US3859008A - Pump with offset inflow and discharge chambers - Google Patents
Pump with offset inflow and discharge chambers Download PDFInfo
- Publication number
- US3859008A US3859008A US262315A US26231572A US3859008A US 3859008 A US3859008 A US 3859008A US 262315 A US262315 A US 262315A US 26231572 A US26231572 A US 26231572A US 3859008 A US3859008 A US 3859008A
- Authority
- US
- United States
- Prior art keywords
- pump
- suction
- impeller
- discharge
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/24—Promoting flow of the coolant
- G21C15/243—Promoting flow of the coolant for liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/426—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D3/00—Axial-flow pumps
- F04D3/005—Axial-flow pumps with a conventional single stage rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D7/00—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04D7/02—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
- F04D7/08—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being radioactive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- ABSTRACT This invention relates to an improvement in a pump for high operating pressures, particularly a main coolant pump for pressurized water or boiling water reactors comprising a pressure housing, a vertical pump shaft having an impeller thereon, a distributor sur' rounding the impeller, and suction and discharge connections, the pump shaft having an axis normal to the axis of the suction and the discharge connections.
- the improvement comprises a separator plate having an opening therein and dividing the pressure housing into a lower section constituting an inflow chamber and an upper section constituting a discharge chamber, the upper section containing the impeller and the distributor, and the inflow chamber and the discharge chamber constituting rotational chambers which are mechanically machined.
- the present invention relates to a pump designed for high operating pressures, particularly a main coolant pump for pressurized water reactors or boiling water reactors.
- the following disclosure is directed to main coolant pumps for pressurized water reactors, but it applies analogously also to pumps for boiling water reactors.
- the temperature of the heat carrier is approximately 270280 C. at the reactor outlet.
- the heat carrier is re-eooled, at which time steam is produced which is passed to the turbine.
- the main coolant pumps are interposed between the steam generator and the reactor, viewed in the direction of flow. They are exposed to the operating pressure of the reactor circulation of approximately 120 160 atmospheres. The pressure increase which the pump produces in order to overcome the circulation resistances amount, on the other hand, only to about atmospheres. The pump is therefore designed in a single stage.
- the main coolant pumps have discharge or delivery quantities of from approximately l0,000 to 25,000 m h, a power input of from approximately 5,000 to 12,000 kW, and suction connections or inlets and pressure connections or outlets with an inside diameter of approximately 600 to 800 millimeters.
- the reactor together with the heat generators and main coolant pumps is accommodated within a containment which consists of an inner steel ball and a surrounding concrete enclosure.
- the diameter of the steel ball amounts to approximately 50 meters.
- the steel ball must be designed and provided for an internal pressure of approximately 4 atmospheres and therefore has a wall thickness of from 30 to 40 millimeters.
- one requirement which has been raised, inter alia, in connection with main coolant pumps is that the vertical distance between the pump pressure connection or outlet and the horizontal axis of the pump suction line be as small as possible.
- An additional requirement is the simplification of the extension of the pump pressure line and the pump suction line (for example, omission of line elbows) in order to thereby decrease the quantity of water in the reactor circulation because it influences the volume of the containment. A large quantity of water in the reactor circulation necessitates, of course, a greater volume of the containment,
- the axis of the pressure connection is horizontally downwardly directed; the axis of the suction connection is vertically downwardly directed.
- These main coolant pumps require therefore a feed or inlet elbow on the suction side.
- the pump suction line which extends from the steam generator to the pump is positioned, for this reason, more deeply within the containment than the housing of the main coolant pump.
- the vertical distance between the horizontal axis of the pump pressure connection and the horizontal axis of the pump suction line therefore amounts to about 3 meters in the main coolant pumps having the conventional construction.
- the pump suction line requires a further elbow at the steam generator since the position in the vertical sense of the steam generator coincides approximately with that of the main coolant pump and the pump suction line must initially extend downwardly from the steam generator.
