US3834276A - Rams - Google Patents
Rams Download PDFInfo
- Publication number
- US3834276A US3834276A US00178153A US17815371A US3834276A US 3834276 A US3834276 A US 3834276A US 00178153 A US00178153 A US 00178153A US 17815371 A US17815371 A US 17815371A US 3834276 A US3834276 A US 3834276A
- Authority
- US
- United States
- Prior art keywords
- piston
- ram
- partition
- vacuum
- atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005192 partition Methods 0.000 claims description 11
- 239000012530 fluid Substances 0.000 abstract description 10
- 230000007246 mechanism Effects 0.000 abstract description 6
- 238000004891 communication Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 101100421200 Caenorhabditis elegans sep-1 gene Proteins 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/26—Component parts, details or accessories; Auxiliary operations
- B29C51/30—Moulds
- B29C51/38—Opening, closing or clamping means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/028—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
- F15B11/036—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of servomotors having a plurality of working chambers
- F15B11/0365—Tandem constructions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/08—Characterised by the construction of the motor unit
- F15B15/12—Characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
- F15B15/26—Locking mechanisms
- F15B15/261—Locking mechanisms using positive interengagement, e.g. balls and grooves, for locking in the end positions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30525—Directional control valves, e.g. 4/3-directional control valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/3056—Assemblies of multiple valves
- F15B2211/30565—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/327—Directional control characterised by the type of actuation electrically or electronically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7055—Linear output members having more than two chambers
- F15B2211/7056—Tandem cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/765—Control of position or angle of the output member
- F15B2211/7653—Control of position or angle of the output member at distinct positions, e.g. at the end position
Definitions
- a piston member is reciproca- 1581 F'eld Search 91/47 9 ble within a casing and divides the casing into two 91/459; 188/313 92/8 chambers.
- One of the chambers is arranged to be con- 15, 85 nected to a source of driving fluid while the other is arranged to be evacuated whereas the piston member [56]
- Reiel'ences cued is held by a quick-release mechanism, e.g. a mechani- UNITED STATES PAT S cal bolt or an electromagnet arranged to co-operate 513,601 1/1894 T631 91/47 with part of the piston member.
- This speed is also limited, in the case of a singleacting jack, by the inertia of the return device. As a result, some increase of speed can be obtained by augmenting the pressure of the driving fluid; on the other hand, such a pressure increase may impose unacceptable stresses upon the mechanisms controlled by the ram or jack.
- a ram comprises a piston member reciprocable within a casing, the piston member dividing the casing into two chambers one of which is connectable to a source of driving fluid whereas the other is arranged to be evacuated while the piston member is held by a quick-release mechanism.
- the quick-release mechanism may be a mechanical bolt arranged to co-operate with the piston member, e.g. by engaging a suitable notch on the piston or the piston rod.
- the quick-release mechanism may be electromagnetic and may co-operate with the piston member so that cutting off the current to the electromagnet releases the piston member.
- the casing may be cylindrical and one end of the cylinder may form a yoke for the electromagnet while the piston member forms the armature.
- the pressurized fluid acting upon the piston member with rectilinear or rotary displacement may be a liquid or a compressed gas.
- a slowdown of the movement of the piston member due to the limitation of the supply lines for the pressure fluid is unavoidable.
- the driving fluid is air at atmospheric pressure so that no valves have to be provided for the supply of this fluid and the cross-sectional areas of the supply lines may approximate that of the piston member.
- the atmosphere constitutes an energy accumulator which is practically unlimited and whose energy is available to operate the piston member when it is released.
- the speed of the piston and of the apparatus associated with it is great and the corresponding energy must be dissipated to stop the movement except in the case where, in fact, a shock is desired as, for example, in hammers.
- a shock is desired as, for example, in hammers.
- the braking effect may be obtained by allowing air compressed in the dashpot to escape through apertures of small section.
- the compressed air in the dashpot may be used for auxiliary functions in the driven device, for example, in the case of a molding machine for plastic sheet material, to perform blowing and ejection functions for the shaped product.
- FIG. 1 is a longitudinal section of a first form embodiment of a pneumatic ram according to my invention
- FIGS. 2 and 3 are cross-sections of two alternate embodiments.
- FIG. 4 shows the application of a ram to the forming of plastic sheet materials by stamping.
- a cylinder 1 is closed at one end by an annular plate 2 which has an annular recess containing a winding 3 which is connected to an external current source 21 by leads 4 and a switch 22.
