US3841986A - Electrophoretic deposition of ceramic coatings - Google Patents
Electrophoretic deposition of ceramic coatings Download PDFInfo
- Publication number
- US3841986A US3841986A US00307140A US30714072A US3841986A US 3841986 A US3841986 A US 3841986A US 00307140 A US00307140 A US 00307140A US 30714072 A US30714072 A US 30714072A US 3841986 A US3841986 A US 3841986A
- Authority
- US
- United States
- Prior art keywords
- workpiece
- iron
- metal
- ceramic coating
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005524 ceramic coating Methods 0.000 title claims abstract description 31
- 238000001652 electrophoretic deposition Methods 0.000 title description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- 229910052742 iron Inorganic materials 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000006185 dispersion Substances 0.000 claims abstract description 23
- 150000003839 salts Chemical class 0.000 claims abstract description 22
- 239000007864 aqueous solution Substances 0.000 claims abstract description 21
- 238000000151 deposition Methods 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 12
- 239000000919 ceramic Substances 0.000 claims abstract description 11
- 238000000576 coating method Methods 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 229910002114 biscuit porcelain Inorganic materials 0.000 description 8
- 239000008119 colloidal silica Substances 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 150000007522 mineralic acids Chemical class 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 210000003298 dental enamel Anatomy 0.000 description 6
- 239000012190 activator Substances 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- -1 zirconim Chemical compound 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 3
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 239000002320 enamel (paints) Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000006012 monoammonium phosphate Substances 0.000 description 3
- 235000019837 monoammonium phosphate Nutrition 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000007590 electrostatic spraying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004534 enameling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/02—Electrophoretic coating characterised by the process with inorganic material
Definitions
- Electrophoretic deposition is a known phenonemon in which an electric potential is established between two electrodes immersed in a liquid dispersion of charged particles. Under the influence of a direct current electric potential, the particles migrate toward one of the electrodes where their charge is neutralized and the particles deposited as an adherent coating on the electrode. Electrophoretic deposition is commonly used for coating a ceramic material such as frit on metal, as in producing cermets. Electrophoretic deposition is generally regarded as superior to conventional, dipping, brushing or spraying techniques, since the deposition is rapid and more effectively coats all surfaces of a workpiece. Electrophoretic deposition is also a convenient way to coat completely the inside area of small holes in a workpiece Where failure of coatings by other techniques normally first take place.
- iron usually as iron oxide diffuses from the surface of the metallic workpiece or ware being coated into the ceramic coating and becomes a part of it.
- iron or the more reddish iron oxide material ly affects the color of the ceramic coating and, especially in the case of white ceramic coatings, adversely affects the color desired as well as the surface of the fired coating.
- some techniques in electrophoretic deposition increase the undesired presence of iron in the ceramic coating.
- one practice comprises predipping the workpiece in an acid activator solution, such as a sulfuric acid solution, to remove rust, for example, before applying the ceramic coating by electrophoresis. This appears to increase the tendency of iron to migrate from the workpiece into the ceramic coating material and into the electrophoretic dispersion, resulting in dis coloration of the finished, fired ceramic coating.
- a related problem concerns the throwing power of an electrophoretic dispersion while maintaining good enamel ice color and surface qualities.
- Throwing power may be considered to be the power of the dispersion to deposit a coating of substantially the same thickness on different areas of the workpiece, even though such areas lie at different distances from the cathode.
- Throwing power is affected by the alkalinity of the electrophoretic medium, the greater the alkaline pH value the greater the throwing power.
- activators which increase the tendency of iron and iron oxide todiffuse into the ceramic coating, the higher pH values necessary for good throwing power cannot be used, since fired finished coatings of poor quality surface then result. The practice therefore has been to operate at a lower alkaline pH than might otherwise be the case to reduce discoloration of the fired ceramic coating, even though this results in a sacrifice of throwing power.
- a principal object of the invention is to provide an improved process for electrophoretic deposition of ceramic coatings which results in coatings of improved quality as well as an improved color and superior gloss, and which further enables the use of electrophoretic dispersions of relatively high alkaline pH to provide excellent throwing power without deleterious results.
- a pre-dip of the workpiece in an acid solution prior to electrophoretic deposition is entirely eliminated.
- a layer of a metal below iron in the electromotive series such as copper, is chemically deposited onto the workpiece from a water-soluble, ionizable compound of the metal.