- the present invention proposes a main coolant pump wherein one inflow chamber and one discharge chamber are arranged in juxtaposition, preferably superimposed within a common cylinder-like or spherically shaped pressure housing, and are separated from each other by a separator or baffle plate.
- the suction connection of the pump has a horizontal, or an approximately horizontal, axis and terminates in the inflow chamber.
- the pressure connection of the pump branches off of the discharge chamber and equally has a horizontal, or an approximately horizontal, axis.
- the vertical distance of the two axes is small, for example smaller than 500 millimeters, and even may be equal to zero.
- the novel main coolant pump may have impellers and guide wheels having an axial, semi-axial, or radial configuration.
- the separator or baffle plate in the pump housing is provided with an opening that is coaxial with the shaft axis; this opening establishes the connection between the inflow chamber and the discharge chamber and is enclosed with a reinforcing beading, the latter serving also for the meridian guidance of the fluid.
- a suction pipe Disposed on the separator or baffle plate is a suction pipe which projects into the inflow chamber and may be extracted therefrom preferably upwardly, and which comprises at the lower end thereof a divided deflecting beading. Additionally positioned on the separator or baffle plate, if necessary, is a diffuser pipe which projects into the discharge chamber and is longitudi nally divided for purposes of the introduction thereof.
- the impeller and the guide blades are disposed in the lower area of the diffuse pipe above the suction pipe.
- the impeller is disposed above the suction pipe, and the divided guide blades are disposed below the flange of the pump housing.
- the inflow chamber and the discharge chamber are provided as rotational chambers so that the inner surfaces thereof may be machined mechanically. Only the transition surfaces and the inner surfaces of the housing connections must be ground manually. in order to render possible an easier machining of the inflow chamber, a treating or machining opening which is closed off by a lid may be provided in the bottom of the pump housmg.
- the axis of the inflow chamber is displaced from the shaft axis towards the suction connection.
- the axis of the discharge chamber is displaced from the shaft axis toward the pressure connection.
- a plowshare-like inflow shield or plate is so disposed within the inflow chamber at the suction pipe opposite the suction connection that its edge points toward the connection opening.
- a steering or guide body or element whose guiding surfaces are shaped in such a manner that they deflect the water to the lower opening of the suction pipe with as few losses as possible.
- This guiding body or element must be divided for reasons pertaining to the assembly thereof. The guiding body or element may be so provided that it can be machined largely mechanically.
- a deflecting mushroom Disposed within the suction pipe and arranged coaxially with respect thereto is a deflecting mushroom which is secured to the bottom of the pump housing and, respectively, to the lid of the treating opening. This deflecting obturator head or mushroom together with the suction pipe conveys the water to the impeller in a genuinely accelerated flow.
- the pump housing consists of cast steel, whereas the connecting lines from the steam generator and to the reactor are rolled, forged transition rings must be provided at the housing connections.
- the present invention proposes that the transition rings be conical, and specifically with an optimal angle of approximately 6 with respect to the axis. These conical transition rings act as a diffuser at the suction connection, and as a nozzle at the pressure connection.
- a deflecting shield or plate which has a wedge-shaped cross-section and whose edge points upwardly is provided on the side opposite the pressure connection. Also provided directly ahead of the pressure connection is a discharge shield or plate which has a plowshare-like configuration and whose edge points toward the connection opening.
- the main coolant pump of the present invention has additional advantages, and specifically in the following cases:
- the novel main coolant pump be built with two pressure connections and that two pressure lines extend therefrom toward the reac' tor.
- the two pressure connections may be brought together up to a sector angle of about 60, which is very favorable for the extension of the two pressure lines to the reactor, since only a few pipe elbows are required in this case.
- the sector angle between the suction connection and the adjacent pressure connection can be brought to a minimal value of about 60, seen in the crosssectional view of the pump.
- the novel main coolant pump has a still further advantage 7 It is possible to install within one and the same pressure housing pumps for an entire discharge or delivery range, for example from 18,000 to 25,000 m h unless the operating pressure of the pump should vary more markedly.