- the central hole in the plate 2 is connected by a duct 5 to an electrically operated valve 6 of twoway type which enables the right-hand chamber of the cylinder 1 (as seen in FIG. 1) to be placed in communication either with the atmosphere, by a duct 7, or with a vacuum pump 9 through a duct 8.
- the other end of the cylinder 1 is closed by a base member 10 which has a slide bearing 11 and a sealing gasket 12 engaging a piston rod 13.
- the bearing 11 has, in addition, a reinforced peripheral portion 23 which supports a resilient ring 24 serving to damp the movement of a piston 19 against the base member 10.
- the base member 10 is, like the plate 2, provided with an opening which communicates via a duct 14 with a two-way electrically operated valve 15 which permits the left-hand cylinder chamber to communicate either with atmosphere via a duct 16 or with the vacuum pump 9 via a duct 17.
- a piston head 18 of mild steel has sealing gaskets 19 around its periphery and is secured to the piston rod 13 by a screw 20.
- the piston head 18 In the position shown in FIG. 1, the piston head 18 is held at the right-hand end of the cylinder by the attraction of an electromagnet which is constituted by the winding 3 and the plate 2, its yoke being represented by the winding and the plate whereas its armature is formed by the piston.
- valve 6 has opened the duct 7 to the atmosphere and that a vacuum has been created in the chamber 25 by the pump 9.
- valve 6 To return the piston to its original position the valve 6 opens the duct 8 while the valve 15 places the chamber 25 in communication with the atmosphere. The piston resumes its original position in which it is thereafter retained by closing the switch 22.
- Mechanical means e.g. a cam, may return the piston to a position adjacent its original position, the attraction of the electromagnet completing the return movement.
- the embodiment shown in FIG. 2 is a double-acting ram, i.e., one capable of high speeds in both directions.
- the ram has two cylinders 26A and 26B and two piston heads 27A and 27B carried by a common rod 28.
- Each piston head is integral with a reduced step forming a boss 29A, 298 which is arranged to enter a cylindrical cavity 30A, 30B of the common base member 31 of the two cylinders.
- the chambers 31A and 36B of the two cylinders which are adjacent the base member or partition 31, permanently communicate with the atmosphere through respective ports opening into ducts 32A and 328 provided with adjustable throttles 33A and 338.
- the cavities 30A and 30B are in communication with the atmosphere via respective ports which open into ducts 34A and 34B having adjustable throttles 35A and 35B.
- the chambers 36A and 31B of the cylinders 26A and 268 may communicate alternately with the vacuum pump 9 and with the corresponding atmosphere or vice versa, by means of valves A and 40B.
- the valve members 37A and 37B thereof each have a channel 38A or 388 in the shape of a V and their valve casings are each provided with one inlet 41A or 41B and two outlets 42A, 42B or 43A, 438.
- the valve members permit the communication of these inlets with either of their outlets 42A, 43A and 42B, 43B, respectively.
- the outlets 42A and 42B are connected to the vacuum pump 9 and the outlets 43A and 43B are open to the atmosphere.
- the outlets are symmetrically arranged in the valve casings of the valves 40A, 40B while the valve members 37A and 37B are similar and are each connected to one end of a link 45A or 45B, respectively.
- the other end of each link is pivotally connected to a bar 44 which is moved to the right or to the left by two electromagnets 46A and 468. The shifting of the bar moves the valve members so that the inlet of one valve is placed in communication with the atmosphere while the other is under vacuum and vice versa.
- piston rod 28 has two notches 47A and 47B co-operating alternately with rotatable keys 48A and 488, respectively, controlled by pins 49A and 498.
- Pin 48B is then raised to its phantom-line position to secure the rod 28 in place while the electromagnet 46A is excited. In a few seconds, the device is ready to perform its run to the right.
- the ram comprises a casing 50 having a sector-shaped cross-section and a blade 51 integral with a shaft 52 which is movable within the casing 50.
- a flat 52a in the shaft co-operates with a sliding bolt 53, which is reciprocable by two electromagnets 54 and 55.
- the shaft can be released at the appropriate moment and the shaft 52 can then be aligned with a recess 53 in the slider 53 to enable the blade 51 to move.
- an electrically operated valve 56 makes it possible to create a vacuum in the chamber 57 while atmospheric pressure acts upon the other face of the blade through openings 58.
- the rod 13 of a ram comprising the cylinder 1 and the base member 10 of FIG. 1 is integral with an ancillary piston 60 and an extension 61 ending in a resilient bumper 62.
- the piston is movable in a dashpot 63 which passes through a floating plate 65 provided with guiding rods 64 and punches 66 intended for stamping containers from thermoplastic sheet material.