- ceramic particles such as frit are electrophoretically deposited as before.
- the process can be carried out in alkaline pH electrophoretic dispersions having a pH as high as about 12. 1
- the electrophoretic dispersion may contain colloidal silica in addition to the ceramic particles.
- contacting the ceramic bisque after the electrophoretic deposition with an aqueous solution of a water-soluble salt of a strong inorganic acid, such as monoammonium phosphate has been found to remove such trace amounts Without attacking the ceramic or enamel bisque and resulting in improved color in the fired coating.
- the present process comprises the following steps: activating the surface of a workpiece by chemically depositing thereon a layer of a metal below iron in the electromotive series, rinsing the metal coated surface, electrophoretically depositing a ceramic coating onto such surface from an electrophoretic dispersion containing colloidal silica, post-dipping the electrophoretically treated workpiece in an aqueous solution of a strong inorganic acid and preferably a water-soluble salt of such acid, and firing the workpiece to provide the ceramic coating.
- at least those of using colloidal silica in the electrophoretic dispersion, and of treating the electrophoretic-deposited surface with a water-soluble salt are optional.
- Apparatus for carrying out the invention consists essentially of a suitable tank, or in the case of a continuous line, of a suitable elongated linear tank or trough for holding the slip, a source of direct current, the interior of the tank generally being connected across the electrical source to render it cathodic, and suspending means for 3 carrying the workpiece to be coated, the latter being made the anode.
- an acid-activation is entirely eliminated.
- a workpiece such as an article of cast iron or mild steel is dipped into an aqueous solution of a water-soluble, ionizable compound of any metal below iron in the electromotive or displacement series.
- a relatively thin layer of metal is chemically plated onto the workpiece.
- a coating of one or more of such metals as cadmium, cobalt, nickel, zirconim, tin, lead, copper, mercury, or the like is readily obtained at virtually no operating cost in that only dipping of the workpiece is required in the absence of any externally applied force or energy.
- Elaborate or especially designed equipment is completely avoided and the time involved is only a matter of seconds.
- any ionizable, water-soluble compound of the indicated metals can be used, since it is necessary only to furnish metal ions that may act in accordance with the electromotive series.
- metal salts of inorganic acids where water-soluble, are well suited for this purpose, such as the metal sulfates, chlorides, nitrates, phosphates, carbonates, and the like.
- the acetates can also be used where water-soluble.
- the substitution of iron for the metal of the metal salt in accordance with electromotive series is normally facilitated if the aqueous solution is acidic. When the salt is one of a strong inorganic acid, this may be sufiicient to make the solution acidic.
- the concentration of the metal salt in the aqueous solution and the time of exposure of the solution to the workpiece are not at all critical and need be sufficient only to deposit a preferably continuous film of the metal onto the workpiece.
- the metal film may be about 0.05 mil to 0.5 mil in thickness. Thicker films are only wasteful of the metal.
- Aqueous solutions containing from about 0.1% to about 5% by weight of the metal salt and immersions of the workpiece in the aqueous solution for about 3 to about seconds may be used.
- the surface is rinsed.
- the rinse may be either by water or, to insure neutrallization of traces of the acidic aqueous solution which may be left, by a mild alkaline aqueous solution, or successively by the alkaline solution and then by water.
- An alkali metal carbonate, such as sodium carbonate, is preferred for preparing the mild alkaline aqueous solution if one is employed.
- any conventional frit for ceramic or enamel coating may be used in practicing the invention, although the invention is especially adapted for use with white frit.
- the frit particles may be on the order of less than 100 microns in dimension, and preferably, less than 40 microns. While organic materials can be included in the dispersion, the process works entirely satisfactorily in a strictly aqueous medium.
- the frit may be milled to an aqueous slip in a conventional ball mill.
- a range of typical mill additions, for example, may comprise the following as shown by Table A.
- colloidal silica may be added to the range of materials of Table A in amounts up to about 10% by weight of the materials added to the aqueous medium to produce the slip. An amount of about 5% is preferred.
- direct electrical current is used.
- the suspension bath closes the circuit between anode and cathode.
- the article being coated is made the anode of the electrical circuit while the cathode may be the interior surface of the tank, or separate sheets or plates of a conducting material such as stainless steel, mild steel, or copper.
