US3866079A - Television camera tube in which the detrimental effect of the return beam is counteracted - Google Patents
Television camera tube in which the detrimental effect of the return beam is counteracted Download PDFInfo
- Publication number
- US3866079A US3866079A US447563A US44756374A US3866079A US 3866079 A US3866079 A US 3866079A US 447563 A US447563 A US 447563A US 44756374 A US44756374 A US 44756374A US 3866079 A US3866079 A US 3866079A
- Authority
- US
- United States
- Prior art keywords
- photoconductive layer
- layer
- diaphragm
- electron beam
- television camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001627 detrimental effect Effects 0.000 title abstract description 5
- 238000010894 electron beam technology Methods 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims description 4
- 230000001154 acute effect Effects 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/84—Traps for removing or diverting unwanted particles, e.g. negative ions, fringing electrons; Arrangements for velocity or mass selection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/021—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof arrangements for eliminating interferences in the tube
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J31/00—Cathode ray tubes; Electron beam tubes
- H01J31/08—Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
- H01J31/26—Image pick-up tubes having an input of visible light and electric output
- H01J31/28—Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen
- H01J31/34—Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen having regulation of screen potential at cathode potential, e.g. orthicon
- H01J31/38—Tubes with photoconductive screen, e.g. vidicon
Definitions
- the invention relates to a television camera tube comprising, centered along an axis, an electron gun and a photoconductive layer which is provided on a transparent, conductive-signal layer, on which photoconductive layer a potential distribution is formed on the surface which as not in contact with the signal layer by projecting an optical image on the photoconductive layer, which potential distribution is periodically reduced to the potential of the cathode by scanning the photoconductive layer with an electron beam produced by the electron gun, said tube furthermore comprising a hollow cylindrical electrode in which a diaphragm is provided having a final aperture, taken in the direction of the electron gun to the photoconductive layer, which restricts the cross-section of the electron beam.
- Such a television camera tube is generally known and is termed vidicon.
- the operation of a vidicon is as follows: Under the influence of the deflection fields an electron beam ofa sufficient current strength scans the free surface of the photoconductive layer according to a given frame and brings said surface pointwise at the potential of the cathode which is termed zero volts. Be-
- each point of the free surface of the photoconductive layer increases under the influence of a positive potential which is applied to the signal layer and under the influence of photoconductivity which is produced in the photoconductive layer by the optical image projected thereon.
- Each point, or more exactly each elementary surface element, of the photoconductive layer together with the signal layer constitutes a capacitor.
- the charge of said capacitor is periodically replenished by the scanning electron beam, for which more charge is required according as more light impinges upon the relevant point.
- the current which consequently flows through the connection of the signal layer comprises the information of the projected image as a function of time.
- the current strength of the electron beam must be sufficiently large to provide elementary capacitors which are strongly discharged as a result of large current intensity, with sufficient charge.
- the electrons of the electron beam can no longer reach said point. Their velocity becomes zero and then they are accelerated in the reverse direction and constitute the socalled return beam. Said return beam also experiences the influence of the deflection fields and scans the surface of the diaphragm facing the photoconductive layer.
- a part of the secondary electrons produced on the diaphragm has substantially the same kinetic energy as the electrons of the return beam and constitutes a secondary beam which together with the original (primary) electron beam scans the photoconductive layer but in a place different from the primary electron beam because the secondary beam is formed by electrons which have traversed the deflection fields three times instead of once. As a result of this an interfering signal is formed which is visible in the picture to be displayed.
- the surface of the diaphragm facing the photoconductive layer in so far as it is not present in the immediate proximity of the axis of the tube, encloses an acute angle with the direction of the said axis.
- This is preferably realized by giving the diaphragm the shape of a truncated cone in the narrow side of which the aperture is provided.
- the secondary beam has a major direction which is not directed towards the photosensitive layer because a very considerable part of the produced secondary electrons has a direction which coincides in the same manner with the direction a of the primary electrons and with the normal to the surface of the diaphragm as this is the case upon reflection oflight rays (the angle of incidence is equal to the angle of reflection).
- the television camera tube shown has an evacuated glass envelope 1 with connection pins 2, an electron gun 3 with a cathode 4, a grid 5 and a anode 6, a focusing lens 7 consisting of the cylindrical electrodes 8, 9 and 10, a gauze-shaped electrode 11 and a photocon ductive layer 12 which is provided on a transparent, conductive signal layer 13, which signal layer 13 is provided on the window 14 of the tube.
- the cylindrical electrode 8 comprises a diaphragm 15 having an aperture 6 which restricts the cross-section of the electron beam produced by the electron gun 3. As a result of this, aberrations of the electron beam as a result of the focusing lens 7 are reduced and the electron beam scans the photosensitive layer 12 with a very small spot.