- the dashpot 63 contains a return spring 67 for the piston 60.
- a pin 72 sliding against a spring 73 forms the end of each punch, air being free to pass around the periphery of the pin.
- This device operates as follows:
- each container formed by a punch has been cut from the surrounding sheet so that normally each stamped container tends to .adhere to the punch which formed it and to be carried away with it in its return movement.
- the compressed air in the dashpot 63 may expand into the space between each container and its punch, thereby separating the punches from the containers and also enabling the punches to be retracted freely even as it cools the containers.
- the containers then remain in the dies which are provided with ejectors to push them out after complete withdrawal of the punches and lateral freeing of the dies.
- FIG. 1 may be used to form containers from heated thermoplastic sheets, by means of punches shaping the sheets. It may also be used for pick, riveting or perforating hammers, or for stamping or cutting presses.
- FIG. 2 is suitable for the transfer of parts to be machined and also for double stampers or punches.
- FIG. 3 is suitable for devices intended to lock screwed members or for twist riveting.
- a pneumatic ram comprising:
- a piston member reciprocable within said casing, said member being provided with a pair of piston heads on opposite sides of said partition forming two inner chambers close to said partition and two outer chambers remote from said partition, said partition being provided with oppositely facing cavities and with restricted passages connecting said cavities to the atmosphere; a source of vacuum; valve means for alternately connecting said outer chambers to said source of vacuum and to the atmosphere, thereby reciprocating said member between two limiting positions, said piston heads being integral with bosses receivable in said cavities in respective limiting positions of said member to cushion the impact of arresting same; and
- valve means is provided with electromagnetic actuating means.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Actuator (AREA)
- Press Drives And Press Lines (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR7032546A FR2112065B1 (OSRAM) | 1970-09-08 | 1970-09-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3834276A true US3834276A (en) | 1974-09-10 |
Family
ID=9061021
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00178153A Expired - Lifetime US3834276A (en) | 1970-09-08 | 1971-09-07 | Rams |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US3834276A (OSRAM) |
| CH (1) | CH549733A (OSRAM) |
| DE (1) | DE2144672A1 (OSRAM) |
| ES (1) | ES394858A1 (OSRAM) |
| FR (1) | FR2112065B1 (OSRAM) |
| GB (1) | GB1361449A (OSRAM) |
| IT (1) | IT939763B (OSRAM) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3999465A (en) * | 1974-11-01 | 1976-12-28 | Clark Equipment Company | Magnet piston retention for free wheeling |
| US4108195A (en) * | 1977-06-23 | 1978-08-22 | Berry Henry K | Quick-closing fire gate |
| US4222309A (en) * | 1976-09-07 | 1980-09-16 | Theodore Ongaro | Hydraulic power system |
| US4516473A (en) * | 1981-05-07 | 1985-05-14 | Shokestu Kinzoku Kogyo Kabushiki Kaisha | Cylinder driving system |
| US5188016A (en) * | 1992-03-25 | 1993-02-23 | Tung Fung Eng | Cylinder structure for a pneumatically operated tool |
| US6071096A (en) * | 1997-04-25 | 2000-06-06 | Grasl; Andreas | Pneumatic cylinder, in particular for actuating fume extraction valves in fume and heat extraction plants |
| US6283011B1 (en) | 1998-10-28 | 2001-09-04 | Aro | Cylinder with an elastic device for returning a working piston unit to a neutral position |
| US6883745B2 (en) | 2000-09-19 | 2005-04-26 | Koenig & Bauer Aktiengesellschaft | Adjusting element and ejector device |
| CN101858371A (zh) * | 2010-05-25 | 2010-10-13 | 中航飞机起落架有限责任公司 | 内置手动应急开锁装置的作动筒 |
