US3849079A - Metallic materials based on martensitic steel - Google Patents
Metallic materials based on martensitic steel Download PDFInfo
- Publication number
- US3849079A US3849079A US00098237A US9823770A US3849079A US 3849079 A US3849079 A US 3849079A US 00098237 A US00098237 A US 00098237A US 9823770 A US9823770 A US 9823770A US 3849079 A US3849079 A US 3849079A
- Authority
- US
- United States
- Prior art keywords
- layers
- austenitic
- martensitic
- metallic material
- material according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000734 martensite Inorganic materials 0.000 title claims abstract description 41
- 239000007769 metal material Substances 0.000 title claims description 29
- 229910000831 Steel Inorganic materials 0.000 title claims description 16
- 239000010959 steel Substances 0.000 title claims description 16
- 239000000463 material Substances 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 230000007797 corrosion Effects 0.000 claims description 8
- 238000005260 corrosion Methods 0.000 claims description 8
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 55
- 239000002131 composite material Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910001240 Maraging steel Inorganic materials 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- -1 i.e. Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
- B23K20/227—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/011—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/923—Physical dimension
- Y10S428/924—Composite
- Y10S428/925—Relative dimension specified
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/923—Physical dimension
- Y10S428/924—Composite
- Y10S428/926—Thickness of individual layer specified
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12632—Four or more distinct components with alternate recurrence of each type component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12944—Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
- Y10T428/12965—Both containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12986—Adjacent functionally defined components
Definitions
- the invention relates to metallic materials based on martensitic steel, i.e., metallic materials constituted of a major portion of a steel of martensitic structure, the expression metallic material being taken here in a very general sense and including both semimanufactured products (sheet metal for example) and more fabricated products which have reached their final form from the industrial point of view (bars or tubes e.g.).
- the invention relates also to methods of manufacture of such metallic materials based on martensitic steel.
- Steels with martensitic structure, especially maraging" steels (generally containing nickel, cobalt and molybdenum, but no chromium), have high mechanical properties (breaking load capable of reaching 230 hec tobars), but, on the other hand, they are subject to corrosion phenomena by external agents and, especially, to the deleterious phenomenon of fragilization by hydrogen.
- stainless steels of chrome-nickel even materials based on a nickel, have, in the austenitic phase, an excellent resistance to corrosion but properties distinctly less, from the mechanical point of view, than the steels of martensitic structure.
- austenitic layer for convenience in the description, such a protective layer of austenitic structure will be denoted below by the expression austenitic layer, whether it relates to a stainless steel (especially chrome-nickel) or to a material based on nickel, even pure nickel.
- the metallic material according to the invention is 'a massive ferrous material constituted by a regular alteraverage thickness of the adjacent austenitic layers situated respectively on both sides of the martensitic layer concerned,'the massive metallic material thus constituted having, due to its mixed austeno-martensitic stratified structure with predominance of martensite by weight, on the one hand, high mechanical properties (breaking load greater than hectobars) due to the predominance of the martensitic phase hardenable by intermetallic precipitation, on the other hand, an excellent resistance to corrosion and especially to fragilization by hydrogen, this resistance in depth of the material resulting from the presence of successive diffusion barriers constituted by the austenitic layers, and, on the other hand lastly, the qualities inherent in stratified materials with rigid layers (martensitic layers) separated by ductile layers (austenitic layers. of which the ductility is approximately five times greater than that of the martensitic layers).
- the martensitic layers can all have a same thickness and the austenitic layers also a same thickness (less than the preceding one).
- each martensitic layer in the majority of cases, it would be convenient to attribute to each martensitic layer, as already indicated, a thickness equal to at least five times, and preferably of the order of ten times, the average thickness of the two austenitic layers situated on both sides of the martensitic layer concerned.
- the method according to the invention consists, with a view to obtaining the metallic material with alternated martensitic layers and austenitic layers which has just been considered,
- this hardening treatment being preferably of the type of conventional hardening methods for maraging steels (e.g. a treatment for three hours at 480C).
