US3855456A - Monitor and results computer system - Google Patents

Monitor and results computer system Download PDF

Info

Publication number
US3855456A
US3855456A US00308770A US30877072A US3855456A US 3855456 A US3855456 A US 3855456A US 00308770 A US00308770 A US 00308770A US 30877072 A US30877072 A US 30877072A US 3855456 A US3855456 A US 3855456A
Authority
US
United States
Prior art keywords
log
data
format
representations
alarm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00308770A
Other languages
English (en)
Inventor
W Summers
B Christy
J Sweeney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebasco Services Inc
Original Assignee
Ebasco Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebasco Services Inc filed Critical Ebasco Services Inc
Priority to US00308770A priority Critical patent/US3855456A/en
Priority to CA186,164A priority patent/CA1003520A/en
Priority to GB5369473A priority patent/GB1456526A/en
Priority to IE2103/73A priority patent/IE38529B1/xx
Priority to AU62777/73A priority patent/AU478629B2/en
Priority to DE2358007A priority patent/DE2358007A1/de
Priority to JP48130824A priority patent/JPS501627A/ja
Priority to US475987A priority patent/US3927308A/en
Application granted granted Critical
Publication of US3855456A publication Critical patent/US3855456A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0264Control of logging system, e.g. decision on which data to store; time-stamping measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0262Confirmation of fault detection, e.g. extra checks to confirm that a failure has indeed occurred

