US3830603A - Apparatus for production of metal powder from wire stock - Google Patents

Apparatus for production of metal powder from wire stock Download PDF

Info

Publication number
US3830603A
US3830603A US00344040A US34404073A US3830603A US 3830603 A US3830603 A US 3830603A US 00344040 A US00344040 A US 00344040A US 34404073 A US34404073 A US 34404073A US 3830603 A US3830603 A US 3830603A
Authority
US
United States
Prior art keywords
disc
wire
rotation
metal
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00344040A
Inventor
J Blucher
D Dalrymple
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Materials Technology Inc
National Forge Co
Original Assignee
Industrial Materials Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Materials Technology Inc filed Critical Industrial Materials Technology Inc
Priority to US00344040A priority Critical patent/US3830603A/en
Priority to JP49029881A priority patent/JPS5062852A/ja
Priority to GB1194174A priority patent/GB1430500A/en
Priority to FR7409539A priority patent/FR2222159B1/fr
Priority to DE19742413973 priority patent/DE2413973C3/en
Priority to US05/463,656 priority patent/US3931375A/en
Publication of US3830603A publication Critical patent/US3830603A/en
Application granted granted Critical
Assigned to SECURITY PACIFIC BUSINESS CREDIT INC., A CORP. OF DE. reassignment SECURITY PACIFIC BUSINESS CREDIT INC., A CORP. OF DE. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INDUSTRIAL MATERIALS TECHNOLOGY, INC., A CORP. OF DE., NATIONAL FORGE COMPANY, A CORP. OF DE.
Anticipated expiration legal-status Critical
Assigned to NATIONAL FORGE COMPANY reassignment NATIONAL FORGE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: INDUSTRIAL MATERIALS TECHNOLOGY, INC. 155 RIVER STREET ANDOVER, MASS. 01810
Assigned to CIT GROUP/CREDIT FINANCE, INC., THE reassignment CIT GROUP/CREDIT FINANCE, INC., THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NATIONAL FORGE COMPANY
Assigned to NATIONAL FORGE COMPANY reassignment NATIONAL FORGE COMPANY RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CIT GROUP/CREDIT FINANCE, INC., THE
Assigned to NATIONAL FORGE COMPANY, INDUSTRIAL MATERIALS TECHNOLOGY, INC. reassignment NATIONAL FORGE COMPANY FULL RELEASE Assignors: SECURITY PACIFIC BUSINESS CREDIT, INC.
Assigned to NATIONAL FORGE COMPANY, INDUSTRIAL MATERIALS TECHNOLOGY, INC. reassignment NATIONAL FORGE COMPANY FULL RELEASE Assignors: SECURITY PACIFIC BUSINESS CREDIT, INC.
Assigned to NATIONAL FORGE COMPANY reassignment NATIONAL FORGE COMPANY MERGER (SEE DOCUMENT FOR DETAILS). Assignors: NFIP, INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/084Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid combination of methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the rotation of the disc breaks the electrical contact and forms an are which causes additional melting of the wire.
  • Contact between the wire and disc takes place within a second electromagnetic field. Continuously advancing the end of the wire causes the intermittent making and breaking of electrical contact.
  • the interaction of the two magnetic fields causes the molten particles to be removed from the area of contact.
  • Means are provided for cooiing and collecting the metal particles and for preventing the accumulation of solidified metal particles on the electromagnet or the rotating disc. Vacuum conditions may be used, thus producing a powder of high purity.
  • This invention relates to an improved process and apparatus for the production of metal powder from solid material such as metal wire or rod.
  • Fine metal powder is being used increasingly in the manufacture of parts by powder metallurgical techniques.
  • Many methods of making metal powders have been proposed. These include the atomization of molten metal by gas jets (Helin et al. U.S. Pat. No. 3,428,718) or by high pressure water (Huseby U.S. Pat. No. 3,325,277); spraying molten metal into a vacuum to form discrete particles (Wentzell U.S. Pat. No. 3,510,546); the vaporization of metal in a vacuum followed by condensation (Allen et al. U.S. Pat. No.
