 | 1960-03-22 | Raymond Engineering Lab Inc | Explosive actuated switch |
US3277255A (en) * | 1963-10-22 | 1966-10-04 | Bofors Ab | Single use circuit breaker |
US3742859A (en) * | 1965-04-02 | 1973-07-03 | Us Navy | Explosive charge |
US3393605A (en) * | 1967-08-31 | 1968-07-23 | Paul E. Parnell | Explosively actuated device for high pressure environment |
US3732129A (en) * | 1967-12-22 | 1973-05-08 | Dynamit Nobel Ag | Explosive charges initiated by exploding wires |
US3640169A (en) * | 1970-07-24 | 1972-02-08 | Us Air Force | Pyrotechnic remote cutter |
US3745276A (en) * | 1972-03-01 | 1973-07-10 | Cartridge Actuated Devices | Circuit breaking device |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4224487A (en) * | 1978-02-23 | 1980-09-23 | Simonsen Bent P | Fast acting explosive circuit interrupter |
US5070787A (en) * | 1988-06-24 | 1991-12-10 | The Board Of Regents Of The University Of Texas System | Method and apparatus for switching an electrical circuit |
US5990572A (en) * | 1997-02-28 | 1999-11-23 | Harness System Technologies Research, Ltd. | Electric circuit breaker for vehicle |
US6496098B1 (en) * | 1997-07-04 | 2002-12-17 | Dynamit Nobel Gmbh Explosivstoff-Und Systemtechnik | Pyrotechnic active element |
EP0929090A2 (en) * | 1998-01-08 | 1999-07-14 | Harness System Technologies Research, Ltd. | Circuit breaker |
EP0929090A3 (en) * | 1998-01-08 | 2000-04-05 | Harness System Technologies Research, Ltd. | Circuit breaker |
US6295930B1 (en) | 1998-01-08 | 2001-10-02 | Harness System Technologies Research, Ltd. | Circuit breaker |
US6222439B1 (en) * | 1998-02-17 | 2001-04-24 | Sumitomo Wiring Systems, Ltd. | Circuit breaking device |
US6556119B1 (en) * | 1998-04-19 | 2003-04-29 | Trw Automotive Electronics & Components Gmbh & Co. Kg | High current intensity fuse device |
US6194988B1 (en) * | 1998-06-30 | 2001-02-27 | Yazaki Corporation | Low melting point element fusion apparatus and circuit breaker including the same |
US6275136B1 (en) * | 1998-11-16 | 2001-08-14 | Yazaki Corporation | Circuit breaker |
US6388554B1 (en) * | 1999-03-10 | 2002-05-14 | Yazaki Corporation | Circuit breaker device |
US6411190B1 (en) * | 1999-08-03 | 2002-06-25 | Yazaki Corporation | Circuit breaker |
US6483420B1 (en) * | 1999-08-03 | 2002-11-19 | Yazaki Corporation | Circuit breaker |
US6445563B1 (en) * | 1999-08-25 | 2002-09-03 | Yazaki Corporation | Power circuit breaker using temperature-sensive fuse |
US6448884B1 (en) * | 1999-08-27 | 2002-09-10 | Yazaki Corporation | Circuit breaker |
WO2003067621A1 (de) * | 2002-02-10 | 2003-08-14 | Peter Lell | Elektrisches schaltglied, insbesondere zum schalten hoher ströme |
DE10296442B4 (de) * | 2002-02-10 | 2008-06-19 | Lell, Peter, Dr.-Ing. | Elektrisches Schaltglied, insbesondere zum Schalten hoher Ströme |
US20040112239A1 (en) * | 2002-07-11 | 2004-06-17 | Brent Parks | Assemblies including extendable, reactive charge-containing actuator devices |
US20060027120A1 (en) * | 2002-07-11 | 2006-02-09 | Smith Bradley W | Assemblies including extendable, reactive charge-containing actuator devices |
US7063019B2 (en) * | 2002-07-11 | 2006-06-20 | Autoliv Asp, Inc. | Assemblies including extendable, reactive charge-containing actuator devices |
US20040041682A1 (en) * | 2002-08-29 | 2004-03-04 | Pasha Brian D. | Battery circuit disconnect device |
US7511600B2 (en) * | 2003-02-26 | 2009-03-31 | Delphi Technologies, Inc. | Pyromechanical separating device with a specially shaped current conductor rail |
US20060145808A1 (en) * | 2003-02-26 | 2006-07-06 | Von Behr Diedrich | Pyromechanical separating device with a specially shaped current conductor rail |