| EP2769820A4 (en) * | 2011-10-19 | 2015-06-24 | Toyota Jidoshokki Kk | INJECTION DEVICE |
| US20190010967A1 (en) * | 2017-07-07 | 2019-01-10 | Tokyo Electron Limited | Gas cylinder |
| CN112912647A (zh) * | 2018-10-26 | 2021-06-04 | 舍弗勒技术股份两合公司 | 用于机动车辆的致动器 |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3214163C1 (de) * | 1982-04-17 | 1983-12-22 | Hüller Hille GmbH, 7140 Ludwigsburg | Vorrichtung zur Verringerung der Endgeschwindigkeit eines Zylinderkolbens |
| US4641793A (en) * | 1985-04-16 | 1987-02-10 | Rieter Machine Works Limited | Thread winding machine and method of performing automatic changeover of winding of a thread |
| DE19622474C2 (de) * | 1996-06-05 | 1998-04-09 | Deutsch Zentr Luft & Raumfahrt | Hochgeschwindigkeitsstellantrieb |
| CN108119347A (zh) * | 2017-12-19 | 2018-06-05 | 浙江强盛压缩机制造有限公司 | 一种空压机卸荷缸双动控制装置 |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US513601A (en) * | 1894-01-30 | Mechanism foe conteolling engines | ||
| US2790424A (en) * | 1953-10-05 | 1957-04-30 | Leo V Giladett | Pressure change responsive motor with shear wire |
| US2866442A (en) * | 1954-08-26 | 1958-12-30 | Nat Pneumatic Co Inc | Pressure motor with piston cushioning and speed control means |
| US2945677A (en) * | 1956-11-08 | 1960-07-19 | Jr Archer W Kammerer | Hydraulic weight compensating apparatus for well bore devices |
| US2984529A (en) * | 1959-01-26 | 1961-05-16 | Baldwin Rubber Co | Unitary sealed piston |
| US2987050A (en) * | 1957-04-29 | 1961-06-06 | Sperry Rand Corp | Compensated flow control valve |
| US3023740A (en) * | 1960-05-25 | 1962-03-06 | Fairchild Stratos Corp | Delayed pneumatic actuator |
| US3027876A (en) * | 1960-12-05 | 1962-04-03 | Strick Rudolf Paul | Fluid motor with sequence valve |
| US3082745A (en) * | 1961-08-23 | 1963-03-26 | Gen Motors Corp | Power brake booster control valve mechanism |
| US3182561A (en) * | 1960-10-03 | 1965-05-11 | Bendix Corp | Pneumatically operated servomechanism |
| US3230838A (en) * | 1963-11-14 | 1966-01-25 | Beloit Corp | Dual lock positioning cylinder |
| US3605553A (en) * | 1969-05-05 | 1971-09-20 | Pier Luigi Panigati | Pressure fluid operated cylinder |
-
1970
- 1970-09-08 FR FR7032546A patent/FR2112065B1/fr not_active Expired
-
1971
- 1971-08-23 CH CH1235471A patent/CH549733A/fr not_active IP Right Cessation
- 1971-08-30 IT IT69877/71A patent/IT939763B/it active
- 1971-09-07 US US00178153A patent/US3834276A/en not_active Expired - Lifetime
- 1971-09-07 DE DE19712144672 patent/DE2144672A1/de active Pending
- 1971-09-07 ES ES394858A patent/ES394858A1/es not_active Expired
- 1971-09-08 GB GB4194971A patent/GB1361449A/en not_active Expired
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US513601A (en) * | 1894-01-30 | Mechanism foe conteolling engines | ||
| US2790424A (en) * | 1953-10-05 | 1957-04-30 | Leo V Giladett | Pressure change responsive motor with shear wire |
| US2866442A (en) * | 1954-08-26 | 1958-12-30 | Nat Pneumatic Co Inc | Pressure motor with piston cushioning and speed control means |
| US2945677A (en) * | 1956-11-08 | 1960-07-19 | Jr Archer W Kammerer | Hydraulic weight compensating apparatus for well bore devices |
| US2987050A (en) * | 1957-04-29 | 1961-06-06 | Sperry Rand Corp | Compensated flow control valve |
| US2984529A (en) * | 1959-01-26 | 1961-05-16 | Baldwin Rubber Co | Unitary sealed piston |
| US3023740A (en) * | 1960-05-25 | 1962-03-06 | Fairchild Stratos Corp | Delayed pneumatic actuator |
| US3182561A (en) * | 1960-10-03 | 1965-05-11 | Bendix Corp | Pneumatically operated servomechanism |
| US3027876A (en) * | 1960-12-05 | 1962-04-03 | Strick Rudolf Paul | Fluid motor with sequence valve |
| US3082745A (en) * | 1961-08-23 | 1963-03-26 | Gen Motors Corp | Power brake booster control valve mechanism |
| US3230838A (en) * | 1963-11-14 | 1966-01-25 | Beloit Corp | Dual lock positioning cylinder |