- FIG. 1 shows, in section with parts removed and with a considerable enlargement, a stratified composite sheet metal according to the invention.
- FIGS. 2 and 3 show, under the same conditions as FIG. 1, a stratified composite bar and tube according to the invention.
- the compositesheet metal illustrated in H0. 1 is formed of alternatedlayers of martensite M and austenite A. All the layers 'M have a same thickness E and all the layers A a same thickness e at least five times less than E and, preferably, of the order of one tenth of E.
- a composite sheet metal according to the invention can be obtained from a simple stack of sheets of maraging steel having a layer of nickel on their two faces.
- the outer surfaces of the sheet metal are preferably formed by austenitic layers, i.e., by the lay-- ers more adapted to resisting corrosion.
- FIG. 2 shows a bar or rod formed of alternated coaxial layers of martensite M and austenite A, the martensite being predominant from the weight point of view and the respective thicknesses E and e of the layers M and A being advantageously able to satisfy the dimensional criteria explained previously, in a general form, relative to the abovesaid thicknesses.
- Such a bar could be used for the reinforcement of concrete and, whatever its application, it would be advantageous to make it include an austenitic outer layer Al in order to protect it against corrosion by environmental agents.
- FIG. 3 finally, shows a tube formed of alternated coaxial layers of martensite M and of austenite A, the respective thicknesses E and e of the said layers being able, this time again, to satisfy the abovesaid dimensional criteria.
- Such tube could be suitable for channeling gas or destructive liquids under pressure and it would then be advantageous to make it include an inner wall A0 of austenitic structure, its outer wall Al being also able to be austenitic, especially if there is risk of destruction from the outside.
- the fields of application of the composite elements according to the invention are multiple and there can be mentioned, especially, the fields of aerospace technology and of chemical and nuclear engineering.
- Massive ferrous metallic material having high me chanical strength and resistance in depth of the material to hydrogen embrittlement consisting essentially of a regular alternation of a plurality of layers of martensitic steel and of layers of austenitic structure having a resistance to corrosion higher and a mechanical resistance lower than those of said martensitic steel, the thickness of each martensitic layer being of a magnitude equal to at least five times the average thickness of the adjacent austenitic layers situated respectively on both sides of the martensitic layer concerned.
- each of the martensitic layers have the same thickness and .each of the austenitic layers have the same thickness.
- Iron base material according to claim 1 wherein said layers of austenitic structure are of a material selected from the group consisting of Cr. Ni. austenitic steels, nickel and nickel-base alloys.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Heat Treatment Of Steel (AREA)
- Laminated Bodies (AREA)
- Heat Treatment Of Articles (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR6944094A FR2069985B1 (enrdf_load_stackoverflow) | 1969-12-19 | 1969-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3849079A true US3849079A (en) | 1974-11-19 |
Family