  • the object of the present invention is to produce fine metal powder from a wire or rod by forming particles of molten metal in an electric arc and removing the formed particles by the interaction of two magnetic fields operating at right angles to one another.
  • the operation may take place in a vacuum chamber thus eliminating the chance of contamination by, for example, the formation of oxides.
  • a wire or rod with the chemical analysis desired in the final powder product is brought into contact with a disc which is rotating in a strong magnetic field produced by an electromagnet.
  • the wire and disc are attached to a source of direct current and sufficient voltage is impressed across them to cause electrical current to flow through the circuit to produce the required heat at the point of contact between the wire and disc to rapidly melt the metal.
  • the flow of current through the wire produces a magnetic field around the wire. This field interacts with the magnetic field produced by the electromagnet to force the metal particles away from the point of contact between the wire and the rotating disc.
  • the cooled and solidified particles are thereafter collected.
  • Means are provided for cooling theapparatus and for avoiding the tendency of the powder particles to agglomerate between the pole pieces of the electromagnet.
  • means are provided to remove any build up of powder particles which may form on the rotating disc.
  • FIG. 2 is a vertical section taken generally along the line 2'-2 of FIG. 1, with water cooling pipes and electrical connections omitted.
  • FIG. 3 is a horizontal section taken generally along the line 3--3 of FIG. 1.
  • FIG. 4 is a perspective view of the electromagnet and water-cooled copper terminals utilized in the invention.
  • a deeply grooved disc 10 is placed in the gap 12 of electromagnet 14 energized by coil 16.
  • the disc is mounted for rotation on watercooled shaft 18 driven through pulley 19 by motor 20.
  • Each end of shaft 18 is provided with vacuum-tight rotary joints (not shown).
  • Electrical current is supplied to disc 10 by means of a slip ring 22 mounted on shaft 18 in contact with carbon brush 24 which in turn is connected by conductor 25 to the negative terminal of a source of direct current (not shown).
  • a wire reel 26 is mounted for rotation in frame 28.
  • Metal wire 30 having a chemical composition of that desired in the final powder product is drawn from the reel by a conventional wire feeder 32 powered by a variable speed motor 34 controlled by electronic controller 36 adjustable through knob 37.
  • Wire 30 is fed downwardly through guide tube 38 water cooled by housing 40. Electrical current is supplied to wire 30 through guide tube 38 which is connected by conductor 41 to the-positive terminal of the source of direct current that supplies currentto disc 10.
  • the flow of electrical current through the wire 30 produces a magnetic field around the wire in accordance with well known principles of electricity and magnetism.
  • the direction of feed of the wire is substantially perpendicular to the axis of rotation of disc 10 and in addition is substantially perpendicular to the lines of magnetic force (not shown) in the gap 12 between pole pieces 44 and 46 of electromagnet 14.
  • the metal particles 47 formed are driven out of the area of contact between the metal wire and the disc due to the interaction between the magnetic field produced by the passage of an electrical current in the wire and the second magnetic field transverse thereto produced by the electromagnet.
  • a second device which acts to keep the gap 12 free from solidified metal particles which may tend to bridge between pole pieces 44 and 46 is a deeply grooved copper disc 54 mounted for rotation within gap 12 of electromagnet 14 and in close proximity to disc 10.
  • the axis of rotation of disc 54 is parallel to that of disc 10.
  • the direction of rotation of disc 54 is opposite that of disc 10, as shown by directional arrows 55 and 57, so that the adjacent peripheral surfaces of the two discs move generally in the same direction, i.e., from right to left as shown in FIG. 2.
  • Disc 54 is rotated through pulley 56 driven by motor 20.
  • a crossover belt arrangement is utilized to drive disc 54 in the opposite direction to that given to disc 10.
  • Disc 54 is mounted on water-cooled shaft 58.
  • Rotary joints 60 and 62 serve as support bearings as well as means for getting cooling water through hollow bored shaft 58.
  • Disc 54 may be made of copper because of its excellent heat conduction characteristics and is thus kept cool by the water flowing through shaft 58.
  • a wiper blade 64 is installed in close proximity to the inner faces of the groove in copper disc 54 to prevent metal powder particles from adhering thereto.