Definitions

  • ABSTRACT System used for aiding the operation of processes occurring in a power generation plant is disclosed which includes a logging technique for transforming input data from various pickup points into a universal, named system variable format usable by all system functions. Specified changes in time or in any system variable can cause a given log to be triggered into a storing state, or an outputting state wherein the stored data is outputted 'by a printer in a page oriented log print-out format.
  • Also included in the system is a sequence of events interrupt technique wherein the detection devices located within the protective circuits are corrected for their respective time delays between the sensing time of a measured condition and the actuation time of the associated switching contacts.
  • the correction is achieved by storing the predetermined values of the time delays associated with each of the detection devices, and subtracting such stored time delay values from the system detected times of actuation of the respective switching contacts, thereby deriving a corrected sequence of events indicating the correct order of occurrence of the events at the detection devices and, consequently, the initial cause of the event.
  • the system also includes an alarming technique wherein alarm limit values are assigned for a measured system variable at a given point in the system, and realarm values are calculated so that realarming occurs when the measured system variable departs from the last alarmed value by a significant amount of change, thereby employing system discretion in selecting only the most important alarm conditions to be outputted.
  • a CRT device is used for displaying the alarm information and operates with a reduced line format for those alarms acknowledged by the operator. Entry, removal and presentation of alarm data on the CRT screen is designed to present the data in a simple and easily understandable manner while maximizing the amount of data presented.
  • the present invention relates to a monitor and results computer system, and more particularly to a system which provides operation, performance and historical data for continuously aiding the operation of a power plant.
  • the conventional manner of handling log information to an operator is to have a scanning device, that is program controlled to convey information into the memory unit ofa CPU.
  • the log is a group of data which you identify by designating the log number.
  • the log has a list of points and a value.
  • the logging device can type out the identification of the log, time, point Identification Number(s), and the value(s).
  • the storage of the logging device is the piece of paper. If one is activating the log every 5 minutes, 5 minutes later the log program will be scheduled to gather the data for the log. From the operators standpoint, the human standpoint, he sees what is going on by looking back at the lines on the piece of paper. To accomplish this may require one typewriter per log which is impractical.
  • a user requests a log which is then assembled in a computer andthen printed out on a typewriter.
  • This typewriter was, according to the state of the art, conventionally a wide-carriage typewriter employing mechanical printing and the printed record on paper was the memory.
  • the mechanical typewriters are used because of their adaptability to printing of a character at a time.
  • printers using non-impact printing techniques are perhaps more ideally suited from the standpoint of the relative freedom from the high maintenance associated with the impact type printers and from the standpoint of speed.
  • non-impact printers are not suitable to the applications in the conventional log data storage and printing system because such systems have a printout format which involves the writing of a character at a time.
  • a new heading comprising the various names identifications is retyped for each new line.
  • a demand panel is used to operate in conjunction with a program and special log programs containing lists for each special log.
  • the program consisted of lists in the memory of the members (the names). These lists in the computer memory consisted essentially only of the names while a directory contained the addresses or locations of the names in the memory.
  • a secondary memory device such as a drum, contains the contents or value of data associated with the names in the memory.
  • overload and protective devices are employed. These devices are connected within a protective circuit and, upon their actuation, provide the system with an indication as to the source of a problem within the power plant, such as a loss of generator power or a boiler trip.
  • Contact changes from the protective circuit network, including the overload devices and protective relays, were incorporated into computer systems and attempts to program the computer to indicate the relays or other protective devices which were activated and the times of activation of their switching contacts have met with common problems.
  • These protective circuits commonly include a multiplicity of trip devices, such as relays and switches.
  • trip devices such as relays and switches.
  • When a trip condition exists one or more relays or trip devices are energized and their associated contacts are switched.
  • auxiliary relays within the protective network that is also activated directly or indirectly as a result of the actuation of the first relay.
  • a first relay switch may have switching contacts which cascade into auxiliary switches which eventually cause a further relay to be activated. Therefore, even though a trip condition is initially sensed at a first relay, signals may be produced in the system which cause an auxiliary relay(s) or trip(s) to occur which may, in turn, indirectly switch other contacts in the system.
  • the contacts of the auxiliary relay(s) may switch over before the final contact that feeds the computer from the initial relay is energized.
  • the computer or.control system incorrectly sees the contacts of the auxiliary relay(s) being switched ahead of the contacts of the initial relay and interprets this as a trip caused by the function of the auxiliary relay.
  • the computer also records the closing or switching of the other devices in the protective circuit and associated or effected plant devices, and records their respective times of occurrence of switching and the status of all the devices.
  • Conventional alarming systems such as those used in power plants, provide scanning devices which compare desired system characteristics, such as a boiler temperature, to stored low and/or high alarm set points previously designated or calculated for that point.
  • the alarm information status is output on printers, typewriters and on trouble location annunciators providing audible and/or visible warnings of an alarm condition.
  • a plant emergency may result in a multiplicity of alarms being set off almost simultaneously, such as those due to a failure of the main turbine which in turn interacts with other equipment so as to cause other alarms to be actuated.
  • Alarm status information is presently being output on printers, typewriters, annunciators and CRT devices. It has been found that the outputting of alarm information by such devices is often confusing or unnoticed to the human understanding because of both the large amount of information being simultaneously displayed as well as the format by which such information is presented.
  • the present invention provides a logging system within the monitor and results computer system wherein analog to digital input data is presented to the computer system for monitoring devices, such as transducers and thermocouples located at various pickup points external to the computer system.