US7205879B2 (en) * | 2003-06-26 | 2007-04-17 | Delphi Technologies, Inc. | Chisel for a pyromechanical disconnecting device |
US20050073387A1 (en) * | 2003-06-26 | 2005-04-07 | Gerhard Kordel | Chisel for a pyromechanical disconnecting device |
US7239225B2 (en) * | 2003-10-17 | 2007-07-03 | Special Devices, Inc. | Pyrotechnic circuit breaker |
US20050083165A1 (en) * | 2003-10-17 | 2005-04-21 | Tirmizi Abrar A. | Pyrotechnic circuit breaker |
JP2007513314A (ja) * | 2003-12-05 | 2007-05-24 | オートリブ エーエスピー,インコーポレイティド | 反応装薬を内包する伸長可能なアクチュエーター装置を備えた組立体 |
WO2005060454A3 (en) * | 2003-12-05 | 2005-10-06 | Autoliv Asp Inc | Assemblies including extendable, reactive charge-containing actuator devices |
US20060049027A1 (en) * | 2004-09-08 | 2006-03-09 | Iversen Arthur H | Fast acting, low cost, high power transfer switch |
US7498923B2 (en) | 2004-09-08 | 2009-03-03 | Iversen Arthur H | Fast acting, low cost, high power transfer switch |
US7772958B2 (en) * | 2004-09-09 | 2010-08-10 | Lisa Dräxlmaier GmbH | Load shedder |
US20080191830A1 (en) * | 2004-09-09 | 2008-08-14 | Lisa Dräxlmaier GmbH | Load Shedder |
US20080314235A1 (en) * | 2005-03-02 | 2008-12-25 | Torsten Niemeyer | Ammunition, especially programmable large-caliber ammunition |
WO2006092231A1 (de) * | 2005-03-02 | 2006-09-08 | Rheinmetall Waffe Munition Gmbh | Munition, insbesondere programmierbare grosskalibrige munition |
AU2006220032B2 (en) * | 2005-03-02 | 2011-12-08 | Ruag Ammotec Gmbh | Ammunition, especially programmable high-calibre ammunition |
US7475625B1 (en) | 2005-03-02 | 2009-01-13 | Rheinmetall Waffe Munition Gmbh | Ammunition, especially programmable large-caliber ammunition |
US20100073120A1 (en) * | 2007-03-26 | 2010-03-25 | Robert Bosch Gmbh | Thermal fuse for use in electric modules |
CN101178993B (zh) * | 2007-12-07 | 2010-04-14 | 合肥南南电力保护设备有限公司 | 大电流快速开断体 |
US8432246B2 (en) * | 2009-06-29 | 2013-04-30 | Toyoda Gosei Co., Ltd. | Electric circuit breaker apparatus for vehicle |
US20100328014A1 (en) * | 2009-06-29 | 2010-12-30 | Toyoda Gosei Co., Ltd. | Electric circuit breaker apparatus for vehicle |
US20130056344A1 (en) * | 2010-03-15 | 2013-03-07 | Herakles | Electric circuit breaker with pyrotechnic actuation |
US20130255464A1 (en) * | 2010-12-27 | 2013-10-03 | Daikin Industries, Ltd. | Cutter |
US20130255463A1 (en) * | 2010-12-27 | 2013-10-03 | Daikin Industries, Ltd. | Cutter |
US20130263715A1 (en) * | 2010-12-27 | 2013-10-10 | Daikin Industries, Ltd. | Cutter |
US9153402B2 (en) * | 2010-12-27 | 2015-10-06 | Daikin Industries, Ltd. | Cutter |
US9236208B2 (en) * | 2010-12-27 | 2016-01-12 | Daikin Industries, Ltd. | Cutter for a current-carrying member |
US20140061011A1 (en) * | 2012-08-29 | 2014-03-06 | Toyoda Gosei Co., Ltd. | Conduction breaking device |
US9324522B2 (en) * | 2012-08-29 | 2016-04-26 | Toyoda Gosei Co., Ltd. | Conduction breaking device |
US20170263403A1 (en) * | 2014-09-09 | 2017-09-14 | Airbus Safran Launchers Sas | Pyrotechnic circuit breaker with improved cut of the blade |
US10468216B2 (en) * | 2014-09-09 | 2019-11-05 | Arianegroup Sas | Pyrotechnic circuit breaker with improved cut of the blade |
US20170263402A1 (en) * | 2014-09-09 | 2017-09-14 | Airbus Safran Launchers Sas | Pyrotechnic circuit breaker having an improved structure for accommodating a bus bar, and assembly method thereof |
US10128074B2 (en) * | 2014-09-09 | 2018-11-13 | Arianegroup Sas | Pyrotechnic circuit breaker having an improved structure for accommodating a bus bar, and assembly method thereof |