  • disc 10 is made of graphite but it could also be made of metal of the same chemical analysis as the final powder product.
  • the entire apparatus may be mounted within a vacuum chamber 66 connected to vacuum outlet 67.
  • the chamber may be a conventional steel tank with hinged and sealable doors 72 at each end.
  • Sight viewing ports 74 may be installed in several locations along with vacuum-tight electrical and cooling water connections 76.
  • particles of metal are produced from metal wire 30 by continuously feeding the wire toward rotating disc 10, the axis of rotation of which is substantially perpendicular to the direction of feed of the wire.
  • the advancing end 42 of the wire is brought into contact with the rotating disc 10 within the field of an electromagnet 14 having lines of force with components substantially perpendicular to the direction of feed of the wire and substantially parallel to the axis of rotation of disc 10.
  • a direct electrical potential is applied between the wire and the disc causing direct current to flow through the wire and the disc, completing an electrical circuit and causing a magnetic field to form around the advancing wire.
  • This magnetic field has lines of force substantially perpendicular to the lines of force of the electromagnetic field of electromagnet 14.
  • the current is of a magnitude sufficient to cause the end of the wire in contact with the disc to melt. Rotation of the disc together with the melting action cause the breaking of electrical contact and the formation of an are between the end of the wire and the disc.
  • Discrete particles 47 of the metal are driven out of the area of contact between the wire and the disc by the interaction between the magnetic field produced by the passage of current in the continuously advancing wire and the magnetic field transverse thereto produced by the electromagnet. 1
  • the entire operation may be carried out in a vacuum thus avoiding contamination of the formed metal particles.
  • the material to be powdered is in the form of metal wire.
  • a wire rod of substantially increased diameter could be continuously fed, with appropriate changes in the feed mechanism, against the revolving disc 10, which could also be modified to accept a rod of increased diameter. It should therefore be understood that when the term wire is used herein it encompasses not only metal in flexible wire form but also metal in the form of a solid rod up to several inches in diameter.
  • Apparatus for producing powder particles from metal wire comprising:
  • said electrical current being of a magnitude sufficient to melt the advancing end of said wire when in contact with said disc whereby the melting of said wire and the rotation of said disc combine to cause an intermittent breaking of said electrical circuit and the formation of an electrical arc between said wire and said disc within said first magnetic field and whereby discrete particles of metal are formed from said wire and are directed out of the zone of contact of said wire and said disc by interaction of said first and second magnetic fields.
  • Apparatus for producing powder particles from metal wire as defined in claim 1 wherein said apparatus is mounted within a vacuum chamber.
  • Apparatus for producing powder particles from metal wire as defined in claim 1 and means for removing particles magnetically attracted to said pole members said means comprising a first and second copper terminal fixed to said pole members, respectively, and means for supplying an alternating electrical current to said terminals during operation of said apparatus.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Small particles of metal, such as those used in making powder metal compacts, are produced by feeding the end of a metal wire or rod against the edge of a rotating disc and causing a direct electrical current to flow through the wire and disc. This melts the end of the wire and also creates a magnetic field about the wire. The rotation of the disc breaks the electrical contact and forms an arc which causes additional melting of the wire. Contact between the wire and disc takes place within a second electromagnetic field. Continuously advancing the end of the wire causes the intermittent making and breaking of electrical contact. The interaction of the two magnetic fields causes the molten particles to be removed from the area of contact. Means are provided for cooling and collecting the metal particles and for preventing the accumulation of solidified metal particles on the electromagnet or the rotating disc. Vacuum conditions may be used, thus producing a powder of high purity.

Description

United States Patent 1 Blucher et al.
APPARATUS FOR PRODUCTION OF METAL POWDER FROM WIRE STOCK Inventors: Joseph T. Blucher, Waltham, Mass;
Donald D. Dalrymple, North Warren, Pa.
Industrial Materials Technology, Incorporated, Woburn, Mass.