  • the input data is scanned and transformed into a universal, named system variable format usable by all systemfunctions.
  • the format includes the name identification of the variable, the value of the system variable, the quality of the data and the time at which data is obtained.
  • the name or member of each log is defined by the format. Triggering conditions are defined for the system such that specified changes in time or specified changes in any system variable can cause triggering of a given log into one of two active states.
  • a Free log state represents the log number and is a log number list without names or page assignments
  • a Defined but yet inactive log state includes names only.
  • An active log includes both names and values correlated with times or time intervals
  • an Active outputting log state includes not only names and values, but also a demand for the printing or displaying of a log. If a log is changed or triggered to the active state or to the Active outputting state, then the log data is stored in the proper log page field at the proper. index location.
  • the log page format is designed for use with page oriented printers, wherein each page includes a log number, and a log heading containing the names or identification of each member of the log. Theses names are individually arranged in the heading at the top of the page in separate columns.
  • each log page includes the time indication of the data on each line.
  • the program is designed to handle all details following the request by a human to place or change a point in a log, without any further human intervention.
  • the program is designed to define log lists, report or remove members of the lists and to allocate pages.
  • the program also is designed to be triggered by events or times, to set and control printout.
  • the program is designed to control log status.
  • the use of the universal format with named system variables, the formatting and storage of data in log page field and the final format of the page oriented printout provides a system with the ability to easily change the types of logs, i.e., change the log members or add to the logs.
  • the present invention also provides a system and method of deriving the ordered sequence of interrupt events sensed by detection devices connected within a protective circuit wherein such detection devices are characterized by a time delay between the sensing of a predetermined condition and the actuation of their associated switching contacts, comprising means for detecting the change of state of the respective switching contacts associated with each of such detection devices, means for storing values of time relays associated with each of said detection devices, such time delays representing the known delay for a particular contact between its switching time and the actual time of occurrence of the event at the associated protective device, the time of actuation of such switching contacts being detected by the system, means for subtracting the stored time delay values from the detected times of actuation of the switching contacts of the respective devices to produce a corrected time of initiation of the event at the respective devices, whereby a corrected sequence of events is derived which indicates the correct order of occurrence of the events at the devices and, consequently, the initial cause of the event.
  • the storage and computations are carried out by the monitor and results computer system of the present in vention which receives indications of the real time of switching of the device contacts and applies the associated corrective time delay for the particular contacts to produce the actual time of activation of the protective device.
  • the system and method according to the present invention is thereby able to determine the actual interrupt event which initiated the protective devices.
  • the present invention also provides an alarming system and method which includes the assigning of an alarm limit value for a measured system variable at a given point in the system, scanning such point for the measured system variable even after such an alarm value is detected, calculating and applying a second alarm value representing a significant change (a delta) in the measured system variable from the last alarm value, and outputting the system variable information existing at each of such realarm values.
  • the method also includes the setting of a fixed significant change (a delta) associated with the measured system variable of a point whereby the second alarm and any subsequent realarms would ordinarily be set off when the measured system variable departs from the last alarmed value by this fixed amount.
  • the method includes changing this delta for a given point by selecting a multiplier which is applied to the fixed delta to produce a different delta which then represents the current value of the significant change in the measured system variable. This current delta will require the next alarming of the measured system variable value.
  • the use of the multiplier to calculate a significant change of the system variable value by which the second or any subsequent alarm is to be set off allows the application of discretion in selecting only those very important alarm conditions to be outputted, thereby minimizing the number of alarm outputs.
  • a CRT device for outputting the alarm information and instantly displays each alarm, when first detected, on the next free line above the most recent new alarm, starting at the lowest line of the alarm area of the CRT screen and moving upwards.
  • the alarm message is automatically changed to a reduce format wherein the current value, current direction, current deviation from the alarm limit value and current duration of the alarm is updated at the scan frequency or the calculation frequency of the measured point.
  • the oldest group of alarm messages at the bot tom of the screen is transferred into a system memory for alarm backlog information and the alarm information on the lines above those transferred shall be compacted downwards, thereby permitting entry of the new alarm at the first free line above the existing displayed alarms of the alarm area.
  • system variable includes a measured system variable, and vice versa.
  • FIG. 1 is a general block diagram of the monitor and results computer system of the present invention
  • FIG. 2 shows a printer output format for a log page, illustrative of the present invention
  • FIG. 3 is 'a block diagram showing the four log states
  • FIG. 4 is a generalized system operation flow dia gram
  • FIG. 5 is a more detailed operations flow diagram of the diagram shown in FIG. 4;
  • FIG. 6 is a representation of the operator/engineer panel
  • FIG. 7 shows a flow chart of the operation for defining a log
  • FIG. 8 shows a flow diagram of the operation for changing the status of a log
  • FIG. 9 shows a flow diagram of the operation for controlling the collection and/or outputting of log data
  • FIG. 10 shows a protective circuit connected to the computer control portion of the system which computes the actual sequence of events detects by overload and protective devices;
  • FIG. 11 shows a graphical representation of a curve plot of a measured system variable at a point, with the set alarm values, the set realarm values and alarmed values drawn to illustrate the alarming system;
  • FIG. 12 shows a CRT screen having an alarming area for displaying alarm information in accordance with the format of the present invention
  • FIG. 13 shows a generalized functional block diagram of the alarming system
