US3866041A - Method and apparatus for evaluating the gas content of materials - Google Patents
Method and apparatus for evaluating the gas content of materials Download PDFInfo
- Publication number
- US3866041A US3866041A US408928A US40892873A US3866041A US 3866041 A US3866041 A US 3866041A US 408928 A US408928 A US 408928A US 40892873 A US40892873 A US 40892873A US 3866041 A US3866041 A US 3866041A
- Authority
- US
- United States
- Prior art keywords
- arc
- electrode
- circuit
- support
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N7/00—Analysing materials by measuring the pressure or volume of a gas or vapour
- G01N7/14—Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T7/00—Rotary spark gaps, i.e. devices having one or more rotating electrodes
Definitions
- ABSTRACT A highly sensitive gas analysis method and apparatus to practice the method is provided to evaluate the gas content and predict the expected performance of a vacuum interrupter using specific contact material analyzed.
- the system is composed of a vacuum chamber which is adapted to receive three high vacuum valves which operate to connect or disconnect an ion sublimation pumping system; another of the valves is connected to receive a mass spectrometer analyzer tube, while the third valve connects a roughing system to the vacuum chamber. Included in the system is an ion gauge and an arc initiating mechanism. The mass spectrometer is utilized to analyze the type (composition) of the gas occluded in the test sample as it is released by arcing while the ion gauge measures the total amount of the gas.
- An electrical feed-through is provided and is connected to an internal heater which is operable to effect a bakeout which precedes the testing and is intended to free the surfaces from adsorbed gas species and drive them to the pumping system.
- a carrousel is operably disposed to carry test contact samples that are moved in a rotational path of travel to position the sample materials opposite the arc initiating anodes so that the sample materials in effect become the cathodes.
- Still another object of the present invention is to develop and provide a highly sensitive gas analysis system to evaluate the gas content and predict the expected performance of a vacuum interrupter using the specific contact material analyzed.
- Yet another object of the present invention is to provide a system wherein a plurality of samples can be analyzed at the same time and under the same conditions.
- a further object of the present invention is to provide a system for analyzing several material samples under the same conditions and compare: them to a control or a standard sample, thus establishing a reference for comparison and the results obtained thus provide data having more meaningful information.
- FIG. 1 is a schematic representation of .a system which may be utilized in practicing the method of the present invention.
- FIG. 2 is a graph representative of a display obtained from a Visi-recorder indicating the various data obtained from a sample analysis.
- the system 10 includes a cylindrical housing 11 that is-sealed by sealing end plates 21 and 22 to form a vacuum chamber 25 therein.
- a vacuum chamber 25 therein.
- the valve 31 is operable to connect or disconnect a roughing system 36 which is utilized to initially evacuate the chamber 25 prior to utilization of an ion-sublimation pumping system 37.
- the ion-sublimation pumping system 37 is connected to the chamber 25 via the port 27.
- a mass spectrometer 38 is operably connected to the valve 33.
- Ports 41 and 42 are utilized toaccommodate viewing windows 43 and 44 through which the operator may vi sually inspect the interior of the vacuum chamber 25.
- Another port 47 accommodates an ion gauge 48 for monitoring of the total pressure within the vacuum chamber 10 during the various processes (e.g., during pumping down, before arcing, during arcing, after arcing, etc.).
- Two arc initiating mechanisms 51 and 52 are accommodated in ports 53 and 54, respectively.
- two other ports 56 and 57 are provided in the vacuum chamber cylinder 11 which are adapted to receive leak valve 58 and a feed-through 59, respectively.
- the leak valve 58 is used to calibrate the mass spectrometer 38 while the feed-through 59 is utilized to introduce thermocouples (not shown) to measure the temperature during the bakeout: process which precedes the testing of the samples.
- the sealing end plate 21 accommodates an electrical feed-through 61 which communicates with the interior ofthe vacuum chamber 25.