US9953783B2 (en) * | 2015-05-13 | 2018-04-24 | Lisa Draexlmaier Gmbh | Fuse having an explosion chamber |
US20160336131A1 (en) * | 2015-05-13 | 2016-11-17 | Lisa Draexlmaier Gmbh | Fuse having an explosion chamber |
US11387061B2 (en) | 2015-05-18 | 2022-07-12 | Gigavac, Llc | Passive triggering mechanisms for use with switching devices incorporating pyrotechnic features |
US11239038B2 (en) * | 2015-05-18 | 2022-02-01 | Gigavac, Llc | Mechanical fuse device |
US20180166246A1 (en) * | 2015-05-18 | 2018-06-14 | Gigavac, Llc | Mechanical fuse device |
US20190108957A1 (en) * | 2017-10-11 | 2019-04-11 | Key Safety Systems, Inc. | High voltage electric line cutter device |
US10622176B2 (en) * | 2017-10-11 | 2020-04-14 | Key Safety Systems, Inc. | High voltage electric line cutter device |
US11081303B2 (en) | 2017-10-11 | 2021-08-03 | Key Safety Systems, Inc. | High voltage electric line cutter device |
US10763064B2 (en) * | 2018-12-12 | 2020-09-01 | Key Safety Systems, Inc. | Electric fuse box or junction box assembly with a high voltage electric line cutter device |
US11443910B2 (en) | 2019-09-27 | 2022-09-13 | Gigavac, Llc | Contact levitation triggering mechanisms for use with switching devices incorporating pyrotechnic features |
US12040145B2 (en) | 2019-09-27 | 2024-07-16 | Gigavac, Llc | Contact levitation triggering mechanisms for use with switching devices incorporating pyrotechnic features |
CN113935074A (zh) * | 2021-09-17 | 2022-01-14 | 北京理工大学 | 一种用于存储器瞬态自毁系统的安全控制芯片 |
CN113935074B (zh) * | 2021-09-17 | 2023-01-31 | 北京理工大学 | 一种用于存储器瞬态自毁系统的安全控制芯片 |
Also Published As
Publication number | Publication date |
---|---|
DE2401358C2 (de) | 1985-04-25 |
FR2200770A5 (xx) | 1974-04-19 |
NL7317153A (xx) | 1974-07-15 |
FR2213829A2 (xx) | 1974-08-09 |
BE794113A (fr) | 1973-05-16 |
NL7303259A (xx) | 1973-12-28 |
BE809647R (fr) | 1974-07-11 |
US3895552A (en) | 1975-07-22 |
GB1441963A (en) | 1976-07-07 |
DE2401358A1 (de) | 1974-07-18 |
DE2317930C2 (de) | 1983-11-17 |
FR2213829B2 (xx) | 1976-11-05 |
DE2317930A1 (de) | 1974-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3873786A (en) | Explosive type switch with circuit serving means | |
CN110073460B (zh) | 用于高电压大电流的中断的电断路器 | |
US3848100A (en) | Explosive circuit-breaker | |
JP4242399B2 (ja) | 特に高電流強さ用電気回路の分離装置 | |
US4602565A (en) | Exploding foil detonator | |
US4030061A (en) | Electrical wire cutting circuit breaker | |
US4342978A (en) | Explosively-actuated switch and current limiting, high voltage fuse using same | |
US4829390A (en) | Electrical switch and circuitry for appliance | |
US2315320A (en) | Automatic circuit-interrupting device | |
US3611240A (en) | Dropout fuse | |
US4345127A (en) | High-voltage, blast-actuated power switch having a collapsible contact | |
US3094932A (en) | Electromagnetic radiation proof igniting device | |
US3500279A (en) | Exploding bridgewire operated switch | |
US2929892A (en) | Explosive actuated switch | |
US2892411A (en) | Crystal point detonation fuze | |
WO2022121231A1 (zh) | 一种采用旋转结构的多断口激励熔断器 | |
US4385216A (en) | Circuit breaker devices with a pyrotechnically destructible conductor having a fuse system in parallel | |
US2861153A (en) | Quick-action switch device | |
GB960186A (en) | Electrically triggered squib | |
US4174471A (en) | Explosively actuated opening switch | |
US11177101B2 (en) | Pyrotechnic fuse for interrupting an electrical circuit | |
US3848099A (en) | Circuit breakers for heavy currents | |
US4156390A (en) | Detonator igniter | |
CN111066114B (zh) | 电路断路装置 | |
US3985078A (en) | Power supply |