  • FIGS. 14A, B, C, D. and E show the sequence of presentations of the log trend
  • FIGS. 14F, G, H. and I show the sequence of presentations in a prior art trend display
  • FIG. 15 is a graphical representation of a tuned output signal (Believed Value) as the input signals are varied;
  • FIG. 15B is a block diagram of a tuning system for deriving an output (Believed) value used for system maintenance.
  • FIG. 16 shows the method for deriving a Beard Value and accordingly applying system maintenance.
  • FIG. 1 shows a block diagram of a monitoring and results computer system used for aiding the "operation of processes such as occurring in power generation plants.
  • the system is generally shown by a block diagram.
  • Block 10 refers to the sensing devices throughout the plant that provide the information to the computer system in analog, digital and/or pulse form.
  • Block 11 represents the interface and filter circuits for filtering and conditioning the digital and pulse type signals and interfacing them with the computer system either through the CPU and/or the input/output processor.
  • the block 12 represents the filter equipment and the scanning devices to handle the analog signals.
  • Block 13 includes the control of the multiplexing for scanning.
  • Block 14 is the representative of the logic and arithmetic circuits associated with the CPU.
  • Block 15 is the programming and programming system that directs the logic arithmetic circuits l4 and memory accesses to perform the desired sequence of instructions yielding the monitoring services.
  • Block 16 represents the actual CPU internal control.
  • the computers used in this function are mainly interrupt type machines and represent a small to medium level CPU with respect to the present art. Multiple CPUs are also utilized where required.
  • the systems shown usually include multiple levels of memory and high memory transfer rates.
  • Block 17 shows the high speed working memory.
  • Block 18 represents a secondary level memory and block 19 represents tertiary level memories. Various levels of memory are utilized depending upon the speed of response required for the programming contained therein.
  • Block 20 represents the input/output processor having the logic, control and associated memory mechanism for processing, formatting.
  • Block 21 represents the hard copy output devices such as printers and/or printer plotters of various types. Some of these devices 21 are used for permanent historical records, others for the printing information of temporary or tear of use in operations.
  • Block 22 is a group or groups of alphanumeric presentation devices, such as CRTs for display of information of immediate or transient rise that doesnt require hard copy.
  • Block 23 is a group or groups of combination alphanumeric and graphic display types of CRTs or graphic types, for use similar to devices 22 but with pictorial capability.
  • Block 24 represents a combination type CRT that is used both for display and in conjunction with the operator/engineer keyboard console requirements which are shown by numeral 25.
  • the block 26 represents interfacing circuits providing translation and adaption equipment required to pass information from the subject system to other data systems.
  • FIG. 1 permits the functioning as will be described in detail hereinbelow.
  • the logging system included in the system of the present invention is designed for use with page oriented printers.
  • An example of the printer output format for a page is shown in FIG. 2.
  • each of the system logs is identified by a unique number indicated at numeral 30 as Log 66," and a log constitutes a group of data associated with such log.
  • Each numbered log has associated therewith an English identification indicated at 31, which is assigned from changeable programmer input equipment and from an on-line change or compiling system.
  • This English identification i.e., Turbine Inlet Conditions, is printed on each page in the log.
  • Each log is made up of a series of pages, such as up to 10 pages, with each page containing a multiplicity of system variables, such as 16.
  • the corners of the page define the log number 66 and page number 1 as 66/ l
  • Each system variable in the page has a capacity of, for example, 40 lines of time-sequenced or other readings.
  • each page includes heading and data identification information for each variable assigned to that page in accordance with the sample shown in FIG. 2.
  • the page 1 of each log may include as one system variable the time of the data on that line.
  • the logs can be assigned at repeat collection frequencies extending, for example, from one second to one day.
  • the system specifies an organized naming system for system variables that is constant throughout thereby simplifying the task of selecting and requesting information from the system.
  • the system provides a method of grouping associated operating information, which is organized on the basis of functional lists, referred to herein as Log pages, so that simple requests will generate all associated information.
  • the Log page lists can be easily created by non-computer trained personnel and modified by the plant operators and engineers.
  • the logging system is organized so that hard copy is generated on a page at a time log output, thereby making effective use of non-impact low maintenance printers.
  • the page oriented logging system permits continual acquisition of desired log data with the option to receive the latest page or pages of data upon demand or upon the occurrence of a predefined event.
  • a Log Trend CRT can be used to trend information on the screen of one or more points in any active log or logs.
  • a trend information display can be initiated by the demand panel to display trend information such as, identifying heading, Pen ID, Point ID, English identification, quality, present value, present engineering units, scales, and others.
  • the request for Trend Pen Recording and for CRT log trend display can be generated and controlled from the operators panels. All points assigned to the operators recorders can be identified and the current value displayed in a specified format on the Trend Information CRT. It is noted that the CRT display of log output data can be used for outputting as an addition to or substitute for a log page printer.
  • the page oriented printed format according to the present invention comprises a given log content in a full page of information with several points of information located on one line for a given time.
  • a request by a user for a given log will provide a page of printed information with the present log time and the previous 30 or 40 log lines of information for the same log.
  • This is contrasted with some prior art logging formats which print out substantially a different log on each successive line intermingling unrelated sets of information with one another.
  • the logging format makes it more practical to have a larger quantity of information in storage in memory such as the names, the addresses or location in memory and the contents or value of the names in memory.
  • the amount of information contained in memory will depend to a great extent on the trade-off between the amount of memory available as against the processing time limitations.
  • the memory comprises a pool of pages of information with each page of information similar in content to the data to be printed out on the printer for a given log.
  • the data in memory can be assembled to a lesser degree than that described above in which case processing and assembling of the data into final form for a page will be required.
