US3865498A - Slip joint for steel poles or the like - Google Patents

Slip joint for steel poles or the like Download PDF

Info

Publication number
US3865498A
US3865498A US310786A US31078672A US3865498A US 3865498 A US3865498 A US 3865498A US 310786 A US310786 A US 310786A US 31078672 A US31078672 A US 31078672A US 3865498 A US3865498 A US 3865498A
Authority
US
United States
Prior art keywords
tube
tubes
pole
slip joint
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US310786A
Other languages
English (en)
Inventor
Koichiro Okuto
Toshio Kai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Application granted granted Critical
Publication of US3865498A publication Critical patent/US3865498A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/55Member ends joined by inserted section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members

Definitions

  • ABSTRACT A slip joint for steel poles wherein a simple reinforcing means is provided at the overlapping ends of telescoping tubes used in forming the poles, whereupon the strength of the pole including the joint is greatly improved.
  • This invention relates to slip joints for steel poles, and more particularly used in aesthetic steel poles for transmitting high voltage currents.
  • Such steel poles are made of hollow tapered tubes of octagonal (or multi-Sided) cross-section so that the lower part of the upper tube may fit in the upper part of the lower tube. It therefore becomes easy to assem' ble such steel poles at the job site without the need for special joints, and the tubes being thus easy to fabricate and erect.
  • the fitting length at the joint must be about twice as large as the distance between the opposed sides in the cross-section of the pole.
  • 21 large quantity of steel is required thereby rendering such poles uneconomical.
  • the fitting length is L and the distance between the opposed sides in the crosssection of the pole is D, with L/D 1.7
  • the lower or inner tube will buckle at the tip on the tension side and will also buckle in that portion in contact with the end surface of the outer tube on the compression side.
  • D/tu 40 wherein tu is a pole thickness
  • the upper or outer tube will crack along the weld joint on the end surface on the compression side.
  • An object of the present invention is to provide a slip joint wherein the fitting length is reduced so that the total weight may be decreased and the abovementioned drawbacks may be avoided.
  • one or more knot-shaped reinforcing flanges are formed in several steps inside the joining portion of the inner tube so that the inner tube may be prevented from buckling,and the thickness of the joining portion of the outer tube is made larger than the thickness of the body of the outer tube as, for example, by winding a reinforcing band on the outer periphery of the end joining portion of the outer tube so that the outer tube may be prevented from cracking along the weld joint on the end surface on the compression side.
  • Another object of the present invention is to provide such a slip joint wherein, even if the overlapping length is short, a fixed strength will be achieved, the efficiency during assembly of the steel pole will be improved and the work and cost for long distance transportation or the like will be reduced.
  • the steel pole is formed by pushing up such slip joints from below so that the joining portion is wedged, reinforcing means being pro vided in the form of reinforcing flanges and/or reinforcing bands.
  • FIG. 1 is an elevational view of a steel pole for which slip joints of the first embodiment of the present invention are used;
  • FIG. 2 is a partly sectioned elevational view of the joint in FIG. 1;
  • FIG. 3 is a cross-sectional view taken along line III III of FIG. 2;
  • FIG. 4 is a partly sectioned elevational view of another embodiment
  • FIG. 5 is a cross-sectional view taken along line V V of FIG. 4;
  • FIG. 6 is an elevational view of a steel pole for which slip joints of the second embodiment of the present invention are used
  • FIG. 7 is a vertically sectioned view of the joining part of the slip joint shown in FIG. 6;
  • FIG. 8 is a cross-sectional view taken along line VII] VIII of FIG. 7;
  • FIG. 9 is an elevational view showing a test sample while being tested.
  • FIG. 10 is a graph showing the test results.
  • FIG. I an aesthetic steel pole for transmitting high voltage currents.
  • This steel pole is formed by joining a plurality of steel tubes 1 which are uniformly tapered outwardly from their upper to their lowr ends, and which are octagonal in the cross-section. Generally the height of each tube is about 45 meters, its thickness is 9 to l6mm., the distance between the opposed sides of the octagon is 600 to 1400mm. and the taper is about one-fortieth to one-seventieth.
  • a required number of arms 2 project outwardly of the upper tubes and conductors (not illustrated) are hung on the outer ends of arms 2 through insulators.
  • the pole is supported at its lower end in a foundation 3.
  • the fitting length is about 1.5 times as large as the distance between the opposed sides in the tube cross-section, the strength of the joint between tubes is lower than the strength of the remainder of the pole, and it has been found as a result of tests that, in order to make the strength of the joint equal to that of the main body, the fitting length must be about twice as large as the distance between the opposed sides in the cross-section. If the fitting length is made about twice as large, the weight of the steel at the joint will increase by about 25 percent.