- the impeller and guide wheels may be dimensioned in an optimum manner for l the respectively envisaged discharge or delivery be cause impellers and guide wheels with different diameters may be built into one and the same housing.
- FIG. 1 is a longitudinal cross-sectional view through a pump with a cylinder-type housing and an axial impeller and guide wheel, in which the axes of the suction and of the pressure connections are positioned in a straight line;
- FIG. 2 illustrates the suction connection of the pump with a welded-on transition ring 20
- FIG. 3 illustrates the pressure connection with the aforementioned conical transition ring
- FIG. 4 is a cross-sectional view through the deflecting shield, taken along line IV-IV of FIG. 1;
- FIG. 5 is a cross-sectional view through the discharge shield, taken along line V-V of FIG. 1;
- FIG. 6 is a cross-sectional view through the inflow shield, taken along line VI-VI of FIG. I; the directions of flow having been shown in FIGS. 4 through 6;
- FIG. 7 illustrates a modified embodiment of a pump with a semi-axial impeller and radial distributor as well as a spherical-type housing, wherein the reference numerals have the same meaning as in FIGS. 1 through 6;
- FIG. 8 illustrates the guiding body or element in an axonometric representation and shown from below, the two guiding surfaces being indicated by cross-hatching;
- FIGS. 9 through 11 are cross-sectional views taken on line A-A of FIG. 1 through pump housings with one or two longitudinal connections and, respectively, one or two pressure connections, whose axes enclose acute angles with each other, and
- FIG. 12 is a view in elevation of a steam generator with main coolant pump and the pump suction line connecting the former, being shown in phantom in the old, bent form thereof, and in solid lines in the novel, straight form thereof.
- an inflow chamber 2 is disposed in the housing and thereabove the discharge chamber 3; these chambers are separated from each other by means of the separator or baffle plate 4.
- the suction connection 5 terminates in the inflow chamber; the pressure connection 6 branches off the discharge chamber.
- the axes a b of the inflow chamber 2 is displaced or shifted from the shaft axis toward the suction connection 5.
- the axis c d of the discharge chamber 3 is displaced or shifted from the shaft axis toward the pressure connection 6.
- the separator or baffle plate 4 is connected with the pump housing 1 by means of large, rounded-out radii 7 which serve for the meridian deflection of the flow medium.
- the separator or baffle plate 4 has an opening 8 which is surrounded by a reinforcing beading 9.
- the suction pipe 10 Downwardly secured to the separator plate 4 is the suction pipe 10 which carries at one end thereof a divided deflecting beading 11. Further disposed on the separator plate 4 but upwardly is a diffuser pipe 12 which is longitudinally divided.
- the impeller 13 and the distributor 14 are arranged above the suction pipe 10; they may be extracted or removed from the pump housing 1 jointly with the pump lid and the interposed upper pump portion.
- the lower part of the distributor 14 is provided with sealing rings 14a and is enclosed with the reinforcing beading 9 of the separator plate 4.
- the inflow shield or plate 15 Disposed within the inflow chamber 2 are the inflow shield or plate 15 (see FIG. 6), the divided guiding body or element 16, and the deflecting obturator head or mushroom 17.
- the defleeting shield or plate 18 Disposed within the discharge chamber 3 are the defleeting shield or plate 18 (see FIG. 4) and the discharge shield or plate 19 (see FIG. 5).
- a sealing ring 21 is provided between the divided distributor 14b and the suction pipe 10.
- a treating opening which is closed off by means of a lid 22, the latter being supported from the inside of the housing 1 against the flange of the opening.
- FIG. 8 illustrates the steering or guiding body or element used in the embodiments of FIGS. 1 and 7 in an axonometric view from below; the guiding surfaces being cross-hatched extend upwardly to the upper horizontal plane of the guiding body or element.
- the axes of the pressure connections 6 enclose or form the acute angle [3 with each other.
- the two deflecting shields 18 are disposed in the plane of symmetry of the two pressure connections 6.
- FIG. 11 shows a high-efficiency main coolant pump with two suction connections 5 and two pressure connections 6. The position of the shields 15, 18, and 19 is also shown therein.
