US3850574A - Atmospheric furnace apparatus - Google Patents
Atmospheric furnace apparatus Download PDFInfo
- Publication number
- US3850574A US3850574A US00349323A US34932373A US3850574A US 3850574 A US3850574 A US 3850574A US 00349323 A US00349323 A US 00349323A US 34932373 A US34932373 A US 34932373A US 3850574 A US3850574 A US 3850574A
- Authority
- US
- United States
- Prior art keywords
- gas
- furnace
- gas inlet
- inlet
- atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 claims abstract description 139
- 238000005255 carburizing Methods 0.000 claims abstract description 13
- 238000005256 carbonitriding Methods 0.000 claims abstract description 8
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 5
- 239000010959 steel Substances 0.000 claims abstract description 5
- 238000011282 treatment Methods 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- 235000012501 ammonium carbonate Nutrition 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/767—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
Definitions
- the invention relates to a gas atmosphericfurnace and more particularly to a heat treatment furnace having improved gas inlets.
- Gas carburizing processes and gas carbonitriding processes are now well known in the art of case hardening of steel articles.
- a carburizing gas including natural gas or propane gas is fedinto a heat treatment furnace which is hermetically sealed for carburizing an article to be treated under heat within the atmosphere.
- Gas carbonitriding process invloves heating in a gas atmosphere which comprises the carburizing gas to which is added ammonia gas, and has been developed recently as demonstrated by the disclosure in British Pat. No. 1,034,157 published June 29, 1966.
- furnaces have been used with the gas carburizing and gas carbonitriding treatments, and recently a continuous furnace also finds its application in these treatments.
- These furnaces generally include a heating element disposed therein along the opposite side walls and the base, with a fan mounted on the celling.
- An atmosphere gas is introduced in a horizontal direction toward, the blades of the fan through the fur-- nace wall.
- the fan stirs the atmosphere gas supplied through the gas inlet while the resulting forced circulation enables heat from the heating element to be conveyed throughoutthe space within the furnace.
- an object of the invention to provide an atmospheric furnace having improved gas inlets capable of feeding an atmosphere gas toward a stirring fan in a manner which avoids a directional flow of the gas.
- the atmospheric furnace comprises a gas inlet which opens into the furnace from a passageway formed along and around the shaft of a fan.
- the passageway communicated with a source of gas through a guide pipe.
- separatev guide pipes are provided to conduct the respective gases independently and communicate with the passageway.
- the atmosphere gas fed into the furnace through the gas inlet if diffused as the fan rotates, thereby preventing a directional flow.
- the fan and its shaft are directly exposed to the flow of the atmosphere gas directed from the guide pipe into the passageway, but the gas in this area is under normal temperature and hence provides a cooling function, which is highly effective to prevent corrosion of these parts by hot atmosphere gas.
- FIG. 1 is a fragmentary section of the atmospheric furnace according to the invention.
- FIG. 2 is a fragmentarysection of a modified annospheric furnace of the invention.
- FIG. 3 is a perspective view of a gas flow deflector shown in FIG. 1.
- the furnace constructed in accordance with the invention is shown in a cross section through a plane which extends vertically through the center of the fan and viewing toward the discharge opening of an article being treated. While the fumace is illustrated as one used for batch operation, it should be understood that the invention is not limited to such furnace, but is equally applicable to a continuous furnace. Indeed, the illustrated furnace portion may be taken as representing one zone such as a carburizing zone of a continuous furnace.
- the furnace is generally shown at l and is of conventional design in that it comprises a side wall la, ceiling lb and base 1c, all of which are formed of refractory brick and which are externally covered with a shaped body 2.
- a plurality of mounts 5 formed of refractory brick are arranged on the base 10 in an array along mutually perp'endicular axes, with a constant spacing between adjacent mounts, and are adapted to carry an article to be treated thereon within the space 7 of the furnace.
- skid rails not shown in the drawings are provided and guide a tray 16 on which is placed a basket 17 mounting the article being treated.
- the heat source of an atmospheric furnace usually comprises an electrical heating element, which in the present example is shown at 6a and 6b positioned along the opposite side walls la and the base 1c of the furnace.
- the heating elements 6b are located intermediate adjacent rows or columns of the mounts 5. While the invention is not lirnitedto any particular construction and lay-out of the electrical heating elements, their arrangement shown is most customary and is known to be desirable.
- a fan 8 is mounted on the ceiling 1b so as to have its shaft 9 extending therethrough to be connected with an external electric motor 11.
- a refractory seal 10 is provided around the shaft 9 between the shell 4 and the motor housing.