- the voltage between the article being coated and the cathode is adjusted to a value such that the current density on the article being coated is in the range of 5 to 100 amperes per square foot, preferably between 15 to 60 amperes per square foot.
- the voltage required is generally in the range of 10 to 200 volts, with the exact voltage requirement depending upon the size of the cathode, the size of the article being coated, the distance between the cathode and the article being coated, and the electrical resistivity of the suspension bath.
- the electrical resistivity will be approximately 300 ohms centimeters. Voltage required also depends on the separation of the article being enameled from the submerged electrode. For one inch separation the range of voltage is 2-50 volts. For eighteen inches of separation the range of voltage is 50-300 volts.
- the voltage required for a current density of 20 amperes per square foot is approximately 25 volts.
- the voltage may be varied to provide the ideal current density in slips of varying resistivity and to accommodate the other variables influencing electrodeposition.
- the thickness of the deposited coating may be controlled by regulating the quantity of electricity per unit area passing through the suspension bath. Since the quantity of electricity per unit area is the product of the current density and the time during which the current flows, the thickness of deposited coating is controlled by both the current density and the deposition time. Times of deposition at a current density of 20 amperes per square foot have been found to vary from 5 to 50 seconds for a coating whose thickness after firing it three mils. A thicker, or thinner, coating requires a proportional increase, or decrease in deposition time.
- the electrophoretic dispersion may have a relatively strong alkaline pH, which enables greater throwing power to be obtained, without discoloring the finally fired ceramic coating.
- the-alkaline pH of the electrophoretic dispersions may be as high as about 12.
- Such relatively high alkaline pH may be obtained by adding sodium hydroxide, potassium, hydroxide, and the like, to the electrophoretic dispersion.
- the length of time during which the workpiece is in the dispersion with a direct current potential applied is in the range of about 5 to about seconds. The time requirement is dependent upon the size and shape of the workpiece and upon the thickness of the coating to be deposited.
- the workpiece is removed from the dispersion and rinsed with water to remove any loose particles of glass frit and to prevent edge beading. Following a rinse, the coating is dried as by being placed in an oven equipped with infrared lamps. Still other conventional drying means may be used.
- Another advantage of the present invention is that relatively strong wet bisques are obtained which enable the bisque to be handled with somewhat less care than might otherwise be the case. Also, in spite of efforts to the contrary, some traces of iron or iron oxide may appear in the electrophoretically deposited coating.
- the strength of the present wet bisque is such that the coated workpiece may be treated to remove the trace iron. This has been found to be best accomplished by contacting a bisque with a strong inorganic acid, such as sulfuric, nitric, or phosphoric acids, and removing the iron as the iron salt of the acid, such as iron phosphate, without appreciable damage to the bisque.
- Aqueous solutions of these acids up to about 4% by weight are usually not too strong, but substantially stronger acid solutions may damage the bisque.
- water-soluble salts of the acids are preferred, for example, water-soluble salts which generate in aqueous solution a pH of about 3 to about or are used in amounts to generate a pH within that range.
- a preferred salt is mono-ammonium phosphate.
- the strength of the aqueous solution is not critical and may range from about 0.1% to about 10% by weight of the salt. Time of exposure need be no longer than sufiicient to remove the trace of iron and normally ranges up to about 10 to 60 seconds dependent upon strength of solution used-
- Final firing of the electrophoretically deposited workpiece may be carried out by convention methods and for conventional times and temperatures. As an example, firing of deposited coating may be from 2 to 5 minutes at 1400 F. to 1600 F.
- Weight gallon (02.) percent Hydrated copper sulfate 1 0. 74 Sulfuric acid, 6 Baume 0. 5 0.37 Water Balance Balance A thin layer of copper metal chemically plated onto the metallic plate. The plate could be immersed for about to about 30 seconds, depending on the thickness of the layer desired. As a rule a thickness of about 0.5 mil sufiices for most purposes. After immersion, the plate was rinsed with a neutralizing solution of 0.5 ounce of sodium carbonate in a gallon of water to remove traces of acid.
- a white frit was prepared by conventional smelting and fritting procedures and had the analysis shown by Table B.
- the workpiece was next removed from the bath and sprayed with water to remove any loose particles of frit and then immersed in a six percent by weight aqueous solution of mono-ammonium phosphate for about 30 seconds to insure elimination of any yellow iron color in the resulting ceramic bisque.