- pumps in which the axes of the suction and of the pressure connection are positioned in a straight line.
- Such pumps may be installed in a straight line, in a manner similar to valve housings; they do not therefore need any elbows.
- Pumps of this construction also may be employed for other purposes, for example for feeding petroleum in pipelines, or as circulating pumps in La-Mont boilers.
- a pump for high operating pressures particularly a main coolant pump for pressurized water or boiling water reactors, comprising a pressure housing, a vertical pump shaft having an impeller thereon, a distributor surrounding the impeller, and suction and dis charge connections, said pump shaft having an axis normal to the axis of said suction and discharge connections,
- separator plate means having an opening therein and dividing said pressure housing into a lower section constituting an inflow chamber means and an upper section constituting a discharge chamber means, said upper sec tion containing said impeller and distributor,
- a pump for high operating pressures particularly a main coolant pump for pressurized water or boil ing water reactors, comprising a pressure housing, a vertical pump shaft having an impeller thereon, a distributor surrounding the impeller, and suction and discharge connections, said pump shaft having an axis normal to the axis of said suction and discharge connections,
- separator plate means having an opening therein and dividing said pres sure housing into a lower section constituting an inflow chamber means and an upper section constituting a discharge chamber means, said upper section containing said impeller and distributor,
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- High Energy & Nuclear Physics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT584671 | 1971-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3859008A true US3859008A (en) | 1975-01-07 |
Family
ID=3580182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US262315A Expired - Lifetime US3859008A (en) | 1971-07-06 | 1972-06-13 | Pump with offset inflow and discharge chambers |
Country Status (7)
Country | Link |
---|---|
US (1) | US3859008A (enrdf_load_stackoverflow) |
CH (1) | CH541079A (enrdf_load_stackoverflow) |
DE (1) | DE2231128A1 (enrdf_load_stackoverflow) |
ES (1) | ES403795A1 (enrdf_load_stackoverflow) |
FR (1) | FR2145350A5 (enrdf_load_stackoverflow) |
GB (1) | GB1400761A (enrdf_load_stackoverflow) |
IT (1) | IT960937B (enrdf_load_stackoverflow) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3910714A (en) * | 1974-12-11 | 1975-10-07 | Us Energy | Liquid metal pump for nuclear reactors |
US4115029A (en) * | 1973-01-26 | 1978-09-19 | Klein, Schanzlin & Becker Aktiengesellschaft | Centrifugal pump |
US4138201A (en) * | 1973-02-02 | 1979-02-06 | Ksb Kernkraftwerkspumpen Gmbh | Pump for use in nuclear reactor plants and anchoring means therefor |
US4177008A (en) * | 1973-01-26 | 1979-12-04 | Klein, Schanzlin & Becker Aktiengesellschaft | Centrifugal pump |
US4236970A (en) * | 1977-02-14 | 1980-12-02 | Kraftwerk Union Aktiengesellschaft | Structural unit formed of a coolant pump and a steam generator, especially for nuclear reactor plants secured against rupture |