- a gas inlet passage way 12 is formed around and along the shaft 9 of the fan, and opens into the space 7 at its one end, while its other end is blocked by the refractory seal 10.
- a gas supply system 21 is connected with a guide pipe 13a including a gas seal 14a and which is connected with the inlet passage way 12.
- the atmosphere gas at normal temperature has a cooling effect on the fan 8 and the shaft 9 thereof, which effect prevents corrosion of the parts upon being heated to high temperatures and results in reduced durability of these parts from occurring.
- the atmosphere gas introduced into the furnace 7 through the gas inlet 12 is exhausted through suitably located outlets, which in the present example are shown at 15, adjacent to the discharge opening of the article being treated.
- the fluid resistance presented by the heating elements 6 and the loaction of the gas outlets 15 must be deliberately taken into consideration when determining the gas flow, but in the atmospheric furnace of the invention, the uniform diffusion afforded by the fan 8 causes the atmosphere gas to flow toward the base 1c generally in a helical pattern. As a consequence, the speed of flow reduces as the base 1c is approached,
- the second gas inlet 20 may directly open into the space 7 of the furnace, but preferably is provided with a gas flow deflector 18 at its inner end. As shown in FIG. 3, the deflector 18 has a notch 19 opening in a particular direction. This enables cold gas to be directed to a desired location for recovering the thermal balance within the furnace.
- FIG. 2 shows a gas inlet arrangement useful in a carbonitriding furnace for mixing more than one .gas therein.
- Like parts as in FIG. 1 are represented by corresponding reference characters.
- the reference characters 13b and 14b, not appearing in FIG. 1, represent an additional guide pipe and an additional gas seal, respectively.
- the arrangement is essentially the same as in FIG. l,'except that a pair of guide pipes 13a and 13b are provided, which are connected with the gas inlet passage way 12 for introducing different gases, for example, carburing gas and ammonia gas, into the furnace.
- the mixing of these gases at normal temperature involves difficulties because of formation of ammonium carbonate, which are readily avoided by providing the common gas inlet 12 in the furnace.
- the inlet passage way 12 can be maintained above the temperature at which formation of crystals of ammonium carbonate sphere gas introduced by said first gas inlet, said first gas inlet leading into a passageway formed along and around the shaft of the fan, and a second gas inlet located on the opposite side of the furnace from the first gas inlet, ,said second gas inlet introducing an atmosphere gas of normal temperature to cool the then relatively elevated gas adjacent the second gas inlet to thus maintain an even temperature of the gases within the furnace.
- a gas atmospheric furnace according to. claim 1 further including a guide pipe connected with the passage way for conducting the atmosphere gas from the first gas inlet therethrough to the passage way.
- a gas atmospheric furnace according to claim 1 in which said second gas inlet is connected with a gas supply system through a flow rate control valve.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Furnace Details (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Tunnel Furnaces (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP47034917A JPS5147128B2 (enrdf_load_stackoverflow) | 1972-04-07 | 1972-04-07 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3850574A true US3850574A (en) | 1974-11-26 |
Family
ID=12427557
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00349323A Expired - Lifetime US3850574A (en) | 1972-04-07 | 1973-04-09 | Atmospheric furnace apparatus |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US3850574A (enrdf_load_stackoverflow) |
| JP (1) | JPS5147128B2 (enrdf_load_stackoverflow) |
| DE (1) | DE2317769C3 (enrdf_load_stackoverflow) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4086050A (en) * | 1975-01-15 | 1978-04-25 | Ipsen Industries International | Method and apparatus for gas circulation in a heat treating furnace |
| US4770630A (en) * | 1986-08-23 | 1988-09-13 | Toray Industries, Inc. | Heat treatment apparatus |
| US5224857A (en) * | 1991-08-01 | 1993-07-06 | Gas Research Institute | Radiant tube arrangement for high temperature, industrial heat treat furnace |