  • This slip joint comprises an inner or lower tube 4 and an outer or upper tube 5, and each of the tubes is formed by bending a steel plate so as to form tapered tubes of octagonal cross-sections and welding each along one and/or two vertexes.
  • Knot-shaped reinforcing flanges 6 made of steel plates are secured as by welding to the inside of inner tube 4 near and slightly below its upper end at such locations as to lie within the overlap between tube 4 and part of an outer tube 5. It should be noted that flanges 6 are installed before the steel plate is welded along the vertex or vertexes to form a tubular cross-section.
  • inner tube 4 is fit- I ted into outer tube to be joined thereto.
  • the dimensions and positions of the respective parts of this slip joint will be effective as to manufacture and performance when considering the following:
  • FIGS. 6, 7 and 8 is a high voltage current transmitting aesthetic steel pole provided with joining means between its tubes.
  • this steel pole is formed by joining a plurality of steel tubes 1' which each taper toward their upper portions and are octagonal in cross-section throughout.
  • a required number of arms 2 project outwardly of the upper tubes of the steel pole and conductors (not illustrated) are hung on the tips of arms 2 through insulators.
  • the details of the slip joint of the pole are shown in FIGS. 7 and 8.
  • a plurality of tubes smaller in the distance between the opposed sides are inserted in turn toward the center of the outermost tube in advance at the time of erection and are set perpendicularly to the ground surface on a fixed carriage, the innermost tube being pulled out with a lifting machine, and an oil pressure jack (not illustrated) being interposed between reinforcing flanges 6 of the adjacent tubes.
  • a pressure as, for example, 10 tons in the case of an octagonal pole of a distance of l in.
  • wedges 11 are inserted with an oil pressure jack or the like into the clearance parts 10 between supporting pieces 9 and the inner wall surface of outer tube 5 in advance by inwardly bending the lower end of inner tube 4. Notches 8 provided in this lower end at the time of making the tube permit such inward bending. As required, wedges 11 may be fixed tothe outer tube with bolts.
  • a sealant 12 is applied to the lower end of inner tube 4 before the assembling in order to prevent dew drops or the like from entering the joining part. Then tubes 4' and 5 are pulled out with a lifting machine or the like and the same step is continued successively to complete the assembly of a steel pole. This steel pole can be assembled also horizontally on the ground by using the same jack or the like as in this embodiment and then erected upright.
  • the above-mentioned steel pole has been described for octagonal cross-sections, although any other tubes of hexagonal or dodecagonal cross-sections may be used as well.
  • the supporting pieces and wedges are provided at three points in the apex directions of the equilateral triangle of the cross-section.
  • the supporting piece and wedge are arranged on each side of the cross-section.
  • the reinforcing flanges provided in the lower end of each tube are maintained sealed and the inside of the tube is filled with concrete by means of a concrete pump to assemble the pole.
  • test sample A slip-joined substantially at its middle portion was secured with bolts and nuts to one end part of upper and lower beams 13, a tension steel member 14 was arranged between the other end parts of beams 13 and was tensioned with a tensioning jack 15 to make a bending moment act on test sample A.
  • a test sample A was fitted in the position shown in phantom outline.
  • the A readings are for the first embodiment of the present invention and the B readings are for the ones not reinforced.
  • a fitting length of about twice as large as the distance between the opposed sides in the cross-section is required.
  • a sufficient strength is obtained with a fitting length substantially small such as equal to the distance between the opposed sides in the cross-section.
  • the working efficiency in erecting steel poles is very high, the efficiency in transportation time to the job site is improved, the transporting cost is low, and the joining part of the slip joint is sufficiently durable.
  • reinforcing means provided at said overlapping ends, said reinforcing means comprising at least one reinforcing flange secured to substantially the entire inner surface of the inner one of said tube ends and lying wholly within the overlap of said ends, and said flange lying in a plane perpendicular to the longitudinal axis of said tubes, whereby the overlapping length at said ends is reduced and the strength of the pole including the joint is substantially uniform throughout.
  • said reinforcing means further comprising a reinforcing band provided along the outer periphery of the outer one of said tube ends and lying wholly within the overlap of said ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)
US310786A 1971-11-30 1972-11-30 Slip joint for steel poles or the like Expired - Lifetime US3865498A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP46096670A JPS4860435A (fr) 1971-11-30 1971-11-30