- the inner end of the electrical feed-through 61 has an operative electrical connection to one end of a molybdenum heater 62 which is grounded to the top sealing end plate 21.
- a carrousel 64 having an electrically conductive upstanding standard 65 which is adapted to carry eight material samples 66 of which six samples 66A, 66B, 66C, 66E, 66F and 666 are shown.
- the material samples 66 to be tested are carried in two annular rows with each annular row having four test pieces spaced degrees apart as depicted in FIG. 1.
- the upper annular row is provided with material samples 66A, 66B, and 66C, as well as one other sample (66D, not shown) all of which are spaced 90 degrees apart relative to adjacent samples.
- the bottom annular row is provided with material samples 66E, 66F and 66G, as well as an additional sample (661-1, not shown) all of which are also spaced 90 degrees apart relative to adjacent samples.
- the samples include samples for evaluation as well as control or standard sample.
- the carrousel 64 is rotated 90 so that the samples 66A and 66E are positioned adjacent the two arc initiating mechanisms 51 and 52.
- the spur gear 69 is carried onthe inner end of a mechanical feed-through shaft 72, the opposite outwardly extending end of which is provided with means 73 for effecting a rotation of the shaft 72.
- the means 73 which is preferred is a magnetic drive; however, the means 73 may be a handwheel, a handcrank or a gear whereby the power input to the shaft may be effected if so desired.
- the carrousel 65 When the carrousel 65 has been rotated 90 degrees to position the particular samples 66A and 66E into position for cooperation with the arc initiating mechanisms 51 and 52, the carrousel 65 will be lowered and effectively clamped in position. To this end the carrousel 65 is disposed to rotate on an antifriction bearing 81 carried by a draw-rod 82. In order to draw the carrousel 64 downwardly into clamped engagement with the sealing end plate 22, the draw-rod 82 extends through a sealing bushing 83 disposed in a sealing plate 84 and into the vacuum chamber through the carrousel base plate 67.
- the inner end of the draw-rod 82 is provided with a conical thrust washer 86, the convex surface of which is adjacent the base plate 67 to provide for aminimum of frictional engagement between the washer 86 and the base plate 67 during rotation of the carrousel 64.
- the lower end of the draw-rod 82 extends through the sealing bushing 83 and has a flat surface 87 which engages a flat 88 in the bore of the sealing bushing 83.
- the draw-rod 82 is permitted to move axially but is prevented from rotating by means of the engaging flat surfaces 87, 88.
- the antifriction bearing 81 is affixed to the rod 82 so.
- the lower end of the rod 82 is threaded and receives a nut 89.
- the rod is caused to move axially downward thereby effecting engagement of the washer 86 with the base plate 67 to draw the entire carrousel 64 and the bearing 81 downwardly.
- a pair of studs 91 and 92 disposed 180 degrees apart on the lower face of the base 67 en gage in suitable openings 93 and 94 provided in the inner surface of the sealing end plate 22.
- the material samples such as the samples 66A and 66E
- the material samples such as the samples 66A and 66E
- the studs 91 and 92 are engaged in the openings 93 and 94 in the end plate thereby locating the carrousel 64 in a fixed position.
- the base 67 of the carrousel is formed with a p epair of studs located 180 apart, all studs being spaced degrees apart relative to adjacent studs.
- a bellows 96 tubular in form, is provided to maintain the vacuum seal of the chamber 25 and is welded at its innermost end to the lower race of the bearing 81 and to the lower sealing end plate 84.
- the material sample such as the material samples 66A and 66E as previously mentioned, are located opposite the electrodes of the arc initiating mechanisms 51 and 52.
- the electrodes 101 and 102 of'the arc initiating mechanisms 51 and 52, respectively, with the material samples 66A and 66E are axially movable into engagement with the samples.
- the arc initiating mechanisms 51 and 52 are identical and each are constructed with the sample design.
- the arc initiating mechanism 51 is comprised of an insulating ceramic housing 103 which is secured in sealed relationship to the flange of the port 53.