ID=9044855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00098237A Expired - Lifetime US3849079A (en) | 1969-12-19 | 1970-12-15 | Metallic materials based on martensitic steel |
Country Status (5)
Country | Link |
---|---|
US (1) | US3849079A (enrdf_load_stackoverflow) |
JP (1) | JPS5138667B1 (enrdf_load_stackoverflow) |
FR (1) | FR2069985B1 (enrdf_load_stackoverflow) |
GB (1) | GB1320239A (enrdf_load_stackoverflow) |
SE (1) | SE364523B (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4136231A (en) * | 1975-12-15 | 1979-01-23 | United Technologies Corporation | Sandwich panel fabrication |
US4414286A (en) * | 1981-04-02 | 1983-11-08 | Texas Instruments Incorporated | Composite thermostat metal |
US4819471A (en) * | 1986-10-31 | 1989-04-11 | Westinghouse Electric Corp. | Pilger die for tubing production |
US20110250465A1 (en) * | 2008-09-26 | 2011-10-13 | Andrei Evgenievich Rozen | Multilayer material with enhanced corrosion resistance (variants) and methods for preparing same |
US8221898B2 (en) | 2007-05-10 | 2012-07-17 | Thyssenkrupp Steel Europe Ag | Multi-layered composite part made of steel having optimized paint adhesion |
CN111760908A (zh) * | 2019-04-02 | 2020-10-13 | 中国科学院金属研究所 | 一种超薄极薄多层金属复合带材及其制备方法 |
CN115837466A (zh) * | 2022-12-07 | 2023-03-24 | 太原科技大学 | 奥氏体/马氏体不锈钢强韧性复合板的制备方法及复合板 |
EP4173818A4 (en) * | 2020-06-24 | 2023-12-20 | Baoshan Iron & Steel Co., Ltd. | MULTI-LAYER COMPOSITE COLD-ROLLED CERAMIC PLATE AND ASSOCIATED MANUFACTURING METHOD |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5662614A (en) * | 1979-10-24 | 1981-05-28 | Usui Internatl Ind Co Ltd | Thick-walled small-diameter superposed metal pipe material |
JPS57140643A (en) * | 1981-02-25 | 1982-08-31 | Kubota Ltd | Coated pipe for reactor subjected to pyrolysis and reforming of hydrocarbon |
WO1982003598A1 (en) * | 1981-04-10 | 1982-10-28 | Genrikh Vasilevich Novozhilov | Construction material |
JPS61286274A (ja) * | 1985-06-12 | 1986-12-16 | 日本碍子株式会社 | 金属・セラミツクス結合体およびその製造法 |
DE3668834D1 (de) * | 1986-02-21 | 1990-03-15 | Mannesmann Ag | Aus zwei schichten bestehendes korrosionsbestaendiges rohr oder dergleichen behaelter. |
DE4141938A1 (de) * | 1991-12-19 | 1993-06-24 | Emitec Emissionstechnologie | Plattiertes stahlblech |
CN111760909B (zh) * | 2019-04-02 | 2021-12-10 | 中国科学院金属研究所 | 一种抗高速冲击多层金属复合材料及其制备方法 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2048276A (en) * | 1932-04-21 | 1936-07-21 | Bruno S Teschner | Plated metal having carbide surface |
US2133293A (en) * | 1934-04-12 | 1938-10-18 | Gordon Frederick Felix | Manufacture of compound metal bodies |
US2226403A (en) * | 1938-07-23 | 1940-12-24 | Robert K Hopkins | Manufacture of veneered articles |
US2258564A (en) * | 1940-03-11 | 1941-10-07 | Armstrong | Stainless clad pierced tubes |
US2472320A (en) * | 1941-02-05 | 1949-06-07 | Ford Motor Co | Method of heat-treating steel |
US2544335A (en) * | 1948-02-25 | 1951-03-06 | Armco Steel Corp | Welding method and product |
US2921877A (en) * | 1958-03-13 | 1960-01-19 | David Craven | Process of chromizing air hardening tool steel |
US3071981A (en) * | 1959-07-16 | 1963-01-08 | Sedis Transmissions Mec | Roller for transmission chain and the method of producing said roller |
US3073015A (en) * | 1960-05-16 | 1963-01-15 | Chromalloy Corp | Diffusion coating of metals |
US3093556A (en) * | 1961-06-13 | 1963-06-11 | Amchem S A | Electro-depositing stainless steel coatings on metal surfaces |
US3148954A (en) * | 1960-06-13 | 1964-09-15 | Haas Irene | Turbine blade construction |
US3232853A (en) * | 1962-03-05 | 1966-02-01 | Gen Electric | Corrosion resistant chromide coating |