US4648790A (en) * | 1983-06-29 | 1987-03-10 | Bbc Brown, Boveri & Company, Limited | Axial turbine for exhaust gas turbochargers |
US4799857A (en) * | 1986-11-29 | 1989-01-24 | Klein, Schanzlin & Becker Aktiengesellschaft | Casing for fluid flow machines |
WO1989004925A1 (en) * | 1987-11-23 | 1989-06-01 | Sundstrand Corporation | Centrifugal liquid pump |
RU2172871C2 (ru) * | 1998-04-23 | 2001-08-27 | Акционерное общество "Сумское машиностроительное научно-производственное объединение им. М.В. Фрунзе" | Корпус турбокомпрессора, преимущественно для сжатия сероводородных газов |
US6561754B1 (en) * | 1998-07-06 | 2003-05-13 | Ksb Aktiengesellschaft | Inlet structure for pump installations |
US20060013681A1 (en) * | 2004-05-17 | 2006-01-19 | Cardarella L J Jr | Turbine case reinforcement in a gas turbine jet engine |
US20060059889A1 (en) * | 2004-09-23 | 2006-03-23 | Cardarella Louis J Jr | Method and apparatus for improving fan case containment and heat resistance in a gas turbine jet engine |
RU2381389C2 (ru) * | 2008-02-07 | 2010-02-10 | Общество с ограниченной ответственностью "Сумский машиностроительный завод" | Крышка подвода |
RU2406877C2 (ru) * | 2005-09-20 | 2010-12-20 | Л. Джеймс Мл. КАРДАРЕЛЛА | Упрочнение корпуса вентилятора в газотурбинном реактивном двигателе |
EP2426591A1 (en) | 2007-01-07 | 2012-03-07 | Apple Inc. | Portable multifunction device, method, and graphical user interface for interpreting a finger gesture on a touch screen display |
CN102465887A (zh) * | 2010-10-28 | 2012-05-23 | 日本电产三协株式会社 | 泵装置 |
CN102777423A (zh) * | 2012-08-27 | 2012-11-14 | 哈尔滨电气动力装备有限公司 | 300mw反应堆冷却剂泵水力部件 |
CN103758761A (zh) * | 2014-01-17 | 2014-04-30 | 新乡学院 | 双级无堵塞污水泵 |
CN105508298A (zh) * | 2016-01-18 | 2016-04-20 | 中国联合工程公司 | 一种屏蔽电机主泵泵壳导流装置 |
DE202017005507U1 (de) | 2016-10-25 | 2018-06-12 | Apple Inc. | Benutzeroberfläche zum Verwalten von Zugang zu Berichtigungsnachweisen zur Verwendung von Arbeitsabläufen |
DE112019000018T5 (de) | 2018-05-07 | 2020-01-09 | Apple Inc. | Anheben, um zu sprechen |
DE112015002326B4 (de) | 2014-09-02 | 2021-09-23 | Apple Inc. | Monitor für physische Aktivität und Training |
EP3896561A1 (en) | 2019-09-09 | 2021-10-20 | Apple Inc. | Techniques for managing display usage |
EP3910467A1 (en) | 2020-05-11 | 2021-11-17 | Apple Inc. | Digital assistant hardware abstraction |
WO2021231175A1 (en) | 2020-05-11 | 2021-11-18 | Apple Inc. | Editing features of an avatar |
WO2021236270A1 (en) | 2020-05-22 | 2021-11-25 | Apple Inc. | Digital assistant user interfaces and response modes |
WO2021252690A1 (en) | 2020-06-09 | 2021-12-16 | Apple Inc. | User interfaces for messages |
DE112008000144B4 (de) | 2007-01-07 | 2022-01-13 | Apple Inc. | Scrollen von Listen und Verschieben, Skalieren und Rotieren von Dokumenten auf einer Berührungsbildschirmanzeige |
DE112020002566T5 (de) | 2019-06-01 | 2022-05-12 | Apple Inc. | Benutzerschnittstellen zur zyklusverfolgung |
EP4231655A1 (en) | 2020-06-01 | 2023-08-23 | Apple Inc. | User interfaces for managing media-capture |
WO2023235615A1 (en) | 2022-06-03 | 2023-12-07 | Apple Inc. | User interfaces for messages and shared documents |
WO2024155460A1 (en) | 2023-01-17 | 2024-07-25 | Apple Inc. | Integration of hardware and software tracking user interfaces |