- the workpiece was then placed for 15 to 2-0 minutes inan oven at F. to 300 F. to dry and finally fired at 1450 F. for 3.5 minutes.
- Products coated with ceramics in accordance with the present process have appreciably improved color and gloss even though relatively high alkaline pH electrophoretic dispersions or baths are used resulting in better throwing power.
- Operating a bath at relatively high pH values essentially increases the length of time needed to produce an enamel coat of predetermined thickness, even though improved throwing power is obtained.
- the white enamel coatings of the present invention are cleaner in appearance and have superior gloss as compared with white coatings obtained from either standard electrophoretic processes or electrostatic spraying, dipping, flow coating, and still other means of application.
- the fired appearance of the final product of the present invention is smooth and uniform and remarkably free of ripples or curtaining.
- a process for electrophoretically depositing a ceramic coating on an iron-containing workpiece comprising contacting said workpiece with an aqueous solution of a water-soluble salt of a metal below iron in the electromotive series to deposit chemically a layer of said metal on the iron-containing workpiece, electrophoretically depositing a ceramic coating on said metal layer from a dispersion of ceramic particles, and maintaining an alkaline pH in said dispersion of at least 11 to provide greater throwing power without discoloring the resulting ceramic coating.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Chemically Coating (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Electroplating Methods And Accessories (AREA)
Priority Applications (13)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00307140A US3841986A (en) | 1972-11-16 | 1972-11-16 | Electrophoretic deposition of ceramic coatings |
| GB4158573A GB1400981A (en) | 1972-11-16 | 1973-09-04 | Electrophoretic deposition of ceramic coatings |
| ZA737429*A ZA737429B (en) | 1972-11-16 | 1973-09-19 | Electrophoretic deposition of ceramic coatings |
| NL7314137.A NL158232B (nl) | 1972-11-16 | 1973-10-15 | Werkwijze voor het langs elektroforetische weg bekleden van een ijzer bevattend voorwerp met een emaillaag, alsmede het aldus beklede voorwerp. |
| DE2355011A DE2355011C2 (de) | 1972-11-16 | 1973-11-03 | Verfahren zur Herstellung einer keramisch überzogenen Ware aus einem eisenhaltigen Werkstoff |
| YU02862/73A YU286273A (en) | 1972-11-16 | 1973-11-05 | Process for the electrophoretic deposition of a ceramic coating on an article made of iron or an iron alloy |
| AT943173A AT338586B (de) | 1972-11-16 | 1973-11-09 | Verfahren zur herstellung einer keramisch uberzogenen ware aus einem eisenhaltigen werkstoff |
| FR7340040A FR2207202B1 (enExample) | 1972-11-16 | 1973-11-09 | |
| BE137703A BE807266A (fr) | 1972-11-16 | 1973-11-13 | Procede pour deposer par electrophorese un revetement de materiau ceramique |
| JP48127391A JPS5230165B2 (enExample) | 1972-11-16 | 1973-11-14 | |
| BR8938/73A BR7308938D0 (pt) | 1972-11-16 | 1973-11-14 | Aperfeicoamento em processo para deposicao eletroforetica de um revestimento ceramico sobre pecas de trabalho contendo ferro, e pecas assim revestidas |
| ES420572A ES420572A1 (es) | 1972-11-16 | 1973-11-15 | Procedimiento para la deposicion electroforetica de recu- brimientos ceramicos. |
| IT70374/73A IT1009056B (it) | 1972-11-16 | 1973-11-16 | Deposito elettroforetico di ri vestimenti ceramici |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00307140A US3841986A (en) | 1972-11-16 | 1972-11-16 | Electrophoretic deposition of ceramic coatings |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3841986A true US3841986A (en) | 1974-10-15 |
Family