US3240572A (en) * | 1962-02-16 | 1966-03-15 | Bbc Brown Boveri & Cie | Protective coating for metals and method of making the same |
US3325259A (en) * | 1964-05-13 | 1967-06-13 | Bethlehem Steel Corp | Ferrous base with nickel-iron coating |
US3343928A (en) * | 1965-10-15 | 1967-09-26 | Du Pont | Ferrous substrate having an iron-chromium-aluminum alloy coating thereon |
US3357868A (en) * | 1964-11-17 | 1967-12-12 | Armco Steel Corp | Stainless steel and method |
US3359083A (en) * | 1965-06-14 | 1967-12-19 | Herbert L Leichter | Composite structural metal members with improved fracture toughness |
US3511283A (en) * | 1966-08-26 | 1970-05-12 | Samuel J Iannone | Copper-coated stainless steel tube |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1438489A (fr) * | 1965-03-31 | 1966-05-13 | Creusot Forges Ateliers | Procédé de fabrication de tôles plaquées, et tôles plaquées obtenues par ce procédé |
-
1969
- 1969-12-19 FR FR6944094A patent/FR2069985B1/fr not_active Expired
-
1970
- 1970-12-08 GB GB5824870A patent/GB1320239A/en not_active Expired
- 1970-12-15 US US00098237A patent/US3849079A/en not_active Expired - Lifetime
- 1970-12-17 SE SE17166/70A patent/SE364523B/xx unknown
- 1970-12-18 JP JP45114045A patent/JPS5138667B1/ja active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2048276A (en) * | 1932-04-21 | 1936-07-21 | Bruno S Teschner | Plated metal having carbide surface |
US2133293A (en) * | 1934-04-12 | 1938-10-18 | Gordon Frederick Felix | Manufacture of compound metal bodies |
US2226403A (en) * | 1938-07-23 | 1940-12-24 | Robert K Hopkins | Manufacture of veneered articles |
US2258564A (en) * | 1940-03-11 | 1941-10-07 | Armstrong | Stainless clad pierced tubes |
US2472320A (en) * | 1941-02-05 | 1949-06-07 | Ford Motor Co | Method of heat-treating steel |
US2544335A (en) * | 1948-02-25 | 1951-03-06 | Armco Steel Corp | Welding method and product |
US2921877A (en) * | 1958-03-13 | 1960-01-19 | David Craven | Process of chromizing air hardening tool steel |
US3071981A (en) * | 1959-07-16 | 1963-01-08 | Sedis Transmissions Mec | Roller for transmission chain and the method of producing said roller |
US3073015A (en) * | 1960-05-16 | 1963-01-15 | Chromalloy Corp | Diffusion coating of metals |
US3148954A (en) * | 1960-06-13 | 1964-09-15 | Haas Irene | Turbine blade construction |
US3093556A (en) * | 1961-06-13 | 1963-06-11 | Amchem S A | Electro-depositing stainless steel coatings on metal surfaces |
US3240572A (en) * | 1962-02-16 | 1966-03-15 | Bbc Brown Boveri & Cie | Protective coating for metals and method of making the same |
US3232853A (en) * | 1962-03-05 | 1966-02-01 | Gen Electric | Corrosion resistant chromide coating |
US3325259A (en) * | 1964-05-13 | 1967-06-13 | Bethlehem Steel Corp | Ferrous base with nickel-iron coating |
US3357868A (en) * | 1964-11-17 | 1967-12-12 | Armco Steel Corp | Stainless steel and method |
US3359083A (en) * | 1965-06-14 | 1967-12-19 | Herbert L Leichter | Composite structural metal members with improved fracture toughness |
US3343928A (en) * | 1965-10-15 | 1967-09-26 | Du Pont | Ferrous substrate having an iron-chromium-aluminum alloy coating thereon |
US3511283A (en) * | 1966-08-26 | 1970-05-12 | Samuel J Iannone | Copper-coated stainless steel tube |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4136231A (en) * | 1975-12-15 | 1979-01-23 | United Technologies Corporation | Sandwich panel fabrication |
US4414286A (en) * | 1981-04-02 | 1983-11-08 | Texas Instruments Incorporated | Composite thermostat metal |