- the interfering signal as a result of the secondary beam is thus mainly produced at those instants at which the secondary beam passes the non-used parts of the photoconductive layer 12. Since the photoconductive layer 12 is circular and the frame is rectangular, said parts have the shape of four circle segments.
- the secondary beam has traversed the deflection field three times and the primary beam only once.
- the frame of the secondary beam is therefore approximately three times as large 4 as the frame of the primary beam. The result of this is that, in particular in the case of uniform and weakly exposed scenes, a dark rectangle is visible in the displayed television picture the size of a third of the picture surrounded by four brighter circle segments. Said disturbing effect is prevented with a television camera tube according to the invention.
- the diaphragm 15 Since the return beam has traversed the deflection fields two times the diaphragm 15 is scanned by the return beam according to a raster which is twice as large as the frame of the primary beam on the photoconductive layer 12.
- the part 17 of the diaphragm 15 still causes a secondary beam with a major direction to wards the photoconductive layer 12 and must be chosen to be so small that said secondary beam remains within the part of the photoconductive layer 12 scanned by the primary beam since said part has a potential in the proximaty of 0 volts so that the secondary beam can land there with difficulty.
- the photoconductive layer 12 has a diameter of approximately 10 mm and the frame of the primary beam forms a rectangle of6 X 8 mm.
- the diameter of the part 17 of the diaphragm must then be significantly smaller than of the smallest dimension of the frame scanned by the primary beam, so significantly smaller than 4 mm, and in the example shown it is 2 mm.
Landscapes
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL7109140A NL7109140A (en, 2012) | 1971-07-02 | 1971-07-02 | |
DE2230529A DE2230529C2 (de) | 1971-07-02 | 1972-06-22 | Fernsehkameraröhre |
CA145,875,A CA950954A (en) | 1971-07-02 | 1972-06-28 | Television camera tube (vidicon) in which the detrimental effect of the return beam is counteracted |
AU44005/72A AU463685B2 (en) | 1971-07-02 | 1972-06-28 | Television camera tube |
GB3042972A GB1336970A (en) | 1971-07-02 | 1972-06-29 | Television camera tube |
FR7224007A FR2144742B1 (en, 2012) | 1971-07-02 | 1972-07-03 | |
US447563A US3866079A (en) | 1971-07-02 | 1974-03-04 | Television camera tube in which the detrimental effect of the return beam is counteracted |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL7109140A NL7109140A (en, 2012) | 1971-07-02 | 1971-07-02 | |
US26525972A | 1972-06-22 | 1972-06-22 | |
US447563A US3866079A (en) | 1971-07-02 | 1974-03-04 | Television camera tube in which the detrimental effect of the return beam is counteracted |
Publications (1)
Publication Number | Publication Date |
---|---|
US3866079A true US3866079A (en) | 1975-02-11 |
Family
ID=27351688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US447563A Expired - Lifetime US3866079A (en) | 1971-07-02 | 1974-03-04 | Television camera tube in which the detrimental effect of the return beam is counteracted |
Country Status (7)
Country | Link |
---|---|
US (1) | US3866079A (en, 2012) |
AU (1) | AU463685B2 (en, 2012) |
CA (1) | CA950954A (en, 2012) |
DE (1) | DE2230529C2 (en, 2012) |
FR (1) | FR2144742B1 (en, 2012) |
GB (1) | GB1336970A (en, 2012) |
NL (1) | NL7109140A (en, 2012) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4268777A (en) * | 1978-09-14 | 1981-05-19 | U.S. Philips Corporation | Cathode-ray tube |
EP0046610A1 (en) * | 1980-08-22 | 1982-03-03 | Koninklijke Philips Electronics N.V. | Television camera tube |
US4363996A (en) * | 1979-12-19 | 1982-12-14 | Hitachi, Ltd. | Vidicon type camera tube |
US4427917A (en) | 1979-06-22 | 1984-01-24 | Hitachi, Ltd. | Television camera tube with electrostatic focusing |
US4503354A (en) * | 1980-11-27 | 1985-03-05 | English Electric Valve Company Limited | Camera tubes |
US6356015B2 (en) | 1999-01-21 | 2002-03-12 | Imaging & Sensing Technology Corporation | Getter flash shield |
US6376850B1 (en) * | 1997-05-16 | 2002-04-23 | Leica Microsystems Lithography Limited | Electron beam aperture element |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5996639A (ja) * | 1982-11-26 | 1984-06-04 | Hitachi Ltd | 撮像管 |
FR2630586A1 (fr) * | 1988-04-22 | 1989-10-27 | Thomson Csf | Tube de camera avec ecran de suppression d'image parasite |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2747133A (en) * | 1950-07-05 | 1956-05-22 | Rca Corp | Television pickup tube |
