US3865643A - Deep drawing sheet steel - Google Patents

Deep drawing sheet steel Download PDF

Info

Publication number
US3865643A
US3865643A US352785A US35278573A US3865643A US 3865643 A US3865643 A US 3865643A US 352785 A US352785 A US 352785A US 35278573 A US35278573 A US 35278573A US 3865643 A US3865643 A US 3865643A
Authority
US
United States
Prior art keywords
steel
teeming
aluminum
molten
rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US352785A
Inventor
Jr John W Bales
Michael A Orehoski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Steel Corp
Original Assignee
United States Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Steel Corp filed Critical United States Steel Corp
Priority to US352785A priority Critical patent/US3865643A/en
Application granted granted Critical
Publication of US3865643A publication Critical patent/US3865643A/en
Priority to JP1367378U priority patent/JPS574270Y2/ja
Assigned to USX CORPORATION, A CORP. OF DE reassignment USX CORPORATION, A CORP. OF DE MERGER (SEE DOCUMENT FOR DETAILS). Assignors: UNITED STATES STEEL CORPORATION (MERGED INTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling

Definitions

  • sheet steels are usually produced from either rimmed steel ingots or SK steel ingots, i.e., special killed steel, killed (deoxidized) with aluminum.
  • Rimmed steel is used in applications where surface quality is the most important requirement and little or no drawability is necessary, whereas SK steel must be used where deep drawability is essential.
  • a so-called rim-stabilized steel which incorporates the desired features of both rimmed and SK steels. That is, a rimstabilized steel ingot has a clean, good surface quality rim approaching that of a conventional rimmed steel and a pore-free core to yield good deep drawing characteristics approaching those of SK steel.
  • Rim-stabilized steels are presently produced by casting a rimming type steel (i.e., non-deoxidized) into an ingot mold and allowing the steel to rim for a predetermined time thereby forming a good surface quality rim. After rimming, aluminum pellets are added to the unsolidified steel in the ingot mold to stop the rimming action and produce a non-porous SK steel within the rimmed shell.
  • a rimming type steel i.e., non-deoxidized
  • rim-stabilized steels do indeed fulfill a longfelt need for a sheet steel having good surface qualities as well as deep drawability, so many problems are en countered in producing ingots thereof that the steels properties are not as good as couldbe hoped for.
  • the time available for adding, melting and distributing the aluminum in an already cast ingot is quite short when considering the rather large amount of aluminum that must be added, e.g., about 2 lb. per ton. Most frequently, therefore, thealuminum is not uniformly distributed within the molten portion of the steel, especially in the lower portion thereof. This results of course in non-uniform deep drawing qualities.
  • rimstabilized steel Another problem encountered in producing rimstabilized steel results from the inability to produce a rim which is thick enough to allow removal of all surface defects without exposing the non-metallic inclusions in the SK steel therebeneath.
  • the rim is so thin that only a fast hot-scarfing operation on the rolling mill and a minimal amount of hand grinding is permitted. As a result, a rather large amount of surface defects must be processed into the final product.
  • rim-stabilized steels always have some degree of porosity at the interface between the rim and the stabilized core. These pores apparently result from small gas bubbles formed by the rimming action just prior to stabilization of the core. That is to say, the rimming action results from the formation of carbon monoxide gas at the liquid-rim interface. These gas bubbles adhere to the interface until they grow to sufficient size that the buoyant forces carry them to the surface. However, after the molten core is stabilized, those small bubbles formed just prior thereto cannot grow further and hence are trapped at the interface to cause the porosity. Although this porosity does adversely affect the steels drawing qualities, operators have been unable to produce rim-stabilized steels without such porosity.
  • the invention is predicated upon our development of a new process for producing rim-stabilized steel wherein all of the above discussed problems are mini mized or obviated.
  • the process of this invention is based upon the addition of molten aluminum which may or may not be alloyed with elements such as silicon, columbium, titanium, or calcium to the ingots in a carefully controlled operating sequence, resulting in a minimum use of aluminum to produce an ingot having a good thick rim and a uniform SK steel core within the rim, without any porosity at the interface.
  • an object of this invention is to provide a new process for producing rim-stabilized steel ingots superior in quality to those produced by prior art processes.
  • Another object of this invention is to provide a process for producing a rim-stabilized steel ingot having a sufficiently thick rim to permit normal surface scarfing and grinding thereby assuring more complete removal of surface defects.
  • Another object of this invention is to provide a process for producing a rim-stabilized steel ingot having no porosity between the rim and the stabilized core.
  • a further object of this invention is to provide a process for producing a rim-stabilized steel ingot having a more uniform core of SK steel thereby yielding more uniform deep drawing qualities in sheet steels produced therefrom.
  • Still another object of this invention is to provide a process for producing a rim-stabilized steel ingot utilizing a minimum amount of aluminum and resulting in a minimum amount of alumina in the solidified ingot.
  • Another object of this invention is to provide a new and improved rim-stabilized steel having a thick rim, a uniform core of SK steel and no porosity at the interface therebetween.
  • Another object of this invention is to provide a process for producing a rim-stabilized steel ingot containing hardening elements such as silicon, columbium, ti-