ID=23188413
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00307140A Expired - Lifetime US3841986A (en) | 1972-11-16 | 1972-11-16 | Electrophoretic deposition of ceramic coatings |
Country Status (13)
| Country | Link |
|---|---|
| US (1) | US3841986A (enExample) |
| JP (1) | JPS5230165B2 (enExample) |
| AT (1) | AT338586B (enExample) |
| BE (1) | BE807266A (enExample) |
| BR (1) | BR7308938D0 (enExample) |
| DE (1) | DE2355011C2 (enExample) |
| ES (1) | ES420572A1 (enExample) |
| FR (1) | FR2207202B1 (enExample) |
| GB (1) | GB1400981A (enExample) |
| IT (1) | IT1009056B (enExample) |
| NL (1) | NL158232B (enExample) |
| YU (1) | YU286273A (enExample) |
| ZA (1) | ZA737429B (enExample) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4695356A (en) * | 1984-01-26 | 1987-09-22 | Andromaque S.A. | Electrochemical procedure for the direct forming of generally thin elements with various contours and surfaces of usual and technical ceramics or refractory material |
| US4975417A (en) * | 1987-07-17 | 1990-12-04 | Nisshin Steel Company, Limited | Process for preparing superconductor |
| US5194129A (en) * | 1991-01-18 | 1993-03-16 | W. R. Grace & Co.-Conn. | Manufacture of optical ferrules by electrophoretic deposition |
| US5605715A (en) * | 1993-12-09 | 1997-02-25 | The Erie Ceramic Arts Company | Methods for making electrical circuit devices |
| US6004894A (en) * | 1997-09-05 | 1999-12-21 | Ferro Corporation | Reflective porcelain enamel coating compositions |
| EP1190994A1 (en) | 2000-09-22 | 2002-03-27 | Ferro France S.A.R.L. | White enamel for aluminized or galvanized steel |
| CN102732936A (zh) * | 2012-06-05 | 2012-10-17 | 沈阳理工大学 | 一种在钢铁件上用电泳沉积法制备氧化硅陶瓷涂层的方法 |
| WO2015175499A1 (en) | 2014-05-12 | 2015-11-19 | Pemco Us, Inc. | Glass composite suitable for providing a protective coating on untreated substrates |
| CN115196963A (zh) * | 2022-06-27 | 2022-10-18 | 湖南威斯康新材料科技有限公司 | 金属网的涂覆方法及其耐热陶瓷涂层、金属网 |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3121667A1 (de) * | 1981-05-30 | 1982-12-16 | Miele & Cie GmbH & Co, 4830 Gütersloh | Verfahren zum elektrophoretischen emaillieren |
| GB2117795A (en) * | 1982-04-06 | 1983-10-19 | Standard Telephones Cables Ltd | Fabricating capacitors; forming ceramic films |
| FR2844282A1 (fr) * | 2002-09-06 | 2004-03-12 | Usinor | Objet en acier muni d'un revetement composite a base d'email et procede de fabrication |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR1469571A (fr) * | 1966-01-04 | 1967-02-17 | Perfectionnements apportés aux procédés d'émaillage sur tôles | |
| DE1811925C3 (de) * | 1968-11-30 | 1975-07-17 | Bayer Rickmann Gmbh, 5000 Koeln | Verfahren zum elektrophoretischen Auftragen von Emails auf Gegenständen aus Metall, insbesondere Eisenblech |
-
1972
- 1972-11-16 US US00307140A patent/US3841986A/en not_active Expired - Lifetime
-
1973
- 1973-09-04 GB GB4158573A patent/GB1400981A/en not_active Expired
- 1973-09-19 ZA ZA737429*A patent/ZA737429B/xx unknown
- 1973-10-15 NL NL7314137.A patent/NL158232B/xx not_active IP Right Cessation
- 1973-11-03 DE DE2355011A patent/DE2355011C2/de not_active Expired
- 1973-11-05 YU YU02862/73A patent/YU286273A/xx unknown
- 1973-11-09 FR FR7340040A patent/FR2207202B1/fr not_active Expired
- 1973-11-09 AT AT943173A patent/AT338586B/de not_active IP Right Cessation
- 1973-11-13 BE BE137703A patent/BE807266A/xx not_active IP Right Cessation
- 1973-11-14 JP JP48127391A patent/JPS5230165B2/ja not_active Expired
- 1973-11-14 BR BR8938/73A patent/BR7308938D0/pt unknown
- 1973-11-15 ES ES420572A patent/ES420572A1/es not_active Expired
- 1973-11-16 IT IT70374/73A patent/IT1009056B/it active