- the outer end of the ceramic feedthrough is provided with a metallic flanged collar 104 that is sealed as being brazed or welded to a bellows 108.
- the feed-through electrode 101 is supported in a bearing 106 which is preferred to be a nylon bearing and that is disposed in substantially coinciding axial alignment with the sample 66A.
- the bellows 108 as previously mentioned is brazed to flanged collar 104 and at its inner end is also brazed to the peripheral surface of the feed-through electrode 101.
- the extreme inner end of the electrode 101 is provided with a contact 109 which serves as an anode during arcing.
- the axial inner movement of the electrode 101 is controlled by a solenoid in a well-known manner which is activated on .demand to cause the electrode 101 to move axially outwardly thereby separating the contact 109 from the material sample 66A under test and which is now serving as a cathode thereby initiating an arc.
- the bushing 106 is utilized to align the movable electrode 101 so that the contact 109 may be positioned to meet precisely with the material sample 66A when the contact 109 is in the closed position.
- the test chamber is baked out before testing, while being exhausted by an ion-sublimation pumping system, for a total time of 36 hours including hours holding at 400C. and 10' Torr.
- the test chamber is roughed by a mechanical pump furnished by a cryogenic trap to reduce pressure to a level where the ion-sublimation pumping system can be started usually at 10 to 10 Torr.
- the bakeout is then effected by energizing the heater 62.
- the chamber may also be surrounded from the outside by an oven or heating tape 115 to insure a uniform bakeout of all the parts.
- an electrical circuit composed of a regulated power supply with open circuit voltage of approximately 100 volts do. is connected in series with the arc initiation feed-through electrodes 101 and 102, a back-up breaker 111 and a variable resistance 112 to control the current in'the circuit.
- the are initiation feed-through electrodes 101 and 102 are connected in the electrical circuit in a manner that when the sample 66A, for example, is to be arced, the electrode 101 is connected to the positive polarity of the circuit and the electrode 102 is connected to the negative polarity. In this way, the sample 66A during arcing would be a cathode and the contact 109 of the electrode 101 an anode.
- the electrode 102 is connected to the positive polarity of the circuit and the electrode 101 to the negative polarity thus causing the test sample 6615 to be the cathode during arcing.
- the mention of the arc initiating feedthrough electrodes is controlled by magnetic solenoids 105, 107. In the normal position, the contacts 109 and 110 at the internal end of the electrodes 101 and 102, respectively, and the samples are contacting or are in closed positions.
- one solenoid is used, that is the one controlling themotion of the electrode to become an anode during arcing, while the other solenoid is not in use and the electrode connected to it is merely used to conduct the current to the carrousel 64 carrying the samples.
- the solenoid to be used and the control mechanism of the back-up breaker are electromechanically actuated and controlled by time delay relays. In operation, the back-up breaker is closed manually to permit the current to flow in the circuit. After an interval of approximately 1.5 seconds, an automatic cycle starts in which the arc initiating electrode facing the sample to be tested is parted to initiate an arc which is maintained for a predetermined arcing time interval of between 0.5 and 1 second. Thereafter the opening of the back-up breaker is accomplished to extinguish the arc.
- a precision resistor 118 havinga resistance of 0.05 ohms, for example, may be inserted between the backup breaker 111 and the electrode 101 to measure the current in the circuit during the flow of current and during arcing.
- the voltage across the resistor 118 is measured using the Visi-recorder 119 which is initially calibrated to read in volts.
- the current, in amperes, will be equal to the voltage divided by 0.05.
- the arc voltage is equal to the potential difference between the movable electrode 101 and the ground potential and is measured using the Visi-recorder 119 which, as previously mentioned, is calibrated to read in volts.
- the total pressure caused by the arc evolved gas and the composition of this gas is evaluated from the ion gauge and mass spectrometer readings respectively.