  • a printer may typically accommodate 16 columns of information. Since many of the logs contain more than 16 items of information at a given time, then the pages of print are arranged in a fashion to accommodate a large number of columns of information for a given log, such as 160 columns of information. In this example, 10 pages of print will be arranged in a strip in series, with each page comprising I6 columns of print for the same log all on a time synchronized basis.
  • page I may contain data values for a first 16 names or points of information at various times indicated
  • page 2 will contain data points 17 through 32 taken at the same time as the data on page I
  • page 3 will contain information for points 33 through 48, etc.
  • the heading on a given page need not be changed for each line on such page since each of the page lines contains data associated with the points or names in the heading at the columns on the top of the page.
  • the system includes a naming scheme such that related items have one unique basic or root name throughout the system.
  • the root name and suffixes are also referred to as point identification or ID number. All references to a point by the operator and the source language programs use the basic name plus any desired suffixes.
  • a basic name can have the form:
  • All analog and digital type variables are stored in the computer memory with a qaulity code associated with the value which is, for example, in range of 0 through 3.
  • the quality code is generated along with the value and is always propagated through transforms and calculations. Data quality levels can vary between the numbers 0 and 3 where the 0 represents good data quality and the 3 represents bad data quality. All printed or displayed messages are adapted for including a quality identifier along with the value.
  • each log may be in one of the following four states.
  • Every log carries with it a built in trigger, i.e., IF statement which is selected by the operatorby, for example, activating log 44" if Dl03 (pump contacts) go off and if an analog value goes above a certain defined state or value, or system activity previously determined or changes of quality.
  • IF statement which is selected by the operatorby, for example, activating log 44" if Dl03 (pump contacts) go off and if an analog value goes above a certain defined state or value, or system activity previously determined or changes of quality.
  • the Free (Undefined) Log State 0 represents the log number without labels in the log and without page assignment.
  • the Free Log State 0 is a log number list without names.
  • the Defined (Inactive) Log State 1 includes names.
  • the Active (gathering but Non-printing) Log State 2 includes both names and values at specified time intervals of collection.
  • the outputting (gathering and Active Printing) Log State 3 includes not only names and values but is outputting as well as collecting.
  • the log has some system variables assigned to its columns but it is not gathering or printing. Logs are moved from the Free State to the Defined State by panel function and/or the on-line background complier. As the log is Defined, the Operator designates the column and the ID of the system variable assigned to that column. Column number in excess of 16 causes the system to automatically utilize additional page(s), and the mechanism continues for multiples of l6 up to 10 pages. Logs with high collection/printing frequency require 2 memory pages per log page to provide time to print. The Operator can insert blank col- .umns for formatting as he desires.
  • a request to print or report a Defined Log shall cause the standard log headings, "variable heading, and one line of the latest available value of the corresponding system variables. All of this is printed on a Page basis by the printer associated with the requesting panel, unless a different printer is requested or is automatically substituted by the system itself.
  • a Defined Log may be moved-to the Active State by either panel function or change of state to a prescribed direction of a flag bit set by an event triggered program.
  • a collection frequency is specified either by the panel function or the initiating program or the previously designated frequency if a new one is not supplied. In the event of a conflict, the program prevails.
  • the Active State causes the logging system to collect the values associated with the system variables contained in its page list(s) at the respective frequency defined for the owning log. As this data is collected it is written to the system drum/- disc (secondary) memory.
  • Each log page contains, for example, enough storage to provide heading information and forty lines of data. Output has a total of 52 lines of 132 characters/line.
  • the state change from Active to Outputting is initiated by panel function or by prescribed direction change of state of a second Flag bit.
  • the present contents of the log is immediately printed, and each new Page of data (40 lines) is automatically printed until the panel function requesting outputting is cancelled.
  • the digital action program controlling the print determines both the number of readings to be taken before printing is initiated and the duration of the printing. In any case, where printing is initiated by event or event delayed, the time of the initiating event will be stored as a line of data in Column 1, and asterisks written into that corresponding line for all other columns of that line. All logs with event triggering are capable of manual triggering with or without delay to print.
  • Pages to be assigned for logging can be taken from a system pool of 280 pages. Assuming that the logs described previously are numbered l-99, this pool includes the Pages for Series logs as well as Special Logs.
  • Series 100 logs includes:
  • Tabularized log 101 which is the formal log of up to 10 Pages;
  • Every log has the ability to take on the above defined four states and to move forward and backwards within such four states as shown in the arrows interconnecting the blocks.
  • no programmer is needed on call since the program in operation is under the full control of the plant operator or user.
  • analog type variables consist of points having values represented by more than one bit plus quality.
  • Analog type variables include analog inputs, constants which are generated by the program or entered via the operators panel, fast calculations, performance calculations, common variables and others.
  • Boolean type variables consist of points having values represented by one bit plus quality and include variables such as digital inputs, relay outputs and boolean bits (flags).
  • Reference variables provide memory location identification and include memory locations in core or drum/disc for the purpose of references to the contents of those locations.
  • the logging system can be used to provide both tabular data and graphic or curve representations of the system variables.
  • the curve representations are generally used where the logging system is in the active state and the data is moving rapidly or has just gone into alarm status.
  • the system is programmed to produce curve vectors to define the various operations.
  • the system finds the desired information via the log lists and produces a log trend of the 'point at the present time and during the period of 40 logged readings preceeding the present time, such as for the last 40 seconds or 20 minutes, etc.
  • the generation of a log trend for a point is, therefore, made of a system which can be characterized as an on line real time system.
  • the system includes a log trend CRT display which can show trends of up to four points, for example, in