US2839601A (en) * | 1950-09-27 | 1958-06-17 | Julius Cato Vredenburg Inglesb | Methods of and apparatus for rendering visible magnetic and electric field patterns |
US3183400A (en) * | 1962-05-31 | 1965-05-11 | Westinghouse Electric Corp | Pickup tube with dark current supply source |
US3307061A (en) * | 1963-09-16 | 1967-02-28 | Gen Electric | Electrostatic return beam camera tube |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL160428C (nl) * | 1968-02-13 | 1979-10-15 | Philips Nv | Beeldopneeminrichting met een beeldopneembuis en beeldop- neembuis voor een dergelijke inrichting. |
-
1971
- 1971-07-02 NL NL7109140A patent/NL7109140A/xx not_active Application Discontinuation
-
1972
- 1972-06-22 DE DE2230529A patent/DE2230529C2/de not_active Expired
- 1972-06-28 AU AU44005/72A patent/AU463685B2/en not_active Expired
- 1972-06-28 CA CA145,875,A patent/CA950954A/en not_active Expired
- 1972-06-29 GB GB3042972A patent/GB1336970A/en not_active Expired
- 1972-07-03 FR FR7224007A patent/FR2144742B1/fr not_active Expired
-
1974
- 1974-03-04 US US447563A patent/US3866079A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2747133A (en) * | 1950-07-05 | 1956-05-22 | Rca Corp | Television pickup tube |
US2839601A (en) * | 1950-09-27 | 1958-06-17 | Julius Cato Vredenburg Inglesb | Methods of and apparatus for rendering visible magnetic and electric field patterns |
US3183400A (en) * | 1962-05-31 | 1965-05-11 | Westinghouse Electric Corp | Pickup tube with dark current supply source |
US3307061A (en) * | 1963-09-16 | 1967-02-28 | Gen Electric | Electrostatic return beam camera tube |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4268777A (en) * | 1978-09-14 | 1981-05-19 | U.S. Philips Corporation | Cathode-ray tube |
US4427917A (en) | 1979-06-22 | 1984-01-24 | Hitachi, Ltd. | Television camera tube with electrostatic focusing |
US4363996A (en) * | 1979-12-19 | 1982-12-14 | Hitachi, Ltd. | Vidicon type camera tube |
EP0046610A1 (en) * | 1980-08-22 | 1982-03-03 | Koninklijke Philips Electronics N.V. | Television camera tube |
US4503354A (en) * | 1980-11-27 | 1985-03-05 | English Electric Valve Company Limited | Camera tubes |
US6376850B1 (en) * | 1997-05-16 | 2002-04-23 | Leica Microsystems Lithography Limited | Electron beam aperture element |
US6356015B2 (en) | 1999-01-21 | 2002-03-12 | Imaging & Sensing Technology Corporation | Getter flash shield |
Also Published As
Publication number | Publication date |
---|---|
AU4400572A (en) | 1974-01-03 |
CA950954A (en) | 1974-07-09 |
FR2144742A1 (en, 2012) | 1973-02-16 |
AU463685B2 (en) | 1975-07-31 |
DE2230529C2 (de) | 1982-12-02 |
GB1336970A (en) | 1973-11-14 |
FR2144742B1 (en, 2012) | 1977-07-22 |
NL7109140A (en, 2012) | 1973-01-04 |
DE2230529A1 (de) | 1973-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE22115E (en) | Light-valve projection apparatus | |
US3928784A (en) | Television camera tube with control diaphragm | |
US3866079A (en) | Television camera tube in which the detrimental effect of the return beam is counteracted | |
US2690517A (en) | Plural beam electron gun | |
US2322807A (en) | Electron discharge device and system | |
US3303373A (en) | Target assembly comprising insulating target, field and collector meshes | |
US3831058A (en) | Device comprising a television camera tube and television camera | |
GB2031222A (en) | Electron guns | |
US4128790A (en) | Cathode ray tube for displaying colored pictures | |
US3883773A (en) | Device comprising a television camera tube | |
US3801855A (en) | Television camera tube | |
US2869024A (en) | Television pick-up tube | |
US2558647A (en) | Storage electrode type cathode-ray tube | |
US2324504A (en) | Television transmitting system | |
US3205391A (en) | Negative-lens type deflection magnifying means for electron beam in cathode ray tubes | |
EP0084915B1 (en) | Television camera tube | |
US3688122A (en) | An electrostatic focused electron image device | |
US2914696A (en) | Electron beam device | |
US3691423A (en) | Method of improving the resolution of an image converter system | |
CA1118831A (en) | Device comprising a television camera tube and television camera for such a device | |
US3341734A (en) | Television camera devices and related systems | |
GB2130004A (en) | Cathode-ray tube | |
US2782333A (en) | Shortened triple gun for color television | |
US3801848A (en) | Television camera tube with mounting assembly for grid adjacent photoconductor | |
US2538852A (en) | Kinescope projection by refractive optical system mounted on tube neck |