US12188489B1 (en) * | 2023-08-28 | 2025-01-07 | Jiangsu University | Guide vane body with vortex suppression structure ring and axial-flow nuclear reactor coolant pump |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI750217A7 (enrdf_load_stackoverflow) * | 1975-01-28 | 1976-07-30 | Sarlin Ab Oy E | |
FR2485114A1 (fr) * | 1980-06-20 | 1981-12-24 | Framatome Sa | Pompe centrifuge a diffuseur demontable |
DE4041545A1 (de) * | 1990-02-21 | 1991-08-22 | Klein Schanzlin & Becker Ag | Kreiselpumpe |
US5188510A (en) * | 1990-11-21 | 1993-02-23 | Thomas R. Norris | Method and apparatus for enhancing gas turbo machinery flow |
GB9415685D0 (en) * | 1994-08-03 | 1994-09-28 | Rolls Royce Plc | A gas turbine engine and a diffuser therefor |
DE19506854A1 (de) * | 1995-03-01 | 1996-09-05 | Wilo Gmbh | Kreiselpumpe |
CN102536906A (zh) * | 2010-12-17 | 2012-07-04 | 刘显海 | 一种双作用漩涡泵 |
CN112283115B (zh) * | 2020-10-30 | 2022-04-19 | 天长市龙源泵阀有限公司 | 一种高密封性的污水处理用轴流泵 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US678199A (en) * | 1901-02-21 | 1901-07-09 | John Richards | Centrifugal pump. |
US1476210A (en) * | 1920-09-08 | 1923-12-04 | Moody Lewis Ferry | Hydraulic pump |
US1704375A (en) * | 1920-04-23 | 1929-03-05 | Taylor Harvey Birchard | Hydraulic turbine |
US2933045A (en) * | 1954-01-27 | 1960-04-19 | Morris D Isserlis | Centrifugal pumps |
US2949859A (en) * | 1955-02-03 | 1960-08-23 | Albert J Granberg | Self-priming centrifugal pump assembly |
US3421446A (en) * | 1966-07-15 | 1969-01-14 | Voith Gmbh J M | Suction bend for centrifugal pumps |
-
1972
- 1972-06-13 ES ES403795A patent/ES403795A1/es not_active Expired
- 1972-06-13 US US262315A patent/US3859008A/en not_active Expired - Lifetime
- 1972-06-26 DE DE2231128A patent/DE2231128A1/de active Pending
- 1972-06-29 GB GB3043272A patent/GB1400761A/en not_active Expired
- 1972-07-04 IT IT51321/72A patent/IT960937B/it active
- 1972-07-05 CH CH1005472A patent/CH541079A/de not_active IP Right Cessation
- 1972-07-06 FR FR7225176A patent/FR2145350A5/fr not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US678199A (en) * | 1901-02-21 | 1901-07-09 | John Richards | Centrifugal pump. |
US1704375A (en) * | 1920-04-23 | 1929-03-05 | Taylor Harvey Birchard | Hydraulic turbine |
US1476210A (en) * | 1920-09-08 | 1923-12-04 | Moody Lewis Ferry | Hydraulic pump |
US2933045A (en) * | 1954-01-27 | 1960-04-19 | Morris D Isserlis | Centrifugal pumps |
US2949859A (en) * | 1955-02-03 | 1960-08-23 | Albert J Granberg | Self-priming centrifugal pump assembly |
US3421446A (en) * | 1966-07-15 | 1969-01-14 | Voith Gmbh J M | Suction bend for centrifugal pumps |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4115029A (en) * | 1973-01-26 | 1978-09-19 | Klein, Schanzlin & Becker Aktiengesellschaft | Centrifugal pump |
US4177008A (en) * | 1973-01-26 | 1979-12-04 | Klein, Schanzlin & Becker Aktiengesellschaft | Centrifugal pump |
US4138201A (en) * | 1973-02-02 | 1979-02-06 | Ksb Kernkraftwerkspumpen Gmbh | Pump for use in nuclear reactor plants and anchoring means therefor |
US3910714A (en) * | 1974-12-11 | 1975-10-07 | Us Energy | Liquid metal pump for nuclear reactors |