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Debugging And Monitoring (AREA)
US00308770A 1972-11-22 1972-11-22 Monitor and results computer system Expired - Lifetime US3855456A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00308770A US3855456A (en) 1972-11-22 1972-11-22 Monitor and results computer system
CA186,164A CA1003520A (en) 1972-11-22 1973-11-19 Monitor and results computer system
GB5369473A GB1456526A (en) 1972-11-22 1973-11-19 Monitor system
IE2103/73A IE38529B1 (en) 1972-11-22 1973-11-20 Monitor system
AU62777/73A AU478629B2 (en) 1972-11-22 1973-11-21 Display device
DE2358007A DE2358007A1 (de) 1972-11-22 1973-11-21 Ueberwachungs- und ergebniscomputersystem
JP48130824A JPS501627A (enrdf_load_stackoverflow) 1972-11-22 1973-11-22
US475987A US3927308A (en) 1972-11-22 1974-06-03 Monitor and results computer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00308770A US3855456A (en) 1972-11-22 1972-11-22 Monitor and results computer system

Publications (1)

Publication Number Publication Date
US3855456A true US3855456A (en) 1974-12-17

Family

ID=23195324

Family Applications (1)

Application Number Title Priority Date Filing Date
US00308770A Expired - Lifetime US3855456A (en) 1972-11-22 1972-11-22 Monitor and results computer system

Country Status (6)

Country Link
US (1) US3855456A (enrdf_load_stackoverflow)
JP (1) JPS501627A (enrdf_load_stackoverflow)
CA (1) CA1003520A (enrdf_load_stackoverflow)
DE (1) DE2358007A1 (enrdf_load_stackoverflow)
GB (1) GB1456526A (enrdf_load_stackoverflow)
IE (1) IE38529B1 (enrdf_load_stackoverflow)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071898A (en) * 1976-06-14 1978-01-31 Sun Shipbuilding & Dry Dock Company Ship performance analyzer
US4100542A (en) * 1973-01-02 1978-07-11 May & Baker Limited Measuring system
US4138669A (en) * 1974-05-03 1979-02-06 Compagnie Francaise des Petroles "TOTAL" Remote monitoring and controlling system for subsea oil/gas production equipment
US4141006A (en) * 1976-07-14 1979-02-20 Braxton Kenneth J Security system for centralized monitoring and selective reporting of remote alarm conditions
US4163224A (en) * 1976-02-27 1979-07-31 Hochiki Corporation Display device with memory
US4218737A (en) * 1977-08-30 1980-08-19 The United States Of America As Represented By The Secretary Of The Army Revenue metering system for power companies
US4414633A (en) * 1980-11-17 1983-11-08 British Gas Corporation Data processing and recording apparatus
US4418395A (en) * 1979-03-28 1983-11-29 Tokyo Shibaura Denki Kabushiki Kaisha Digital data processing system with a value setting unit for protecting and controlling an electric power system
US4551718A (en) * 1983-06-24 1985-11-05 Tetragenics, Inc. Method and apparatus for transmitting status information between remote locations
US4758823A (en) * 1986-01-22 1988-07-19 Yves Berruyer System for protecting a group of locations of a network by anticipating vandalism
US4879541A (en) * 1982-04-07 1989-11-07 Motorola, Inc. Supervisory control system
US5184329A (en) * 1990-06-29 1993-02-02 Institut Francais De Petrole Method and device for optimizing the triggering of an array of marine seismic sources
US5384713A (en) * 1991-10-23 1995-01-24 Lecroy Corp Apparatus and method for acquiring and detecting stale data
US20020099522A1 (en) * 2001-01-25 2002-07-25 Tsuneo Sakamoto Method and system for inspecting thermal equipment
US20040141201A1 (en) * 2002-12-04 2004-07-22 Toshihiro Shima Device management method
US7043727B2 (en) 2001-06-08 2006-05-09 Micromuse Ltd. Method and system for efficient distribution of network event data
US20070255823A1 (en) * 2006-05-01 2007-11-01 International Business Machines Corporation Method for low-overhead message tracking in a distributed messaging system
US7363368B2 (en) 2001-12-24 2008-04-22 International Business Machines Corporation System and method for transaction recording and playback
US7383191B1 (en) 2000-11-28 2008-06-03 International Business Machines Corporation Method and system for predicting causes of network service outages using time domain correlation
US20080183433A1 (en) * 2007-01-30 2008-07-31 The Regents Of The University Of California Detection and quantification system for monitoring instruments
US7423979B2 (en) 2001-05-18 2008-09-09 International Business Machines Corporation Method and system for determining network characteristics using routing protocols
US7516208B1 (en) 2001-07-20 2009-04-07 International Business Machines Corporation Event database management method and system for network event reporting system
US20090277644A1 (en) * 2008-05-09 2009-11-12 Mcstay Daniel Method and apparatus for christmas tree condition monitoring
US20100051286A1 (en) * 2008-09-04 2010-03-04 Mcstay Daniel Optical sensing system for wellhead equipment
US8296412B2 (en) 2000-01-03 2012-10-23 International Business Machines Corporation Method and system for event impact analysis
US20160170919A1 (en) * 2014-12-15 2016-06-16 Advanced Micro Devices, Inc. Traffic rate control for inter-class data migration in a multiclass memory system
US9996475B2 (en) * 2004-07-30 2018-06-12 Intel Corporation Maintaining processor resources during architectural events