  • a rim-stabilized steel ingot is produced in a hot top ingot mold in accordance with the following steps: (1) hot molten steel is teemed into the ingot mold at a normal rate (i.e., to tons per minute) until the mold is filled to the level of the lower edge of the hot top, or about 80-95 percent full if a hot top is not used; (2) teeming is stopped while the steel is allowed to rim for a period of from /2 to minutes and preferably 2 to 7 minutes; (3) teeming is resumed; (4) after teeming is resumed, commence pouring of molten aluminum into the ingot, preferably by introducing the aluminum into the molten steel stream; (5) addition of molten aluminum is completed prior to completion of steel teeming; and (6) teeming is continued for at least about one second until the hot top is filled. To fathom the-importance of this exact pouring sequence, itmust be remembered that the
  • steps (1) and (2) are of course substantially as practiced in the prior art, except that we use a longerteeming interruption time. Teeming, if commenced at normal rates of 5 to l0tons per minute as is. common to commercial practice, must be interrupted to allow some rimming action prior to, the addition of aluminum which then stops the rimming action. As noted above, however, our teeming interruption time is generally greater than prior art practices where teeming interruption time is usually not allowed to exceed about /2 minute. For this reason, therefore, we do produce a thicker rim.
  • step (3) teeming of the molten steel is commeticed prior to the addition of any molten aluminum.
  • This serves to deflect or drive the iron oxide scum into the melt thereby minimizing formation of massive gobs of surface alumina.
  • the scum will be dispersed into fine particles and float to the top of the metal after teeming is complete, but by then the aluminum has already passed below the surface of the steel with a minimum of alumina formation. Whatever alumina is entrapped within theingot is in fine particle form instead of cluster form.
  • the aluminum is molten and preferably added with the stream of teemed steel, the tendency for the aluminum to float on the meniscus of the steel is greatly reduced, to even further minimize alumina formation.
  • the aluminum addition to the ingot'mold must be complete before the steel teeming is complete; Obviously, this is essential so that the steel stream will be available throughout the entire aluminum addition period to deflect the surface scum and carry the molten aluminum deep into the ingot mold.
  • the time for filling a hot top section of a 16 ton ingot at the start of a heat may be 20 seconds, at the midpoint of a heat this time may be as low as 8 seconds. Therefore, by whatever means the aluminum is added, it should be capable of adding the total required aluminum within a period of less than 8 seconds, ideally 4 seconds or less if steel is to be teemed for a preferred two full seconds each before and after the aluminum addition. Obviously, if some means or procedure. were employed for increasing the steel teeming time while the aluminum is added or if the repour volume is small, then of course proportionally slower aluminum additions would be acceptable.
  • molten aluminum could be added to the ingot mold
  • one method we have found particularly satisfactory is to utilize a centrifugal pump with an air driven motor and a long refractory pipe, to quickly pump the desired aluminum from a mobile gas fired crucible.
  • 40 psi at the air motor would pump 8 pounds of aluminum per second through a 2 inch refractory pipe approximately 16 feet long.
  • pump 15 lb./ton to a 16 ton ingot would require a total of 24 pounds of aluminum.
  • the above pump system was therefore more than adequate as the total aluminum was supplied in 3 seconds. It is of course necessary that the pump impellers, piping, etc., be suitably preheated prior to pumping to prevent aluminum from freezing thereto.
  • the interruption time may be shortened, or eliminated, to compensate for any rimming action that may progress during teeming. That is to say, one feature of this invention resides in providing not a teeming interruption time but a rimming time of from to 15 minutes and preferably 2 to 7 minutes.
  • hardening alloy additives such as columbium, zirconium, silicon and titanium can be alloyed with the molten aluminum prior to admitting the molten aluminum to the ingot.
  • Such practice is desirable in view of the fact that these hardening elements, particularly titanium and silicon, are also strong deoxidizers and cannot therefore be added prior to the rimming action. If such hardeners are added to the steel prior to teeming, they would cause the steel to be oxidized or partially deoxidized thereby preventing or slowing the rimming action.
  • the amount of such hardening additives may be as high as percent of the molten aluminumhardener mixture.
  • test results shown in the above table readily show that the process of this invention is not only more efficient as compared to the prior art process, but provides a more uniform aluminum distribution.
  • those ingots having a 2 minute rimming time had a rimmed zone substantially thicker than those rimmed for only /2 minute.
  • the rim was thick enough to be hot. scarfed slowly during rolling in accordance with usual procedures and to be further surface conditioned in a cold state without any danger of penetrating the rim.
  • ingots produced according to this invention were processed to cold-rolled ZO-gage sheets and evaluated for press-forming performance in producing (a) a deep-reverse-drawn cup S-inches in diameter, and (b) a stretch formed dome using a 10- inches in diameter hemispherical punch.
  • identical sheets commercially produced in accordance with three prior art practices were identically tested. These heats comprised rim stabilized steel stabilized with solid aluminum pellets, regular SK steel and regular DQ rimmed steel. Table II below shows the results of these tests. Because of the large number of SK and DO rimmed heats tested, the table has been abbreviated to merely show the ranges of the results and av' erages rather than listing each of the 192 tests.
  • the maximum depth to which the cups can be drawn is 7.00 inches.
  • the value 7.00 indicates that less than l0 percent fracture occurred at 7.00 inch depth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Rim-stabilized steel ingots are produced by teeming a rimmingtype steel into an ingot mold until the ingot is about 80-95 percent full, whereupon teeming is interrupted to allow a rimming action in the mold for a period of from 1/2 to 15 minutes. Thereafter, teeming is continued until the mold is full. After teeming is commenced following the rimming action, sufficient molten aluminum is added to the mold to produce an SK steel within the rim, all of said aluminum being added prior to completion of the steel teeming.