US4236970A (en) * | 1977-02-14 | 1980-12-02 | Kraftwerk Union Aktiengesellschaft | Structural unit formed of a coolant pump and a steam generator, especially for nuclear reactor plants secured against rupture |
US4648790A (en) * | 1983-06-29 | 1987-03-10 | Bbc Brown, Boveri & Company, Limited | Axial turbine for exhaust gas turbochargers |
US4799857A (en) * | 1986-11-29 | 1989-01-24 | Klein, Schanzlin & Becker Aktiengesellschaft | Casing for fluid flow machines |
WO1989004925A1 (en) * | 1987-11-23 | 1989-06-01 | Sundstrand Corporation | Centrifugal liquid pump |
US4880352A (en) * | 1987-11-23 | 1989-11-14 | Sundstrand Corporation | Centrifugal liquid pump |
GB2226082A (en) * | 1987-11-23 | 1990-06-20 | Sundstrand Corp | Centrifugal liquid pump |
GB2226082B (en) * | 1987-11-23 | 1991-09-04 | Sundstrand Corp | Centrifugal liquid pump |
RU2172871C2 (ru) * | 1998-04-23 | 2001-08-27 | Акционерное общество "Сумское машиностроительное научно-производственное объединение им. М.В. Фрунзе" | Корпус турбокомпрессора, преимущественно для сжатия сероводородных газов |
US6561754B1 (en) * | 1998-07-06 | 2003-05-13 | Ksb Aktiengesellschaft | Inlet structure for pump installations |
US20060013681A1 (en) * | 2004-05-17 | 2006-01-19 | Cardarella L J Jr | Turbine case reinforcement in a gas turbine jet engine |
US20060059889A1 (en) * | 2004-09-23 | 2006-03-23 | Cardarella Louis J Jr | Method and apparatus for improving fan case containment and heat resistance in a gas turbine jet engine |
US8191254B2 (en) | 2004-09-23 | 2012-06-05 | Carlton Forge Works | Method and apparatus for improving fan case containment and heat resistance in a gas turbine jet engine |
US8317456B2 (en) | 2004-09-23 | 2012-11-27 | Carlton Forge Works | Fan case reinforcement in a gas turbine jet engine |
US8454298B2 (en) | 2004-09-23 | 2013-06-04 | Carlton Forge Works | Fan case reinforcement in a gas turbine jet engine |
RU2406877C2 (ru) * | 2005-09-20 | 2010-12-20 | Л. Джеймс Мл. КАРДАРЕЛЛА | Упрочнение корпуса вентилятора в газотурбинном реактивном двигателе |
EP2426591A1 (en) | 2007-01-07 | 2012-03-07 | Apple Inc. | Portable multifunction device, method, and graphical user interface for interpreting a finger gesture on a touch screen display |
DE112008000144B4 (de) | 2007-01-07 | 2022-01-13 | Apple Inc. | Scrollen von Listen und Verschieben, Skalieren und Rotieren von Dokumenten auf einer Berührungsbildschirmanzeige |
RU2381389C2 (ru) * | 2008-02-07 | 2010-02-10 | Общество с ограниченной ответственностью "Сумский машиностроительный завод" | Крышка подвода |
CN102465887A (zh) * | 2010-10-28 | 2012-05-23 | 日本电产三协株式会社 | 泵装置 |
CN102465887B (zh) * | 2010-10-28 | 2016-05-18 | 日本电产三协株式会社 | 泵装置 |
CN102777423A (zh) * | 2012-08-27 | 2012-11-14 | 哈尔滨电气动力装备有限公司 | 300mw反应堆冷却剂泵水力部件 |
CN103758761A (zh) * | 2014-01-17 | 2014-04-30 | 新乡学院 | 双级无堵塞污水泵 |
CN103758761B (zh) * | 2014-01-17 | 2016-05-18 | 新乡学院 | 双级无堵塞污水泵 |
DE112015002326B4 (de) | 2014-09-02 | 2021-09-23 | Apple Inc. | Monitor für physische Aktivität und Training |
CN105508298B (zh) * | 2016-01-18 | 2018-05-25 | 中国联合工程有限公司 | 一种屏蔽电机主泵泵壳导流装置 |
CN105508298A (zh) * | 2016-01-18 | 2016-04-20 | 中国联合工程公司 | 一种屏蔽电机主泵泵壳导流装置 |
DE202017005507U1 (de) | 2016-10-25 | 2018-06-12 | Apple Inc. | Benutzeroberfläche zum Verwalten von Zugang zu Berichtigungsnachweisen zur Verwendung von Arbeitsabläufen |