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4695356A (en) * | 1984-01-26 | 1987-09-22 | Andromaque S.A. | Electrochemical procedure for the direct forming of generally thin elements with various contours and surfaces of usual and technical ceramics or refractory material |
| US4975417A (en) * | 1987-07-17 | 1990-12-04 | Nisshin Steel Company, Limited | Process for preparing superconductor |
| US5194129A (en) * | 1991-01-18 | 1993-03-16 | W. R. Grace & Co.-Conn. | Manufacture of optical ferrules by electrophoretic deposition |
| US5605715A (en) * | 1993-12-09 | 1997-02-25 | The Erie Ceramic Arts Company | Methods for making electrical circuit devices |
| US6004894A (en) * | 1997-09-05 | 1999-12-21 | Ferro Corporation | Reflective porcelain enamel coating compositions |
| EP1190994A1 (en) | 2000-09-22 | 2002-03-27 | Ferro France S.A.R.L. | White enamel for aluminized or galvanized steel |
| CN102732936A (zh) * | 2012-06-05 | 2012-10-17 | 沈阳理工大学 | 一种在钢铁件上用电泳沉积法制备氧化硅陶瓷涂层的方法 |
| CN102732936B (zh) * | 2012-06-05 | 2015-04-22 | 沈阳理工大学 | 一种在钢铁件上用电泳沉积法制备氧化硅陶瓷涂层的方法 |
| WO2015175499A1 (en) | 2014-05-12 | 2015-11-19 | Pemco Us, Inc. | Glass composite suitable for providing a protective coating on untreated substrates |
| CN115196963A (zh) * | 2022-06-27 | 2022-10-18 | 湖南威斯康新材料科技有限公司 | 金属网的涂覆方法及其耐热陶瓷涂层、金属网 |
| CN115196963B (zh) * | 2022-06-27 | 2023-08-22 | 湖南威斯康新材料科技有限公司 | 金属网的涂覆方法及其耐热陶瓷涂层、金属网 |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2207202A1 (enExample) | 1974-06-14 |
| DE2355011C2 (de) | 1982-11-18 |
| ZA737429B (en) | 1974-08-28 |
| JPS4981418A (enExample) | 1974-08-06 |
| BE807266A (fr) | 1974-03-01 |
| IT1009056B (it) | 1976-12-10 |
| JPS5230165B2 (enExample) | 1977-08-06 |
| NL158232B (nl) | 1978-10-16 |
| ATA943173A (de) | 1976-12-15 |
| DE2355011A1 (de) | 1974-05-30 |
| ES420572A1 (es) | 1976-07-01 |
| NL7314137A (enExample) | 1974-05-20 |
| AT338586B (de) | 1977-09-12 |
| YU286273A (en) | 1981-11-13 |
| FR2207202B1 (enExample) | 1976-10-01 |
| BR7308938D0 (pt) | 1974-08-22 |
| GB1400981A (en) | 1975-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3234110A (en) | Electrode and method of making same | |
| US2965551A (en) | Metal plating process | |
| US3841986A (en) | Electrophoretic deposition of ceramic coatings | |
| US2746888A (en) | Method of forming titanium coating on refractory body | |
| US3644183A (en) | Process for coating an object with a bright nickel/chromium coatin | |
| CN101423967A (zh) | 一种合金材料的表面处理方法 | |
| DE1961960B2 (de) | Verwendung eines Schlickers zur Beschichtung eines Gegenstandes mit keramischem Überzug mittels Elektrophorese | |
| US2275223A (en) | Rustproof material and process | |
| US2748066A (en) | Process of enameling steel | |
| US2836515A (en) | Gold immersion solution for treating silver and method of applying same | |
| US3449222A (en) | Metal coating process | |
| US3207679A (en) | Method for electroplating on titanium | |
| US3959099A (en) | Electrolytic method of producing one-side-only coated steel | |
| US2706692A (en) | Method of bonding vitreous enamels and articles produced thereby | |
| US3011958A (en) | Anodic treatment of zinc and zinc-base alloys | |
| US3515650A (en) | Method of electroplating nickel on an aluminum article | |
| US1787477A (en) | Process for chromium plating | |
| US3497440A (en) | Process for the coating of metallic surfaces | |
| US3812021A (en) | Inorganic coatings for aluminous metals | |
| JP2618423B2 (ja) | 電気泳動的白色及び着色エナメル法 | |
| US3207683A (en) | Process of electrolytic surface treatment of metals | |
| US2819207A (en) | Process for enameling steel | |
| US3467589A (en) | Method of forming a copper containing protective coating prior to electrodeposition of paint | |
| US4046646A (en) | Method of galvanizing steel parts | |
| USRE27896E (en) | Method of forming a copper containing protective coating prior to electro- deposition of paint |