Description

United States Patent 1 1 Bales, Jr. et a1.
[ DEEP DRAWING SHEET STEEL [75] lnventors: John W. Bales, Jr., North Huntingglon Twsp.; Michael A. Orehoski, Duquesne, both of Pa.
[73] Assignee: United States Steel Corporation, Pittsburgh, Pa.
22 Filed: Apr. 19, 1973 21 Appl. No.: 352,785
Related U.S. Application Data [60] Division of Ser. No. 285,401, Aug. 31, 1972, Pat. No. 3,754,591, which is a continuation-in-part of Ser. No. 118,498, Feb. 24, 1971, abandoned, which is a continuation-in-part of Ser. No. 49,189, June 23, 1970, abandoned.
[52] U.S. Cl 148/36, 29/527.7, 75/129, 148/2, 148/12, 164/56, 164/57 [51] Int. Cl. C22c 29/00 [58] Field 01' Search 148/36, 12, 39, 2; 29/1916, 527.7; 164/56, 57, 96, 133; 75/53,
[56] References Cited UNlTED STATES PATENTS 8/1921 McKenna ..164/96 7/1940 Kinnear ..164/133 [4 1 Feb. 11, 1975 2,389,516 11/1945 Kinnear 164/96 3,127,642 4/1964 Zaeytydt 164/56 3,414,042 12/1968 Behrens et al. 164/57 3,668,016 6/1972 Shimizu et al. 148/12 3,754,591 8/1973 Bales et al. 164/57 OTHER PUBLICATIONS Behrens, K., et a1; Productn of Al-Killed Steel by Mold Addn of Al; in Journ. Met., 1961, 19, pp 60-64. Osborne, A.; Encyclopaedia of Iron & Steel Industry, New York, 1956, p. 351 (Rimming-Steel Tugots) [TN60908 Primary Examiner-Walter R. Satterfield Attorney, Agent, or Firm-Forest C. Sexton [57] ABSTRACT Rim-stabilized steel ingots are produced by teeming a 1 Claim, No Drawings 1 DEEP DRAWING SHEET STEEL CROSS REFERENCE TO RELATED APPLICATIONS This application is a division 'of application Ser. No. 285,401, filed Aug. 31, 1972, now U.S. Pat. No. 3,754,591, of application Ser. No. 118,498, filed Feb. 24, 1971, and now abandoned, which was a continuation-in-part of application Ser. No. 49,189, filed June 23, 1970, and now abandoned.
BACKGROUND OF THE INVENTION It is well known that sheet steels are usually produced from either rimmed steel ingots or SK steel ingots, i.e., special killed steel, killed (deoxidized) with aluminum. Rimmed steel is used in applications where surface quality is the most important requirement and little or no drawability is necessary, whereas SK steel must be used where deep drawability is essential.
More recently, a so-called rim-stabilized steel has been developed which incorporates the desired features of both rimmed and SK steels. That is, a rimstabilized steel ingot has a clean, good surface quality rim approaching that of a conventional rimmed steel and a pore-free core to yield good deep drawing characteristics approaching those of SK steel.
Rim-stabilized steels are presently produced by casting a rimming type steel (i.e., non-deoxidized) into an ingot mold and allowing the steel to rim for a predetermined time thereby forming a good surface quality rim. After rimming, aluminum pellets are added to the unsolidified steel in the ingot mold to stop the rimming action and produce a non-porous SK steel within the rimmed shell.
Although rim-stabilized steels do indeed fulfill a longfelt need for a sheet steel having good surface qualities as well as deep drawability, so many problems are en countered in producing ingots thereof that the steels properties are not as good as couldbe hoped for. For example, the time available for adding, melting and distributing the aluminum in an already cast ingot is quite short when considering the rather large amount of aluminum that must be added, e.g., about 2 lb. per ton. Most frequently, therefore, thealuminum is not uniformly distributed within the molten portion of the steel, especially in the lower portion thereof. This results of course in non-uniform deep drawing qualities.
Another problem encountered in producing rimstabilized steel results from the inability to produce a rim which is thick enough to allow removal of all surface defects without exposing the non-metallic inclusions in the SK steel therebeneath. Generally, the rim is so thin that only a fast hot-scarfing operation on the rolling mill and a minimal amount of hand grinding is permitted. As a result, a rather large amount of surface defects must be processed into the final product.
Another significant problem results from the fact that rim-stabilized steels always have some degree of porosity at the interface between the rim and the stabilized core. These pores apparently result from small gas bubbles formed by the rimming action just prior to stabilization of the core. That is to say, the rimming action results from the formation of carbon monoxide gas at the liquid-rim interface. These gas bubbles adhere to the interface until they grow to sufficient size that the buoyant forces carry them to the surface. However, after the molten core is stabilized, those small bubbles formed just prior thereto cannot grow further and hence are trapped at the interface to cause the porosity. Although this porosity does adversely affect the steels drawing qualities, operators have been unable to produce rim-stabilized steels without such porosity.
Still another problem results from the practice of interrupted teeming to allow the limited rimming action. Inherent in this interruption, usually /2 minute, is the build-up of iron oxide scum on the exposed upper sur' face of the metal which increases with increased rimming time. When aluminum pellets are subsequently added on top of this surface scum, an excessive amount of refractory alumina is formed. Much of this alumina may become entrapped in the steel upon solidification. This alumina problem usually becomes even more aggravated because some of the aluminum pellets may not be quickly melted or easily driven below the meniscus of the molten metal. Hence, some of the aluminum pellets may remain on the surface of the melt to be oxidized by air, thereby producing additional quantities of the troublesome alumina. It follows, therefore, that because of the excessive amount of alumina formed, the efficiency of the operation suffers, necessitating the addition of a substantially greater amount of aluminum pellets than is actually necessary to suitably deoxidize the cast steel.