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143847A (en) * 1975-06-05 1976-12-10 Tokyo Electric Power Co Inc:The Data processing apparatus
IT1160818B (it) * 1983-03-22 1987-03-11 Rockwell Rimoldi Spa Strumento di elaborazione dei dati man mano rilevati con esecuzione automatica della carta di controllo per media (x) ed escursione (w)
JPS6046416A (ja) * 1983-08-24 1985-03-13 Shimadzu Corp 多点記録計
TWI787893B (zh) * 2021-06-30 2022-12-21 鍾國誠 用於控制可變物理參數的功能裝置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625812A (en) * 1968-12-18 1971-12-07 Beloit Corp Presize moisture control system for a papermaking machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091756A (en) * 1958-01-06 1963-05-28 Industrial Nucleonics Corp Process variance logging and limit alarm system
US3324458A (en) * 1964-05-18 1967-06-06 Bunker Ramo Monitoring apparatus
US3551885A (en) * 1968-01-18 1970-12-29 Honeywell Inc Validity apparatus for computer based process control equipment
US3585603A (en) * 1968-07-16 1971-06-15 Leeds & Northrup Co Computer trend recorder
US3676878A (en) * 1968-10-14 1972-07-11 Riley Co The Variable monitoring system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625812A (en) * 1968-12-18 1971-12-07 Beloit Corp Presize moisture control system for a papermaking machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E. B. Turner et al., Industrial Computers for Tank Farm Inventory Control, in Elect. Engg., May 1960, p. 390 393. *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100542A (en) * 1973-01-02 1978-07-11 May & Baker Limited Measuring system
US4138669A (en) * 1974-05-03 1979-02-06 Compagnie Francaise des Petroles "TOTAL" Remote monitoring and controlling system for subsea oil/gas production equipment
US4163224A (en) * 1976-02-27 1979-07-31 Hochiki Corporation Display device with memory
US4071898A (en) * 1976-06-14 1978-01-31 Sun Shipbuilding & Dry Dock Company Ship performance analyzer
US4141006A (en) * 1976-07-14 1979-02-20 Braxton Kenneth J Security system for centralized monitoring and selective reporting of remote alarm conditions
US4218737A (en) * 1977-08-30 1980-08-19 The United States Of America As Represented By The Secretary Of The Army Revenue metering system for power companies
US4418395A (en) * 1979-03-28 1983-11-29 Tokyo Shibaura Denki Kabushiki Kaisha Digital data processing system with a value setting unit for protecting and controlling an electric power system
US4414633A (en) * 1980-11-17 1983-11-08 British Gas Corporation Data processing and recording apparatus
US4879541A (en) * 1982-04-07 1989-11-07 Motorola, Inc. Supervisory control system
US4551718A (en) * 1983-06-24 1985-11-05 Tetragenics, Inc. Method and apparatus for transmitting status information between remote locations
US4758823A (en) * 1986-01-22 1988-07-19 Yves Berruyer System for protecting a group of locations of a network by anticipating vandalism
US5184329A (en) * 1990-06-29 1993-02-02 Institut Francais De Petrole Method and device for optimizing the triggering of an array of marine seismic sources
US5384713A (en) * 1991-10-23 1995-01-24 Lecroy Corp Apparatus and method for acquiring and detecting stale data
US8296412B2 (en) 2000-01-03 2012-10-23 International Business Machines Corporation Method and system for event impact analysis
US7383191B1 (en) 2000-11-28 2008-06-03 International Business Machines Corporation Method and system for predicting causes of network service outages using time domain correlation
US20020099522A1 (en) * 2001-01-25 2002-07-25 Tsuneo Sakamoto Method and system for inspecting thermal equipment
US6823290B2 (en) * 2001-01-25 2004-11-23 Miura Co., Ltd. Method and system for inspecting thermal equipment
US7423979B2 (en) 2001-05-18 2008-09-09 International Business Machines Corporation Method and system for determining network characteristics using routing protocols
US7043727B2 (en) 2001-06-08 2006-05-09 Micromuse Ltd. Method and system for efficient distribution of network event data
US7516208B1 (en) 2001-07-20 2009-04-07 International Business Machines Corporation Event database management method and system for network event reporting system
US7363368B2 (en) 2001-12-24 2008-04-22 International Business Machines Corporation System and method for transaction recording and playback
US20040141201A1 (en) * 2002-12-04 2004-07-22 Toshihiro Shima Device management method
EP1427135A3 (en) * 2002-12-04 2005-12-07 Seiko Epson Corporation Device management method
US10740249B2 (en) * 2004-07-30 2020-08-11 Intel Corporation Maintaining processor resources during architectural events
US10303620B2 (en) 2004-07-30 2019-05-28 Intel Corporation Maintaining processor resources during architectural events
US9996475B2 (en) * 2004-07-30 2018-06-12 Intel Corporation Maintaining processor resources during architectural events
US20070255823A1 (en) * 2006-05-01 2007-11-01 International Business Machines Corporation Method for low-overhead message tracking in a distributed messaging system
US7412356B1 (en) * 2007-01-30 2008-08-12 Lawrence Livermore National Security, Llc Detection and quantification system for monitoring instruments
US20080183433A1 (en) * 2007-01-30 2008-07-31 The Regents Of The University Of California Detection and quantification system for monitoring instruments
US7967066B2 (en) * 2008-05-09 2011-06-28 Fmc Technologies, Inc. Method and apparatus for Christmas tree condition monitoring
US20090277644A1 (en) * 2008-05-09 2009-11-12 Mcstay Daniel Method and apparatus for christmas tree condition monitoring
US7845404B2 (en) 2008-09-04 2010-12-07 Fmc Technologies, Inc. Optical sensing system for wellhead equipment
US20100051286A1 (en) * 2008-09-04 2010-03-04 Mcstay Daniel Optical sensing system for wellhead equipment
US20160170919A1 (en) * 2014-12-15 2016-06-16 Advanced Micro Devices, Inc. Traffic rate control for inter-class data migration in a multiclass memory system
US9916265B2 (en) * 2014-12-15 2018-03-13 Advanced Micro Device, Inc. Traffic rate control for inter-class data migration in a multiclass memory system