Publications (1)

Publication Number Publication Date
US3865498A true US3865498A (en) 1975-02-11

Family

ID=14171226

Family Applications (1)

Application Number Title Priority Date Filing Date
US310786A Expired - Lifetime US3865498A (en) 1971-11-30 1972-11-30 Slip joint for steel poles or the like

Country Status (4)

Country Link
US (1) US3865498A (fr)
JP (1) JPS4860435A (fr)
AU (1) AU456496B2 (fr)
CA (1) CA980081A (fr)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936206A (en) * 1975-02-18 1976-02-03 Bruce-Lake Company Tubular pole slip joint construction
DE2742417A1 (de) * 1977-09-21 1979-03-29 Benteler Werke Ag Rohrmast
EP0285584A2 (fr) * 1987-03-30 1988-10-05 AB Gustavsberg Structure de poteau
US5081804A (en) * 1989-09-08 1992-01-21 Gustavsberg Vvs Aktiebolag Power line pylon and lamp post
US5398478A (en) * 1990-01-31 1995-03-21 Musco Corporation Means and method for rigidly elevating a structure
US5426577A (en) * 1993-02-23 1995-06-20 Musco Corporation Pole-mounted lighting system
US5513477A (en) * 1995-02-28 1996-05-07 International Composites Systems, Llc Segmented, graded structural utility poles
US5600537A (en) * 1991-02-06 1997-02-04 Musco Corporation Ballast box for integrated location of ballasts and electrical connections
USD411096S (en) * 1998-05-13 1999-06-15 Musco Corporation Spacer between pole and cross-arm
US6167673B1 (en) * 1998-03-19 2001-01-02 Paul W. Fournier Utility pole
US6191355B1 (en) 1997-11-28 2001-02-20 Hans P. Edelstein Multi-sectional utility pole having slip-joint conical connections
US6250596B1 (en) 1998-05-13 2001-06-26 Musco Corporation Spacer between pole and cross-arm
US6260314B1 (en) * 1999-11-08 2001-07-17 Faroex Ltd. Extension piece for a utility pole
US6309143B1 (en) * 1998-05-27 2001-10-30 Stanley Merjan Composite pile with tapering lower portion and method for driving pile into granular soil
US6340790B1 (en) 1990-01-31 2002-01-22 Musco Corporation Means and method for integrated lighting fixture supports and components
US6692142B1 (en) 2000-08-04 2004-02-17 Musco Corporation Apparatus, method, and system of a moveable lighting
US6705058B1 (en) 1999-02-12 2004-03-16 Newmark International Inc. Multiple-part pole
US6729358B1 (en) 2002-10-25 2004-05-04 Greenlee Textron Inc. Wire twisting tool
US20040115008A1 (en) * 1998-05-27 2004-06-17 Stanley Merjan Piling
US20080078141A1 (en) * 2006-09-29 2008-04-03 James Mitchell Reinforced pole structure
US20100132269A1 (en) * 2009-06-15 2010-06-03 General Electric Company Rail-transportable wind turbine tower
US7762041B1 (en) * 2004-11-03 2010-07-27 Valmont Newmark, Inc. Hybrid metal pole