| US20160052786A1 (en) * | 2014-08-25 | 2016-02-25 | Sunshine Pv Corporation | Heat treatment method and the product prepared therefrom |
| US10365043B2 (en) * | 2015-04-24 | 2019-07-30 | Koyo Thermo Systems Co., Ltd. | Stirring fan for heat treatment apparatus, and heat treatment apparatus including the same |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS53125915A (en) * | 1977-04-11 | 1978-11-02 | Tokyo Netsu Shiyori Kougiyou K | Homogenous treating method and apparatus |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2039429A (en) * | 1931-04-16 | 1936-05-05 | Lydon Timothy | Oven and the like with heat circulating means therefor |
| US2152154A (en) * | 1935-01-19 | 1939-03-28 | Birmingham Electr Furnaces Ltd | Method of and apparatus for the heat treatment of metals and alloys |
| US2283982A (en) * | 1939-10-07 | 1942-05-26 | Westinghouse Electric & Mfg Co | Bell type annealing furnace |
| US2869848A (en) * | 1954-04-09 | 1959-01-20 | British Celanese | Filamentary material |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2276614A (en) * | 1941-03-13 | 1942-03-17 | Herbert L Grapp | Cooling device |
-
1972
- 1972-04-07 JP JP47034917A patent/JPS5147128B2/ja not_active Expired
-
1973
- 1973-04-09 DE DE2317769A patent/DE2317769C3/de not_active Expired
- 1973-04-09 US US00349323A patent/US3850574A/en not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2039429A (en) * | 1931-04-16 | 1936-05-05 | Lydon Timothy | Oven and the like with heat circulating means therefor |
| US2152154A (en) * | 1935-01-19 | 1939-03-28 | Birmingham Electr Furnaces Ltd | Method of and apparatus for the heat treatment of metals and alloys |
| US2283982A (en) * | 1939-10-07 | 1942-05-26 | Westinghouse Electric & Mfg Co | Bell type annealing furnace |
| US2869848A (en) * | 1954-04-09 | 1959-01-20 | British Celanese | Filamentary material |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4086050A (en) * | 1975-01-15 | 1978-04-25 | Ipsen Industries International | Method and apparatus for gas circulation in a heat treating furnace |
| US4770630A (en) * | 1986-08-23 | 1988-09-13 | Toray Industries, Inc. | Heat treatment apparatus |
| US5224857A (en) * | 1991-08-01 | 1993-07-06 | Gas Research Institute | Radiant tube arrangement for high temperature, industrial heat treat furnace |
| US20160052786A1 (en) * | 2014-08-25 | 2016-02-25 | Sunshine Pv Corporation | Heat treatment method and the product prepared therefrom |
| US10053364B2 (en) * | 2014-08-25 | 2018-08-21 | Sunshine Pv Corporation | Heat treatment method and the product prepared therefrom |
| US10365043B2 (en) * | 2015-04-24 | 2019-07-30 | Koyo Thermo Systems Co., Ltd. | Stirring fan for heat treatment apparatus, and heat treatment apparatus including the same |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2317769A1 (de) | 1973-10-18 |
| DE2317769B2 (de) | 1976-10-28 |
| JPS5147128B2 (enrdf_load_stackoverflow) | 1976-12-13 |
| JPS48102013A (enrdf_load_stackoverflow) | 1973-12-21 |
| DE2317769C3 (de) | 1982-05-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA1291332C (en) | Rotary hearth multi-chamber, multi-purpose furnace system | |
| US4294436A (en) | Furnace with protective atmosphere for heating metals | |
| US3565410A (en) | Vacuum furnace | |
| US3850574A (en) | Atmospheric furnace apparatus | |
| US1949716A (en) | Method of and apparatus for heattreating | |
| US4823480A (en) | Semiconductor heat-treating apparatus | |
| JPH05196365A (ja) | 熱処理炉装置 | |
| US3542349A (en) | Radiation-type heating furnace with atmosphere regulation | |
| JP3017303B2 (ja) | 熱処理装置 | |
| US4016011A (en) | Method for heat treatment of high alloy steel in a nonexplosive atmosphere | |
| JP2586480B2 (ja) | 真空熱処理炉 | |
| US3904355A (en) | Atmosphere isolating means in a continuous-type furnace | |
| KR101119497B1 (ko) | 가스 순환장치를 구비한 열처리로 | |
| JP2895042B1 (ja) | 炉内雰囲気循環式熱処理炉 | |
| US3279774A (en) | Annealing furnace | |
| US2917299A (en) | Apparatus for convection heating | |
| JPH093533A (ja) | 熱処理用加熱室冷却装置 | |
| US2237966A (en) | Heat treating apparatus | |
| EP0408325B1 (en) | Catalytic agitators for the modification of furnace atmospheres | |
| JP4340849B2 (ja) | トンネル状連続炉における冷却方法と冷却室 | |
| US3360252A (en) | Furnace construction having step-by-step gravitational feed | |
| RU2017860C1 (ru) | Способ газовой цементации крупногабаритных изделий | |
| US3811826A (en) | Diffusion furnace process tube | |
| JPH02274821A (ja) | 連続熱処理炉の雰囲気ガスの投入方法 | |
| KR940001345B1 (ko) | 철계금속의 열처리로 장치 |