SUMMARY OF THE INVENTION The invention is predicated upon our development of a new process for producing rim-stabilized steel wherein all of the above discussed problems are mini mized or obviated. The process of this invention is based upon the addition of molten aluminum which may or may not be alloyed with elements such as silicon, columbium, titanium, or calcium to the ingots in a carefully controlled operating sequence, resulting in a minimum use of aluminum to produce an ingot having a good thick rim and a uniform SK steel core within the rim, without any porosity at the interface.
Accordingly, an object of this invention is to provide a new process for producing rim-stabilized steel ingots superior in quality to those produced by prior art processes.
Another object of this invention is to provide a process for producing a rim-stabilized steel ingot having a sufficiently thick rim to permit normal surface scarfing and grinding thereby assuring more complete removal of surface defects.
Another object of this invention is to provide a process for producing a rim-stabilized steel ingot having no porosity between the rim and the stabilized core.
A further object of this invention is to provide a process for producing a rim-stabilized steel ingot having a more uniform core of SK steel thereby yielding more uniform deep drawing qualities in sheet steels produced therefrom.
Still another object of this invention is to provide a process for producing a rim-stabilized steel ingot utilizing a minimum amount of aluminum and resulting in a minimum amount of alumina in the solidified ingot.
Another object of this invention is to provide a new and improved rim-stabilized steel having a thick rim, a uniform core of SK steel and no porosity at the interface therebetween.
Another object of this invention is to provide a process for producing a rim-stabilized steel ingot containing hardening elements such as silicon, columbium, ti-
DESCRIPTION OF THE PREFERRED EMBODIMENT As noted above, the crux of this inventive process for producing rim-stabilized steel ingots primarily resides in the addition of molten aluminum to the ingot mold instead of aluminum pellets or other solid forms of aluminum. In addition thereto, however, the process further requires strict adherence to a specific pouring procedure if the objectives of the invention are to be realized.
In accordance with this invention, a rim-stabilized steel ingot is produced in a hot top ingot mold in accordance with the following steps: (1) hot molten steel is teemed into the ingot mold at a normal rate (i.e., to tons per minute) until the mold is filled to the level of the lower edge of the hot top, or about 80-95 percent full if a hot top is not used; (2) teeming is stopped while the steel is allowed to rim for a period of from /2 to minutes and preferably 2 to 7 minutes; (3) teeming is resumed; (4) after teeming is resumed, commence pouring of molten aluminum into the ingot, preferably by introducing the aluminum into the molten steel stream; (5) addition of molten aluminum is completed prior to completion of steel teeming; and (6) teeming is continued for at least about one second until the hot top is filled. To fathom the-importance of this exact pouring sequence, itmust be remembered that the objective is a cleaner thick rimmed steel, with more uniform distribution of aluminum with the SK steel core, with a minimum formation of alumina, and
therefore, with a minimum addition of aluminum. To achieve these objectives, the exact sequence above must be followed.
Considering each of the above steps in more detail, steps (1) and (2) are of course substantially as practiced in the prior art, except that we use a longerteeming interruption time. Teeming, if commenced at normal rates of 5 to l0tons per minute as is. common to commercial practice, must be interrupted to allow some rimming action prior to, the addition of aluminum which then stops the rimming action. As noted above, however, our teeming interruption time is generally greater than prior art practices where teeming interruption time is usually not allowed to exceed about /2 minute. For this reason, therefore, we do produce a thicker rim.
We must acknowledge of course that a thicker rim is the obvious inherent result of increasing the teeming interruption time, and conceivably, therefore, prior art processes are capable of producing thicker rims merely by increasing this interruption time. By prior art practices,.however, it is not possible to increase the teeming interruption time thereby producing a thicker rim without sacrificing other desired qualities of the steel. For example, increased interruption time will cause a heavy concentration of alumina in the bottom portion of the ingot. As noted previously, scum, high in iron oxide, forms on the surface of the molten steel in the ingot, the amount of which is in direct proportion to the teeming interruption time. In prior art practices, the amount of this scum must be minimized in order to minimize alumina formation, as a result of the chemical reaction between the aluminum and scum, and its entrapment in the ingot when the aluminum is subsequently added. Hence, teeming interruption times in prior art practices are limited to about /2 minute as a practical balance between optimum rim thickness and minimum alumina formation andentrapment. In our process, however, surface scum is substantially eliminated, as will be described subsequently,'and therefore, no disadvantages are experienced by increasing the teeming interruption time.