US20100319983A1 (en) * 2007-02-28 2010-12-23 De Abreu Paulo Emmanuel Structure for supporting electric power transmission lines
US20110152225A1 (en) * 2007-02-28 2011-06-23 Sergio Baroni PPAR-Gamma Agonists for the Induction of Cationic Antimicrobial Peptide Expression as Immunoprotective Stimulants
US8302368B1 (en) * 2008-06-17 2012-11-06 Mcwane Global Interconnectable utility pole members
RU2539042C1 (ru) * 2013-08-02 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт прикладной механики Российской академии наук (ИПРИМ РАН) ВРЕМЕННАЯ БЫСТРОВОЗВОДИМАЯ И ДЕМОНТИРУЕМАЯ ОПОРА ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ 35-110 Кв
US20150165301A1 (en) * 2013-12-17 2015-06-18 Lifetime Products. Inc. Swage and flare joints
WO2018049490A1 (fr) * 2016-09-16 2018-03-22 Seccional Brasil S/A Tour à une ou plusieurs colonnes métalliques à paroi mince
US10294687B2 (en) 2016-11-08 2019-05-21 Valmont West Coast Engineering Ltd. System for coupling together segments of a utility pole, and a utility pole assembly comprising the same
RU193916U1 (ru) * 2019-03-29 2019-11-22 Евгений Вячеславович Хорошкеев Двухцепная повышенная промежуточная многогранная опора линий электропередачи
CN110741122A (zh) * 2017-01-27 2020-01-31 西门子歌美飒可再生能源私人有限责任公司 包括第一区段和第二区段以及固定器的组件
DE112019004572T5 (de) 2018-09-13 2021-07-29 Frank Bollmann Modulares system zum bau, zur führung und zur befestigung von elementen rohrförmiger strukturen und entsprechende rohrförmige struktur
US20220009076A1 (en) * 2011-09-22 2022-01-13 Eric V Resh Telepole apparatus and related methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587002Y2 (ja) * 1976-07-29 1983-02-07 龍夫 寺岡 鋼板組立柱
JPS588831Y2 (ja) * 1979-07-05 1983-02-17 龍夫 寺岡 鋼板組立柱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1870770A (en) * 1927-04-02 1932-08-09 Taper Tube Pole Co Steel pole
US1877583A (en) * 1931-02-02 1932-09-13 Pfaff & Kendall Method of making columns
US2679911A (en) * 1948-08-13 1954-06-01 Louise J B Hend Support for poles and the like
US3507522A (en) * 1964-12-15 1970-04-21 Atomenergi Ab Pipe joint
US3541746A (en) * 1968-05-08 1970-11-24 Ameron Inc Multiple section pole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1870770A (en) * 1927-04-02 1932-08-09 Taper Tube Pole Co Steel pole
US1877583A (en) * 1931-02-02 1932-09-13 Pfaff & Kendall Method of making columns
US2679911A (en) * 1948-08-13 1954-06-01 Louise J B Hend Support for poles and the like
US3507522A (en) * 1964-12-15 1970-04-21 Atomenergi Ab Pipe joint
US3541746A (en) * 1968-05-08 1970-11-24 Ameron Inc Multiple section pole