- Both the ion gauge and the mass spectrometer tube are furnished with Thoria coated iridium filaments and are operated at an emission current of l milliampere or less. In this way, it is possible to reduce to an insignificant value effects such as ion gauge and mass spectrometer pumping and new gas formation.
- the mass spectrometer is calibrated (using the major gases of interest, that is, H CO, CH,, CO etc., which may be leaked during calibration to the systems through valve 58) against the ion gauge which was previously calibrated against a McLoed gauge.
- the data is acquired by using a sixchannel Visi-recorder 119 and calibrating the different channels to read directly the parameters of interest.
- the arcing time is obtained from a knowledge of the Visi-recorder chart speed and then measuring the length of the arc current or voltage trace.
- the mass spectrometer a quadropole of 10 Torr. N sensitivity and negligible response time is adjusted to scan repeatedly between mass 1 and AMU. The scan time is approximately 0.2 seconds.
- Curve 2 depicts a sample of a Visi-recorder display during an arcing event of a pure Cu. sample. Reading from right to left as viewed in FIG. 2, curve 1 is the arc voltage, the value of which is indicated by the step in the curve. Curve 2 is a reference time base intended to calibrate the chart speed. Curve 3 is the mass spectra of the are released gases and show peaks at masses 2, 12, 15, 16, 28 and 44 indicating the revolution of H CH CO and CO Curve 4 is the total pressure as measured by the ion gauge. Curve 5 is the arc current and shows two steps, the first indicates the establishing of the current in the circuit and the second indicates the value of the arc current. The are duration is the length as compared to the reference time base of the second step in curve 5 representing the arc current or the step in curve 1 representing the arc voltage.
- the gas content is calculated by relating this result to the estimated quantity of the material eroded during arcing, which is calculated from the average erosion rate (weight loss per unit of arc energy) and the are energy dissipated during arcing.
- the average erosion rate is calculated by weighing the test sample before and after arcing to obtain the total erosion then dividing by the total are energy the sample experienced during testing. Approximately 5 to 10 arcs should be drawn and the gas content evaluated after each arc to obtain an accurate value for average gas content.
- the results obtained from the various samples may be compared with this standard and a ref erence may therefore be established.
- the homogenity of the gas content may also be checked by arcing the test sample to various depths from the surface and estimating the gas content versus the depth from the surface.
- a method for evaluating material to be utilized in a vacuum interrupter comprising the steps of:
- a method for evaluating material to be utilized in a vacuum interrupter comprising the steps of:
- a method for evaluating material tobe utilized in a vacuum interrupter comprising the steps of:
- a method for evaluating material to be utilized in a vacuum interrupter comprising the steps of:
- a d.c. circuit including an electrode which is connected to the positive polarity of said circuit, said electrode being movable into and out of engagement with the contact material;
- said measuring means comprising an ion gauge connected to the interior of vacuum chamber and operable to measure the total amount of the are released gas;
- a mass spectrometer connected to the interior of the vacuum chamber and operable to analyze the composition of the occluded gas in the contact material as it is released by arcing.
- said angularly positionable support includes a gear drive internally of said vacuum chamber and having actuating means operably connected thereto and extending externally of said vacuum chamber for effecting a positioning movement of said support for locating said material in alignment with said electrode.