Also Published As

Publication number Publication date
IE38529L (en) 1974-05-22
GB1456526A (en) 1976-11-24
IE38529B1 (en) 1978-03-29
CA1003520A (en) 1977-01-11
JPS501627A (enrdf_load_stackoverflow) 1975-01-09
AU6277773A (en) 1975-05-22
DE2358007A1 (de) 1974-05-30

Similar Documents

Publication Publication Date Title
US3855456A (en) Monitor and results computer system
US4718025A (en) Computer management control system
US4853888A (en) Programmable multifunction keyboard
US4303973A (en) Industrial process control system
AU720822B2 (en) Analog spectrum display for environmental control
US4281379A (en) Computer driven control system for a numerically controlled machine tool
US4703414A (en) Programmable controller
US3927308A (en) Monitor and results computer system
ES8308521A1 (es) "perfeccionamientos introducidos en una maquina para la formacion de articulos de vidrio".
GB1592907A (en) Industrial process control system
EP0097444A3 (en) Ladder diagram display method
EP0498453B1 (en) Programmable controller with independent display
JPH06103518B2 (ja) 警報表示方法
JPH03118642A (ja) 情報処理システムにロードされたプログラムの実行を観測する方法及び装置
JPS6338758B2 (enrdf_load_stackoverflow)
Schmidt Input and Output
St. Johnston A method of using a general-purpose computer in an on-line time sharing application
JPS61128328A (ja) 自動表示画面記録装置
US5379377A (en) Display system providing a raster image of a physical system with its changeable operating parameters displayed in related locations adjacent to the image of the physical system
JPS5740683A (en) Digital type electronic watch
NO860005L (no) Energiteller-maalesystem.
Henzel Some industrial applications of minicomputers
JPS6180499A (ja) 観測デ−タ処理装置
Surendar et al. Use of computers for operator information systems and controls in Indian nuclear power plants
Poenitz et al. On-line computer facility and operating system COSACS at the ANL fast neutron generator