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936206A (en) * 1975-02-18 1976-02-03 Bruce-Lake Company Tubular pole slip joint construction
DE2742417A1 (de) * 1977-09-21 1979-03-29 Benteler Werke Ag Rohrmast
EP0285584A2 (fr) * 1987-03-30 1988-10-05 AB Gustavsberg Structure de poteau
EP0285584A3 (en) * 1987-03-30 1989-10-04 Ab Gustavsberg A post structure
US5081804A (en) * 1989-09-08 1992-01-21 Gustavsberg Vvs Aktiebolag Power line pylon and lamp post
US7171793B2 (en) * 1990-01-31 2007-02-06 Musco Corporation Means and method for rigidly elevating a structure
US5398478A (en) * 1990-01-31 1995-03-21 Musco Corporation Means and method for rigidly elevating a structure
US6340790B1 (en) 1990-01-31 2002-01-22 Musco Corporation Means and method for integrated lighting fixture supports and components
US5600537A (en) * 1991-02-06 1997-02-04 Musco Corporation Ballast box for integrated location of ballasts and electrical connections
US5426577A (en) * 1993-02-23 1995-06-20 Musco Corporation Pole-mounted lighting system
US5513477A (en) * 1995-02-28 1996-05-07 International Composites Systems, Llc Segmented, graded structural utility poles
US6191355B1 (en) 1997-11-28 2001-02-20 Hans P. Edelstein Multi-sectional utility pole having slip-joint conical connections
US6167673B1 (en) * 1998-03-19 2001-01-02 Paul W. Fournier Utility pole
USD411096S (en) * 1998-05-13 1999-06-15 Musco Corporation Spacer between pole and cross-arm
US6250596B1 (en) 1998-05-13 2001-06-26 Musco Corporation Spacer between pole and cross-arm
US20040115008A1 (en) * 1998-05-27 2004-06-17 Stanley Merjan Piling
US6309143B1 (en) * 1998-05-27 2001-10-30 Stanley Merjan Composite pile with tapering lower portion and method for driving pile into granular soil
US6468003B2 (en) * 1998-05-27 2002-10-22 Stanley Merjan Composite pile with tapering lower portion and method for driving pile into granular soil
US7073980B2 (en) 1998-05-27 2006-07-11 Stanley Merjan Piling
US20040211148A1 (en) * 1999-02-12 2004-10-28 Newmark International, Inc. Multiple-part pole
US6705058B1 (en) 1999-02-12 2004-03-16 Newmark International Inc. Multiple-part pole
US7343718B2 (en) 1999-02-12 2008-03-18 Newmark International, Inc. Method for making multiple-part concrete pole
US6260314B1 (en) * 1999-11-08 2001-07-17 Faroex Ltd. Extension piece for a utility pole
US6692142B1 (en) 2000-08-04 2004-02-17 Musco Corporation Apparatus, method, and system of a moveable lighting
US6729358B1 (en) 2002-10-25 2004-05-04 Greenlee Textron Inc. Wire twisting tool
US6908250B2 (en) * 2002-10-25 2005-06-21 Greenlee Textron Inc. Retainer for retaining collapsed poles within another pole
US20040084915A1 (en) * 2002-10-25 2004-05-06 Greenlee Textron Inc. Retainer for retaining collapsed poles within another pole
US7762041B1 (en) * 2004-11-03 2010-07-27 Valmont Newmark, Inc. Hybrid metal pole
US20080078141A1 (en) * 2006-09-29 2008-04-03 James Mitchell Reinforced pole structure
US7637075B2 (en) 2006-09-29 2009-12-29 Ruud Lighting, Inc. Reinforced pole structure
US20110152225A1 (en) * 2007-02-28 2011-06-23 Sergio Baroni PPAR-Gamma Agonists for the Induction of Cationic Antimicrobial Peptide Expression as Immunoprotective Stimulants
US20100319983A1 (en) * 2007-02-28 2010-12-23 De Abreu Paulo Emmanuel Structure for supporting electric power transmission lines
US9416555B2 (en) 2007-02-28 2016-08-16 Seccional Brasil SA Structure for supporting electric power transmission lines
US8302368B1 (en) * 2008-06-17 2012-11-06 Mcwane Global Interconnectable utility pole members
US20100132269A1 (en) * 2009-06-15 2010-06-03 General Electric Company Rail-transportable wind turbine tower
US20220009076A1 (en) * 2011-09-22 2022-01-13 Eric V Resh Telepole apparatus and related methods
RU2539042C1 (ru) * 2013-08-02 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт прикладной механики Российской академии наук (ИПРИМ РАН) ВРЕМЕННАЯ БЫСТРОВОЗВОДИМАЯ И ДЕМОНТИРУЕМАЯ ОПОРА ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ 35-110 Кв
US9468834B2 (en) * 2013-12-17 2016-10-18 Lifetime Products, Inc. Swage and flare joints
US20150165301A1 (en) * 2013-12-17 2015-06-18 Lifetime Products. Inc. Swage and flare joints
WO2018049490A1 (fr) * 2016-09-16 2018-03-22 Seccional Brasil S/A Tour à une ou plusieurs colonnes métalliques à paroi mince
US10294687B2 (en) 2016-11-08 2019-05-21 Valmont West Coast Engineering Ltd. System for coupling together segments of a utility pole, and a utility pole assembly comprising the same
CN110741122A (zh) * 2017-01-27 2020-01-31 西门子歌美飒可再生能源私人有限责任公司 包括第一区段和第二区段以及固定器的组件
US10995463B2 (en) 2017-01-27 2021-05-04 Siemens Gamesa Renewable Energy B.V. Assembly comprising a first and a second section and a fixation
CN110741122B (zh) * 2017-01-27 2021-09-24 C1连接控股私人有限责任公司 包括第一区段和第二区段以及固定器的组件
DE112019004572T5 (de) 2018-09-13 2021-07-29 Frank Bollmann Modulares system zum bau, zur führung und zur befestigung von elementen rohrförmiger strukturen und entsprechende rohrförmige struktur
RU193916U1 (ru) * 2019-03-29 2019-11-22 Евгений Вячеславович Хорошкеев Двухцепная повышенная промежуточная многогранная опора линий электропередачи