- said locking means are interengageable components one of which is carried by said support and the other being on said housing;
- a heater within said vacuum chamber and operable to effect a bakeout of said chamber
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
- Manufacture Of Switches (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US408928A US3866041A (en) | 1973-10-23 | 1973-10-23 | Method and apparatus for evaluating the gas content of materials |
CA200,527A CA1002598A (en) | 1973-10-23 | 1974-05-22 | Method and apparatus for evaluating the gas content of materials |
DE19742449081 DE2449081A1 (de) | 1973-10-23 | 1974-10-15 | Verfahren und vorrichtung zur ermittlung des gasgehaltes von materialien |
JP49121878A JPS5067973A (de) | 1973-10-23 | 1974-10-22 | |
GB45625/74A GB1479670A (en) | 1973-10-23 | 1974-10-22 | Method of and apparatus for testing material to evaluate gas content thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US408928A US3866041A (en) | 1973-10-23 | 1973-10-23 | Method and apparatus for evaluating the gas content of materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US3866041A true US3866041A (en) | 1975-02-11 |
Family
ID=23618353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US408928A Expired - Lifetime US3866041A (en) | 1973-10-23 | 1973-10-23 | Method and apparatus for evaluating the gas content of materials |
Country Status (5)
Country | Link |
---|---|
US (1) | US3866041A (de) |
JP (1) | JPS5067973A (de) |
CA (1) | CA1002598A (de) |
DE (1) | DE2449081A1 (de) |
GB (1) | GB1479670A (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4256967A (en) * | 1979-07-25 | 1981-03-17 | Charles F. Kettering Foundation | Arc reactor device |
US4652752A (en) * | 1984-11-27 | 1987-03-24 | Anelva Corporation | Vacuum gauge |
US4808820A (en) * | 1987-09-23 | 1989-02-28 | Hewlett-Packard Company | Electron-emission filament cutoff for gas chromatography + mass spectrometry systems |
US4834945A (en) * | 1986-06-27 | 1989-05-30 | The United States Of America As Represented By The Secretary Of The Air Force | High resolution cinephotographics system pressure vessel |
US4879458A (en) * | 1985-08-15 | 1989-11-07 | R. J. Brunfeldt Company, Inc. | Automatic sample system for mass spectrometer |
US5286651A (en) * | 1989-08-24 | 1994-02-15 | Amoco Corporation | Determining collective fluid inclusion volatiles compositions for inclusion composition mapping of earth's subsurface |
US5416024A (en) * | 1989-08-24 | 1995-05-16 | Amoco Corporation | Obtaining collective fluid inclusion volatiles for inclusion composition mapping of earth's subsurface |
US5539204A (en) * | 1995-02-10 | 1996-07-23 | Regents Of The University Of California | Mass spectrometer vacuum housing and pumping system |
US5670378A (en) * | 1995-02-23 | 1997-09-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for trace oxygen detection |
RU2449270C1 (ru) * | 2010-12-07 | 2012-04-27 | Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН) | Установка для пробоподготовки газов из флюидных включений в породах и минералах |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200190751Y1 (ko) | 2000-02-26 | 2000-08-01 | 이운 | 캐치볼용 그립 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3400066A (en) * | 1965-11-15 | 1968-09-03 | Ibm | Sputtering processes for depositing thin films of controlled thickness |
US3591827A (en) * | 1967-11-29 | 1971-07-06 | Andar Iti Inc | Ion-pumped mass spectrometer leak detector apparatus and method and ion pump therefor |
US3751989A (en) * | 1971-07-02 | 1973-08-14 | Varian Associates | Fixture and system for treating test pieces on a rapid cycle leak detection apparatus |
-
1973
- 1973-10-23 US US408928A patent/US3866041A/en not_active Expired - Lifetime
-
1974
- 1974-05-22 CA CA200,527A patent/CA1002598A/en not_active Expired
- 1974-10-15 DE DE19742449081 patent/DE2449081A1/de not_active Withdrawn
- 1974-10-22 GB GB45625/74A patent/GB1479670A/en not_active Expired
- 1974-10-22 JP JP49121878A patent/JPS5067973A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3400066A (en) * | 1965-11-15 | 1968-09-03 | Ibm | Sputtering processes for depositing thin films of controlled thickness |
US3591827A (en) * | 1967-11-29 | 1971-07-06 | Andar Iti Inc | Ion-pumped mass spectrometer leak detector apparatus and method and ion pump therefor |