US4819471A (en) * | 1986-10-31 | 1989-04-11 | Westinghouse Electric Corp. | Pilger die for tubing production |
US8221898B2 (en) | 2007-05-10 | 2012-07-17 | Thyssenkrupp Steel Europe Ag | Multi-layered composite part made of steel having optimized paint adhesion |
US20110250465A1 (en) * | 2008-09-26 | 2011-10-13 | Andrei Evgenievich Rozen | Multilayer material with enhanced corrosion resistance (variants) and methods for preparing same |
CN111760908A (zh) * | 2019-04-02 | 2020-10-13 | 中国科学院金属研究所 | 一种超薄极薄多层金属复合带材及其制备方法 |
EP4173818A4 (en) * | 2020-06-24 | 2023-12-20 | Baoshan Iron & Steel Co., Ltd. | MULTI-LAYER COMPOSITE COLD-ROLLED CERAMIC PLATE AND ASSOCIATED MANUFACTURING METHOD |
CN115837466A (zh) * | 2022-12-07 | 2023-03-24 | 太原科技大学 | 奥氏体/马氏体不锈钢强韧性复合板的制备方法及复合板 |
Also Published As
Publication number | Publication date |
---|---|
DE2062552B2 (de) | 1972-11-09 |
JPS5138667B1 (enrdf_load_stackoverflow) | 1976-10-22 |
FR2069985A1 (enrdf_load_stackoverflow) | 1971-09-10 |
GB1320239A (en) | 1973-06-13 |
FR2069985B1 (enrdf_load_stackoverflow) | 1973-12-21 |
DE2062552A1 (de) | 1971-09-02 |
SE364523B (enrdf_load_stackoverflow) | 1974-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3849079A (en) | Metallic materials based on martensitic steel | |
Sedriks | Plenary lecture—1986: Effects of alloy composition and microstructure on the passivity of stainless steels | |
Prasanthi et al. | Explosive cladding and post-weld heat treatment of mild steel and titanium | |
KR101661019B1 (ko) | 태양전지 기판용 강박, 태양전지 기판, 태양전지 및 그들의 제조 방법 | |
KR880007759A (ko) | 평면이방성을 감소시킨 고연성 고강도의 복합구조 크롬스테인레스강 스트립의 제조방법 | |
Byun et al. | Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation | |
CN105458488A (zh) | 包层合金基片及其制备方法 | |
KR890009482A (ko) | 피복열간압연스트립 및 그 제조방법 | |
Kwok et al. | Cavitation erosion and corrosion behaviors of laser-aluminized mild steel | |
Li et al. | Effect of annealing temperature and time on the microstructure, mechanical properties and conductivity of cold-rolled explosive Cu/Al composite sheets | |
Stoudt et al. | Examining the relationship between post-build microstructure and the corrosion resistance of additively manufactured 17-4PH stainless steel | |
Kimura et al. | Oxide dispersion strengthened steels for advanced blanket systems | |
Maji et al. | The microstructure of an Fe-Mn-Si-Cr-Ni stainless steel shape memory alloy | |
Schmidt et al. | The engineering properties of columbium and columbium alloys | |
Nikulin et al. | Structure and mechanical properties of the three-layer material based on a vanadium alloy and corrosion-resistant steel | |
US3694271A (en) | Method of producing articles of composite material,and resulting products | |
KR940021174A (ko) | 스텐레스강과 탄소강 합성재와 그 제조방법 | |
US3111405A (en) | Aluminum-manganese-iron alloys | |
Srinivasan et al. | Influence of high-velocity oxygen fuel spraying and plasma nitriding on microstructure properties of iron-nickel-chromium alloy using hybrid surface heat treatment | |
Chen et al. | Electronegative oxides and multi-interfaces synergistic protection: A novel strategy to induce exceptional corrosion resistance in ultra high strength and ductility DP steel | |
US3829296A (en) | Thermostat metals | |
Piskarev et al. | ANALYSIS OF CuCrZr/316L (N) BIMETALLIC JOINT WITH AND WITHOUT NICKEL INTERLAYER FOR PLASMA-FACING COMPONENTS. | |
US3473973A (en) | Process of treating stainless steels | |
CN115210399B (zh) | 包层钢板及其制造方法以及焊接结构物 | |
Yadav et al. | Analysis of transient and tertiary creep behavior of Titanium modified 14Cr-15Ni stainless steel after cold working |