Also Published As

Publication number Publication date
JPS4860435A (fr) 1973-08-24
AU456496B2 (en) 1974-12-19
AU4950172A (en) 1974-05-30
CA980081A (en) 1975-12-23

Similar Documents

Publication Publication Date Title
US3865498A (en) Slip joint for steel poles or the like
US4722156A (en) Concrete filled steel tube column and method of constructing same
US4697397A (en) Trussed girder, roof framing using the trussed girder and method of constructing the roof framing of a building using the trussed girder
US3473285A (en) Method of erection of concrete reinforcing structures
CN108468384B (zh) 装配式自恢复耗能型框架核心筒结构体系
CN106351462B (zh) 一种临时钢管支撑预应力加固结构及其施工方法
CN112695952B (zh) 建筑屋顶桁架支撑结构及施工方法
US3634989A (en) Modular tower
CN110566029A (zh) 高耸钢塔架渐进式安装施工方法
CN208441504U (zh) 输电塔十字加固装置
US5788419A (en) Pre-cast prestressed concrete foundation pile and associated installation components
US4335556A (en) Frame girder for underground drift and shaft construction
CN112814247A (zh) 中置压环轮辐式张拉结构的安装方法
CN115807559A (zh) 一种体外预应力钢绞线加固型钢梁结构及其施工方法
JP3215059B2 (ja) 塔状構造物屋根の構築工法
US2162675A (en) Mast for radio broadcasting
CN215054431U (zh) 一种不等直径环桁架高空分段安装固定装置
JP3470246B2 (ja) 鋼製脚柱の補強方法及びその補強脚柱
JPH09296416A (ja) 斜張吊り架構の構造とその構築方法
CN208346973U (zh) 空心钢管混凝土钢结构建筑体系及钢结构建筑物
CN215485045U (zh) 一种多段式钢结构避雷塔
US3218775A (en) Column structure erection method
JP2703088B2 (ja) トラス架構及びその架設方法
CN217680384U (zh) 一种辐射桁架支撑系统
CN221052876U (zh) 一种梁柱连接结构及建筑