US3751989A (en) * | 1971-07-02 | 1973-08-14 | Varian Associates | Fixture and system for treating test pieces on a rapid cycle leak detection apparatus |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4256967A (en) * | 1979-07-25 | 1981-03-17 | Charles F. Kettering Foundation | Arc reactor device |
US4652752A (en) * | 1984-11-27 | 1987-03-24 | Anelva Corporation | Vacuum gauge |
US4879458A (en) * | 1985-08-15 | 1989-11-07 | R. J. Brunfeldt Company, Inc. | Automatic sample system for mass spectrometer |
US4834945A (en) * | 1986-06-27 | 1989-05-30 | The United States Of America As Represented By The Secretary Of The Air Force | High resolution cinephotographics system pressure vessel |
US4808820A (en) * | 1987-09-23 | 1989-02-28 | Hewlett-Packard Company | Electron-emission filament cutoff for gas chromatography + mass spectrometry systems |
US5286651A (en) * | 1989-08-24 | 1994-02-15 | Amoco Corporation | Determining collective fluid inclusion volatiles compositions for inclusion composition mapping of earth's subsurface |
US5416024A (en) * | 1989-08-24 | 1995-05-16 | Amoco Corporation | Obtaining collective fluid inclusion volatiles for inclusion composition mapping of earth's subsurface |
US5539204A (en) * | 1995-02-10 | 1996-07-23 | Regents Of The University Of California | Mass spectrometer vacuum housing and pumping system |
US5670378A (en) * | 1995-02-23 | 1997-09-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for trace oxygen detection |
RU2449270C1 (ru) * | 2010-12-07 | 2012-04-27 | Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН) | Установка для пробоподготовки газов из флюидных включений в породах и минералах |
Also Published As
Publication number | Publication date |
---|---|
GB1479670A (en) | 1977-07-13 |
DE2449081A1 (de) | 1975-05-07 |
JPS5067973A (de) | 1975-06-06 |
CA1002598A (en) | 1976-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3866041A (en) | Method and apparatus for evaluating the gas content of materials | |
Coburn | A system for determining the mass and energy of particles incident on a substrate in a planar diode sputtering system | |
Ure et al. | Comprehensive analysis of soils and rocks by spark-source mass spectrometry | |
CA1126879A (en) | Trace water measurement | |
Evans et al. | Analysis of thin films by ion microprobe mass spectrometry | |
Colby et al. | Hollow cathode ionization for the mass spectrometric analysis of conducting solids | |
US3318149A (en) | Gas chromatography system | |
US2582647A (en) | Method and means for indicating changes in the composition of a gas | |
Barrington et al. | Vacuum system of ion-microprobe mass spectrometer | |
US5172183A (en) | Glow discharge atomic emission spectroscopy and apparatus thereof | |
US3567927A (en) | Ion microprobe mass spectrometer for analyzing fluid materials | |
Dafydd | Adaptation of a glow discharge mass spectrometer in a glove-box for the analysis of nuclear materials | |
GB1116427A (en) | Improvements in or relating to the measurement of the gas content of metals | |
Lafferty et al. | The interplay of electronics and vacuum technology | |
De Ninno et al. | Experimental evidence of 4He production in a cold fusion experiment | |
Ashcroft et al. | Apparatus for the study of electron stimulated desorption of ions from surfaces | |
Shekhar et al. | Analysis of high purity antimony by glow discharge quadrupole mass spectrometry | |
Sougrati et al. | Gas counter for low temperature conversion electron Mössbauer spectroscopy experiments | |
Hannay | Mass Spectrographic Analysis of Solids: High sensitivity for bulk and surface impurities is provided by a new analytical method. | |
US3201586A (en) | Method and apparatus for radioactive gas analysis using neutrons of two energy levels | |
Moore et al. | The use of high resolution mass spectrometry in the measurement of thermodynamic properties of metallic systems | |
Gentsch et al. | Measurements by residual gas analysis inside vacuum interrupters | |
Smolik et al. | Analytical method for inert gases in alloy powders | |
Inoue et al. | Two step adsorption process of hydrogen on Ni (111) surface | |
Armour et al. | Apparatus for the study of low energy ion trapping and gas release in solid targets |