| US3605553A (en) * | 1969-05-05 | 1971-09-20 | Pier Luigi Panigati | Pressure fluid operated cylinder |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3999465A (en) * | 1974-11-01 | 1976-12-28 | Clark Equipment Company | Magnet piston retention for free wheeling |
| US4222309A (en) * | 1976-09-07 | 1980-09-16 | Theodore Ongaro | Hydraulic power system |
| US4108195A (en) * | 1977-06-23 | 1978-08-22 | Berry Henry K | Quick-closing fire gate |
| US4516473A (en) * | 1981-05-07 | 1985-05-14 | Shokestu Kinzoku Kogyo Kabushiki Kaisha | Cylinder driving system |
| US5188016A (en) * | 1992-03-25 | 1993-02-23 | Tung Fung Eng | Cylinder structure for a pneumatically operated tool |
| US6071096A (en) * | 1997-04-25 | 2000-06-06 | Grasl; Andreas | Pneumatic cylinder, in particular for actuating fume extraction valves in fume and heat extraction plants |
| US6283011B1 (en) | 1998-10-28 | 2001-09-04 | Aro | Cylinder with an elastic device for returning a working piston unit to a neutral position |
| US6883745B2 (en) | 2000-09-19 | 2005-04-26 | Koenig & Bauer Aktiengesellschaft | Adjusting element and ejector device |
| CN101858371A (zh) * | 2010-05-25 | 2010-10-13 | 中航飞机起落架有限责任公司 | 内置手动应急开锁装置的作动筒 |
| CN101858371B (zh) * | 2010-05-25 | 2013-08-21 | 中航飞机起落架有限责任公司 | 内置手动应急开锁装置的作动筒 |
| EP2769820A4 (en) * | 2011-10-19 | 2015-06-24 | Toyota Jidoshokki Kk | INJECTION DEVICE |
| US9248596B2 (en) | 2011-10-19 | 2016-02-02 | Kabushiki Kaisha Toyota Jidoshokki | Injection apparatus |
| US20190010967A1 (en) * | 2017-07-07 | 2019-01-10 | Tokyo Electron Limited | Gas cylinder |
| CN109210032A (zh) * | 2017-07-07 | 2019-01-15 | 东京毅力科创株式会社 | 气缸 |
| US10968925B2 (en) * | 2017-07-07 | 2021-04-06 | Tokyo Electron Limited | Gas cylinder |
| CN112912647A (zh) * | 2018-10-26 | 2021-06-04 | 舍弗勒技术股份两合公司 | 用于机动车辆的致动器 |
| CN112912647B (zh) * | 2018-10-26 | 2022-09-13 | 舍弗勒技术股份两合公司 | 用于机动车辆的致动器 |
| US12055217B2 (en) | 2018-10-26 | 2024-08-06 | Schaeffler Technologies AG & Co. KG | Actuator for a motor vehicle |
Also Published As
| Publication number | Publication date |
|---|---|
| ES394858A1 (es) | 1975-04-16 |
| CH549733A (fr) | 1974-05-31 |
| FR2112065B1 (OSRAM) | 1974-04-26 |
| IT939763B (it) | 1973-02-10 |
| DE2144672A1 (de) | 1972-03-09 |
| FR2112065A1 (OSRAM) | 1972-06-16 |
| GB1361449A (en) | 1974-07-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3834276A (en) | Rams | |
| US3818801A (en) | Fluid actuating mechanism having alternatively selectable fast and slow modes of operation | |
| US3540349A (en) | Fluid-operated continuously actuated reciprocating piston drive | |
| GB1563847A (en) | Apparatus for producing an instantaneous pressure on a workpiece | |
| JPH0275433A (ja) | 閉塞鍛造用復動ダイセット | |
| US3657968A (en) | Pneumatic stapling device | |
| US3425498A (en) | Fluid actuated vibrator devices | |
| US3674041A (en) | Pressure responsive actuator having application to a valve spool or like device | |
| GB1109951A (en) | Hammers | |
| US3050809A (en) | Synchronized and equalized opposed hammer press | |
| US3485430A (en) | Stock feeder | |
| US3271991A (en) | High energy impact machine | |
| US3103136A (en) | High energy impact machine | |
| DE3781099D1 (de) | Zieheinrichtung fuer eine presse. | |
| ITMI20002670A1 (it) | Cassetta di utensili con matrice a molla | |
| US2396052A (en) | Hydraulic device | |
| US1940304A (en) | Machine for riveting, punching, pressing, stamping, and like operations | |
| US3898834A (en) | High energy forging press | |
| US3215229A (en) | Pneumatic controlling and cushioning device | |
| US825301A (en) | Hydropneumatic press. | |
| GB1489667A (en) | Mould clamping apparatus for moulding machinery | |
| US4173162A (en) | Pneumatically braked blade assembly for a clipper machine | |
| GB2058924A (en) | Pressure fluid assembly | |
| US3857440A (en) | Die casting machine | |
| US4559863A (en) | Valve for a hydraulic ram |