In step (3), teeming of the molten steel is commeticed prior to the addition of any molten aluminum. This serves to deflect or drive the iron oxide scum into the melt thereby minimizing formation of massive gobs of surface alumina. The scum of course will be dispersed into fine particles and float to the top of the metal after teeming is complete, but by then the aluminum has already passed below the surface of the steel with a minimum of alumina formation. Whatever alumina is entrapped within theingot is in fine particle form instead of cluster form. Furthermore, since the aluminum is molten and preferably added with the stream of teemed steel, the tendency for the aluminum to float on the meniscus of the steel is greatly reduced, to even further minimize alumina formation.
According to steps (5) and (6), the aluminum addition to the ingot'mold must be complete before the steel teeming is complete; Obviously, this is essential so that the steel stream will be available throughout the entire aluminum addition period to deflect the surface scum and carry the molten aluminum deep into the ingot mold.
Although we do not fullyunderstand why our process is unique in eliminating porosity at the rim-core inter- .face, we believe this is due to a very rapid stabilizing effect resulting from the use of molten aluminum. Molten aluminum goes into solution so fast'that it very quickly stops the rimming action, and is apparently available to deoxidize the carbon monoxide in the bubbles before the steel can solidify around the bubbles. I
Because of the rather fast teeming rates-used in commercial'steel production in the United States, it is essential that the addition of the molten aluminum be completed rather quickly, i.e.,' in less time than it takes to fillthe hot top of the ingot with steel, or the equivalent of this volume of metal if hot tops are not used. The actual amount of time available is a function of the ferrostatic head of molten steel in the ladle and the diameter of the pouring nozzle. Pouring rates are fastest at the midpoint of a heat because the ferrostatic head is still substantial and the refractory nozzle has eroded greatly. Whereas, the time for filling a hot top section of a 16 ton ingot at the start of a heat may be 20 seconds, at the midpoint of a heat this time may be as low as 8 seconds. Therefore, by whatever means the aluminum is added, it should be capable of adding the total required aluminum within a period of less than 8 seconds, ideally 4 seconds or less if steel is to be teemed for a preferred two full seconds each before and after the aluminum addition. Obviously, if some means or procedure. were employed for increasing the steel teeming time while the aluminum is added or if the repour volume is small, then of course proportionally slower aluminum additions would be acceptable.
We have found that by using molten aluminum and the above procedure, about 25 percent less aluminum need be added as compared to prior art processes. Hence, whereas prior art processes require the addition of at least about 2.0 pounds of solid aluminum per ton of steel, our process requires no more than about 1.5
pounds per ton to achieve the same chemical composi- 5 molds be used in order to prevent the solid aluminum from adhering to mold walls above the molten metal surface. Molten aluminum, however, readily mixes with the steel. Therefore, although the above described procedure exemplifies the use of a hot-topped ingot mold in this process, such molds are not essential to this process.
Although there are many different methods by which molten aluminum could be added to the ingot mold, one method we have found particularly satisfactory is to utilize a centrifugal pump with an air driven motor and a long refractory pipe, to quickly pump the desired aluminum from a mobile gas fired crucible. With the molten aluminum at l,600F, 40 psi at the air motor would pump 8 pounds of aluminum per second through a 2 inch refractory pipe approximately 16 feet long. To
pump 15 lb./ton to a 16 ton ingot would require a total of 24 pounds of aluminum. The above pump system was therefore more than adequate as the total aluminum was supplied in 3 seconds. It is of course necessary that the pump impellers, piping, etc., be suitably preheated prior to pumping to prevent aluminum from freezing thereto.
The practice of the invention as described above is based upon conventional teeming rates of from about 5 to 10 tons per minute, as is the conventional practice in the United States. With such high teeming rates sufficient heat and turbulence is present in the mold so that virtually no rimming action will be effected during teeming. Therefore, the teeming interruption time of from /2 to 10 minutes is essential, with optimum results effected at interruption times of 2 to 7 minutes. We should mention, however, that in European commercialpractice, teeming rates of about 2 to 3 tons per minute are most common. At such slow teeming rates, some rimming action will progress during teeming, i.e., during the latter part of theS to 8 minutes it takes to fill a l5-l6 ton mold. ln producing rim-stabilized steel ingots in Europe, therefore, the common practice is to effect the rimming action only during teeming. i.e., I
with no interruption time. The'benefits of this invention can nevertheless be applied to European teeming rates. or any teeming rate, by adjuting the interruption time so as to provide a total rimming action time of from /fi to l5 minutes, and preferably 2 to 7 minutes. With slower teeming rates therefore, the interruption time may be shortened, or eliminated, to compensate for any rimming action that may progress during teeming. That is to say, one feature of this invention resides in providing not a teeming interruption time but a rimming time of from to 15 minutes and preferably 2 to 7 minutes.