DE112019000018T5 (de) | 2018-05-07 | 2020-01-09 | Apple Inc. | Anheben, um zu sprechen |
DE112020002566T5 (de) | 2019-06-01 | 2022-05-12 | Apple Inc. | Benutzerschnittstellen zur zyklusverfolgung |
EP3896561A1 (en) | 2019-09-09 | 2021-10-20 | Apple Inc. | Techniques for managing display usage |
WO2021231175A1 (en) | 2020-05-11 | 2021-11-18 | Apple Inc. | Editing features of an avatar |
EP3910467A1 (en) | 2020-05-11 | 2021-11-17 | Apple Inc. | Digital assistant hardware abstraction |
WO2021236270A1 (en) | 2020-05-22 | 2021-11-25 | Apple Inc. | Digital assistant user interfaces and response modes |
EP4231655A1 (en) | 2020-06-01 | 2023-08-23 | Apple Inc. | User interfaces for managing media-capture |
WO2021252690A1 (en) | 2020-06-09 | 2021-12-16 | Apple Inc. | User interfaces for messages |
WO2023235615A1 (en) | 2022-06-03 | 2023-12-07 | Apple Inc. | User interfaces for messages and shared documents |
WO2024155460A1 (en) | 2023-01-17 | 2024-07-25 | Apple Inc. | Integration of hardware and software tracking user interfaces |
US12188489B1 (en) * | 2023-08-28 | 2025-01-07 | Jiangsu University | Guide vane body with vortex suppression structure ring and axial-flow nuclear reactor coolant pump |
Also Published As
Publication number | Publication date |
---|---|
IT960937B (it) | 1973-11-30 |
GB1400761A (en) | 1975-07-23 |
DE2231128A1 (de) | 1973-01-18 |
FR2145350A5 (enrdf_load_stackoverflow) | 1973-02-16 |
ES403795A1 (es) | 1975-05-01 |
CH541079A (de) | 1973-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3859008A (en) | Pump with offset inflow and discharge chambers | |
US4072563A (en) | Industrial technique for an integral compact reactor | |
US3625820A (en) | Jet pump in a boiling water-type nuclear reactor | |
US4039377A (en) | Nuclear boiler | |
US3552877A (en) | Outlet housing for an axial-flow turbomachine | |
US4022163A (en) | Boiler using combustible fluid | |
US11881320B2 (en) | Molten fuel reactors and orifice ring plates for molten fuel reactors | |
US20130028719A1 (en) | Concrete volute pump | |
US9576686B2 (en) | Reactor coolant pump system including turbo pumps supplied by a manifold plenum chamber | |
US3652179A (en) | Controlled leakage centrifugal pump | |
US4874575A (en) | Multiple discharge cylindrical pump collector | |
US5295171A (en) | Combined jet pump and internal pump rercirculation system | |
EP0322504B1 (en) | Shrouded inducer pump | |
US4505637A (en) | Axial-flow centrifugal pump for the circulation of fluid | |
US4734250A (en) | Concentric pipe loop arrangement for pressurized water nuclear reactors | |
US5084236A (en) | Converging spout outlet nozzle on an offset pump casing | |
US4177008A (en) | Centrifugal pump | |
CN116085302A (zh) | 复合叶轮及其具有前置稳流器的复合叶轮离心泵 | |
US12188489B1 (en) | Guide vane body with vortex suppression structure ring and axial-flow nuclear reactor coolant pump | |
CN114593065A (zh) | 一种双进口水平中开式离心泵 | |
EP0129749B1 (en) | Boiling water reactor | |
US3520640A (en) | Fluid circulator | |
US4849159A (en) | Coolant-pumping system for a nuclear reactor | |
US3895887A (en) | Gas turbine for use in a closed cycle plant | |
Heslenfeld et al. | Pump cavitation and inducer design |