ln another embodiment of this invention, hardening alloy additives such as columbium, zirconium, silicon and titanium can be alloyed with the molten aluminum prior to admitting the molten aluminum to the ingot. Such practice is desirable in view of the fact that these hardening elements, particularly titanium and silicon, are also strong deoxidizers and cannot therefore be added prior to the rimming action. If such hardeners are added to the steel prior to teeming, they would cause the steel to be oxidized or partially deoxidized thereby preventing or slowing the rimming action. The amount of such hardening additives may be as high as percent of the molten aluminumhardener mixture.
. EXAMPLES To more graphically illustrate the advantages of this invention, the following specific examples show comparative test results contrasting ingots produced in ac cordance with this invention with those produced in accordance with the prior art. In these tests, nine ingots were produced in accordance with prior art practice wherein 2 lb./ton of solid aluminum shot was added to the ingot. Twenty-eight ingots were produced in accordance with this inventionusing either 1.6 or 2.0 lb./ton of aluminum and rimming times of either V2 minute or 2.0 minutes. It is noted that none of the prior art examples were given rimming times of 2.0 minutes. This is because mill experience had already established that extended rimming time beyond /2 minute is usually accompanied by an excessive concentration of aluminum in the bottom of the ingot (due to excessive alumina formation) and thus excessive bottom discards are requred to meet specifications. Table l below shows the aluminum distribution achieved in these tests.
TABLE I Total Aluminum percent Heat lngot Al Added Rimming lngot lngot No. No. lb/ton Form time-min. Top Bottom 06R343 l 2.0 Solid shot 0.5 0.058 0.058 2 2.0 Solid shot 0.5 0.048 0.060 3 2.0 Solid shot 0.5 0.043 0.070 l4 2.0 Solid shot 0.5 0.059 15 2.0 Solid shot 0.5 0.051 16 2.0 Solid shot 0.5 0.055 17 2.0 Solid shot 0.5 0.070 18 2.0 Solid shot 0.5 0.058 19 2.0 Solid shot 0.5 0.070
(Average) 0 0497 0.0612
06R343 l0 2.0 Molten 0.5 0.080 0.] l0 l l 2.0 Molten 0.5 0.059 0.058 (Average) 0.070 0.084
06R343 l2 2.0 Molten 2.0 0.05 8 0.080 l3 2.0 Molten 2.0 0.049 0.070 (Average) 0.0535 0.075
7 v 8 TAB L E I (;on1ued Total Aluminum percent Hea lngot Al Added Rimming lngot lngot No. No. lb/ton Form timemin. Top Bottom 01R483 l 1.6 Molten 0.5 0.070 0.053 2 1.6 Molten 0.5 0.070 0.070
3 1.6 Molten 0. 0.060 0.057
4 1.6 Molten O. 5 0.060 0.100
5 1.6 Molten 0. 5 0.05 7 0.070
6 1.6 Molten 0.5 0.060 0.070
. 7 1.6 Molten 0.5 0.060 0.070
8 1.6 Molten 0. 5 0.05 8 0.060
17 1.6 Molten 0.5 0.03 1 0.049
18 1.6 Molten 0.5 0.045 0.041
19 1.6 Molten 0.5 0.050 0.047
20 1.6 Molten 0. 5 0.045 0040 21 1.6 Molten 0.5 0.039 0.035
22 1.6 Molten 0. 5 0.05 5 0.054
23 1.6 Molten 0.5 0.043 0.055
24 1.6 Molten 0.5 0.060 0.048
(Average) 0.0539 0.0574
01R483 9 1.6 Molten 2.0 0.070 0.057 1.6 Molten 2.0 0.05 8 0.070
11 1.6 Molten 2.0 0.060 0.058
12 1.6 Molten. 2.0 0.048 0.056
13 1.6 Molten 2.0 0.070 0.058
14 1.6 Molten 2.0 0.039 0.058
1.6 Molten 2.0 0.058 0.041
16 1.6 Molten 2.0 0.047 0.055
(Average) 0.0563 0.0566
The test results shown in the above table readily show that the process of this invention is not only more efficient as compared to the prior art process, but provides a more uniform aluminum distribution. In addition, those ingots having a 2 minute rimming time had a rimmed zone substantially thicker than those rimmed for only /2 minute. The rim was thick enough to be hot. scarfed slowly during rolling in accordance with usual procedures and to be further surface conditioned in a cold state without any danger of penetrating the rim.
After rolling the ingots into sheet, representative samples were cut and the cut sections were examined. All those steels which had been stabilized with aluminum shot were characterized by some porosity at the interface between the rim and the core, whereas those steels stabilized with molten aluminum were completely free of such porosity. In addition, transverse deep-etch tests on a number of slabs revealed that the steels produced in accordance with this invention has a lower incidence of trapped dirt (alumina) below the slab surface than do slabs produced from solid aluminum injection techniques.
In another series of tests, ingots produced according to this invention were processed to cold-rolled ZO-gage sheets and evaluated for press-forming performance in producing (a) a deep-reverse-drawn cup S-inches in diameter, and (b) a stretch formed dome using a 10- inches in diameter hemispherical punch. For-comparison, identical sheets commercially produced in accordance with three prior art practices were identically tested. These heats comprised rim stabilized steel stabilized with solid aluminum pellets, regular SK steel and regular DQ rimmed steel. Table II below shows the results of these tests. Because of the large number of SK and DO rimmed heats tested, the table has been abbreviated to merely show the ranges of the results and av' erages rather than listing each of the 192 tests.
TABLE ll Results of Press-Forming Evaluation Press Performance, Depth for 10 Percent Breakage, inches TABLE II Continued lngot S-lnch-Diameter lO-lnch'Diameter Heat No. No. Position Drawn Cup Stretched Dome O8LO86 16 T 6.38 3.22
lL2l3 7 T 7.00 3.24
04L282 l5 T 7.00 3.27
Average for 9 heats 6.90 3.23
Regular SK Steel ('15 heats) Range 6.33/7.00 3.05/3.22 Average 6.68 3.13
Regular DQ Rimmed Steel (17 heats) Range 5.38/6.0l 3.l4/3.23 Average 5.67 3.19
" Because of die limitations, the maximum depth to which the cups can be drawn is 7.00 inches. The value 7.00" indicates that less than l0 percent fracture occurred at 7.00 inch depth.
about A to 5 pounds of molten aluminum per ton of steel to the ingot mold at a rate sufficient to permit addition of all aluminum prior to completion of the recommenced teeming step, said cold rolled sheet steel characterized by an absence of porosity and exceptional press performance characteristics typically exhibiting less than 10 percent breakage when ZO-gage sheet is deep-reverse-drawn to a depth of 7 inches on a 5-inch diameter cup.

Claims (1)

1. A DEEP DRAWING COLD ROLLED SHEET STEEL PRODUCED FROM A RIM STABILIZED STEEL INGOT FORMED BY A PROCESS CONSISTING OF TEEMING A RIMMING-TYPE STEEL INTO AN INGOT MOLD, INTERRUPTING THE TEEMING WHEN SAID MOLD IS FROM ABOUT 80 TO 95 PERCENT FULL FOR A TIME PERIOD SUFFICIENT TO ALLOW FROM 1/2 TO 15 MINUTES OF RIMMING ACTION IN THE INGOT MOLD, THEREAFTER RECOMMENCE TEEMING THE RIMMING-TYPE STEEL INTO THE INGOT MOLD, AND AFTER TEEMING IS RECOMMENCED FOLLOWING THE RIMMING ACTION, ADDING ABOUT 1/4 TO 5 POUNDS OF MOLTEN ALUMINUM PER TON OF STEEL TO THE INGOT MOLD AT A RATE SUFFICIENT TO PERMIT ADDITION OF ALL ALUMINUM PRIOR TO COMPLETION OF THE RECOMMENCED TEEMING STEP, SAID COLD ROLLED SHEET STEEL CHARACTERIZED BY AN ABSENCE OF POROSITY AND EXCEPTIONAL PRESS PERFORMANCE CHARACTERISTICS TYPICALLY EXHIBITING LESS THAN 10 PERCENT BREAKAGE WHEN 20GAGE SHEET IN DEEP-REVERSE-DRAWN TO A DEPTH OF 7 INCHES ON A 5-INCH DIAMETER CUP.
US352785A 1972-08-31 1973-04-19 Deep drawing sheet steel Expired - Lifetime US3865643A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US352785A US3865643A (en) 1972-08-31 1973-04-19 Deep drawing sheet steel
JP1367378U JPS574270Y2 (en) 1973-04-19 1978-02-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28540172A 1972-08-31 1972-08-31
US352785A US3865643A (en) 1972-08-31 1973-04-19 Deep drawing sheet steel

Publications (1)

Publication Number Publication Date
US3865643A true US3865643A (en) 1975-02-11

Family

ID=39428067

Family Applications (1)

Application Number Title Priority Date Filing Date
US352785A Expired - Lifetime US3865643A (en) 1972-08-31 1973-04-19 Deep drawing sheet steel

Country Status (1)

Country Link
US (1) US3865643A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990497A (en) * 1973-11-22 1976-11-09 Societe Anonyme dite: Sacilor -- Acieries et Laminoirs de Lorraine Process for producing steel ingots
US4348800A (en) * 1980-04-14 1982-09-14 Republic Steel Corporation Production of steel products with medium to high contents of carbon and manganese and superior surface quality
US4375376A (en) * 1979-12-31 1983-03-01 Republic Steel Corporation Retarded aging, rimmed steel with good surface quality
US4398588A (en) * 1981-02-02 1983-08-16 United States Steel Corporation Method of making a rim-stabilized steel ingot
US4405380A (en) * 1979-12-20 1983-09-20 Republic Steel Corporation High strength, low alloy steel with improved surface and mechanical properties
US4411056A (en) * 1980-04-14 1983-10-25 Republic Steel Corporation Production of steel products with medium to high contents of carbon and manganese and superior surface quality

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1387792A (en) * 1916-03-17 1921-08-16 Frank E Mckenna Art of casting ingots
US2206194A (en) * 1939-10-07 1940-07-02 James W Kinnear Method of producing rimmed steel ingots
US2389516A (en) * 1941-11-24 1945-11-20 Jr James W Kinnear Method of producing high-tensile strength deep-drawing steel
US3127642A (en) * 1960-03-24 1964-04-07 Centre Nat Rech Metall Process and apparatus for the casting of steel
US3414042A (en) * 1966-05-12 1968-12-03 Behrens Knut Franz Methods of producing killed steel
US3668016A (en) * 1968-03-02 1972-06-06 Nippon Steel Corp Process for producing cold-rolled steel plate high in the cold-formability
US3754591A (en) * 1972-08-31 1973-08-28 Steel Corp Method of making rim-stabilized steel ingots

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1387792A (en) * 1916-03-17 1921-08-16 Frank E Mckenna Art of casting ingots
US2206194A (en) * 1939-10-07 1940-07-02 James W Kinnear Method of producing rimmed steel ingots
US2389516A (en) * 1941-11-24 1945-11-20 Jr James W Kinnear Method of producing high-tensile strength deep-drawing steel
US3127642A (en) * 1960-03-24 1964-04-07 Centre Nat Rech Metall Process and apparatus for the casting of steel
US3414042A (en) * 1966-05-12 1968-12-03 Behrens Knut Franz Methods of producing killed steel
US3668016A (en) * 1968-03-02 1972-06-06 Nippon Steel Corp Process for producing cold-rolled steel plate high in the cold-formability
US3754591A (en) * 1972-08-31 1973-08-28 Steel Corp Method of making rim-stabilized steel ingots

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990497A (en) * 1973-11-22 1976-11-09 Societe Anonyme dite: Sacilor -- Acieries et Laminoirs de Lorraine Process for producing steel ingots
US4405380A (en) * 1979-12-20 1983-09-20 Republic Steel Corporation High strength, low alloy steel with improved surface and mechanical properties
US4375376A (en) * 1979-12-31 1983-03-01 Republic Steel Corporation Retarded aging, rimmed steel with good surface quality
US4348800A (en) * 1980-04-14 1982-09-14 Republic Steel Corporation Production of steel products with medium to high contents of carbon and manganese and superior surface quality
US4411056A (en) * 1980-04-14 1983-10-25 Republic Steel Corporation Production of steel products with medium to high contents of carbon and manganese and superior surface quality
US4398588A (en) * 1981-02-02 1983-08-16 United States Steel Corporation Method of making a rim-stabilized steel ingot

Similar Documents

Publication Publication Date Title
US3459537A (en) Continuously cast steel slabs and method of making same
US2590311A (en) Process of and apparatus for continuously casting metals
US3208117A (en) Casting method
US3865643A (en) Deep drawing sheet steel
US3674315A (en) Cast steel wheels for heavy-duty vehicles
US3789911A (en) Process for continuous continuous casting of hot liquid metals
US3326270A (en) Continuous casting of metals
US3754591A (en) Method of making rim-stabilized steel ingots
US2197660A (en) Ferro-alloys and method of producing them
EP0512118B1 (en) Process for continuous casting of ultralow-carbon aluminum-killed steel
US3512957A (en) Steelmaking processes
US4039326A (en) Antiscorific powder for the casting of steels into ingot molds
US3990887A (en) Cold working steel bar and wire rod produced by continuous casting
US3940976A (en) Method of determining the suitability of continuously cast slabs of Al- or Al-Si-killed soft steel for producing cold rolled sheets to be tinned
US3884290A (en) Method of direct chill continuous casting
US2510154A (en) Process for treatment of molten stainless steel
US3030203A (en) Process of producing steel
KR900003223B1 (en) Deoxidation process in steel making
US1841173A (en) Production of sound ingots
JPH0464767B2 (en)
US3239898A (en) Production of high-quality ingots
SU1560368A1 (en) Method of top pouring steel into metal ingot moulds
JPS6345901B2 (en)
JPS6264461A (en) Device for accelerating flotation of inclusion in molten steel
US3225399A (en) Casting process using borax-silica slag

Legal Events

Date Code Title Description
AS Assignment

Owner name: USX CORPORATION, A CORP. OF DE, STATELESS

Free format text: MERGER;ASSIGNOR:UNITED STATES STEEL CORPORATION (MERGED INTO);REEL/FRAME:005060/0960

Effective date: 19880112