Filed: Mar. 22, 1973 Appl. No.: 344,040
Assignee:
References Cited UNITED STATES PATENTS Bridger 425/8 Lezberg et al. 425/6 X ll/l932 6/1957 9/1966 4/1967 8/l973 Guycr et al. 264/9 X Glazunov et al 425/6 Primary Examiner-J. Spencer Overholser Assistant Examiner-David B. Smith Attorney, Agent, or Firm-Ronald F. Ball Aug. 20, 1974 57 ABSTRACT Small particles of metal, such as those used in making powder metal compacts, are produced by feeding the end of a metal wire or rod against the edge of a rotating disc and causing a direct electrical current to fiow through the wire and disc. This melts the end of the wire and also creates a magnetic field about the wire. The rotation of the disc breaks the electrical contact and forms an are which causes additional melting of the wire. Contact between the wire and disc takes place within a second electromagnetic field. Continuously advancing the end of the wire causes the intermittent making and breaking of electrical contact. The interaction of the two magnetic fields causes the molten particles to be removed from the area of contact. Means are provided for cooiing and collecting the metal particles and for preventing the accumulation of solidified metal particles on the electromagnet or the rotating disc. Vacuum conditions may be used, thus producing a powder of high purity.
7 Claims, 4 Brawing Figures PAIENIEDA B 3.830.603
' SHE 10F 3 I 7 FIG].
, VACUIUIM OUTLET H 6! Qsua-s 4 PAIENHmunzmsn am an: 3
VACUUMQUTLET PAIENIEDAIIBZOW 3.830.603 I smurfs v I TO 0.c.
souRcc F'IG.3.
SOURCE 37 I W -j TO D.C.
TO A.C. SOURCE TO A.C.
APPARATUS FOR PRODUCTION OF METAL POWDER FROM WIRE STOCK BACKGROUND OF THE INVENTION This invention relates to an improved process and apparatus for the production of metal powder from solid material such as metal wire or rod.
Fine metal powder is being used increasingly in the manufacture of parts by powder metallurgical techniques. Many methods of making metal powders have been proposed. These include the atomization of molten metal by gas jets (Helin et al. U.S. Pat. No. 3,428,718) or by high pressure water (Huseby U.S. Pat. No. 3,325,277); spraying molten metal into a vacuum to form discrete particles (Wentzell U.S. Pat. No. 3,510,546); the vaporization of metal in a vacuum followed by condensation (Allen et al. U.S. Pat. No. 3,049,421); the fusion of metal by an electric arc followed by the formation of condensed droplets which may be forced out of the arc zone either by means of a gas stream (Lezberg et al. U.S. Pat. No. 2,795,819, Schoop U.S. Pat. No. 1,133,508), or by centrifugal force either alone (Chisholm et al. U.S. Pat. No. 3,021,562, McMillan U.S. Pat. No. 2,897,539) or coupled with the influence of the magnetic repulsion inherent in the arc (Bridger U.S. Pat. No. 1,887,577); forming a molten surface on a metal rod and agitating the molten metal at ultrasonic frequency generated either by an ultrasonic transducer or by use of a high frequency electric current coupled with a strong direct current magnetic field (Newberry U.S. Pat. No. 3,275,787).
In addition it is known to form glass beads by passing an electric current through a stream of molten glass to cause an arc and subjecting the stream in the area of the arc to the action of the magnetic field of an electromagnet (Guyer et al. U.S. Pat. No. 3,313,608). In this latter method the interaction of the magnetic field produced by the electrical current in the current-carrying glass and the magnetic field caused by the electromagnet causes an intermittent making and breaking of the arc which in turn agitates the stream and causes the formation of glass beads.
In several of these prior art devices the process is carried on either in the presence of an inert gas (Lezberg et al. U.S. Pat. No. 2,795,819, Chisholm et al. U.S. Pat. No. 3,021,562, Newberry U.S. Pat. No. 3,275,787) or in a vacuum (Wentzell U.S. Pat. No. 3,510,546, Allen et al. U.S. Pat. No. 3,049,421, McMillan U.S. Pat. No. 2,897,539).
SUMMARY OF THE INVENTION The object of the present invention is to produce fine metal powder from a wire or rod by forming particles of molten metal in an electric arc and removing the formed particles by the interaction of two magnetic fields operating at right angles to one another. The operation may take place in a vacuum chamber thus eliminating the chance of contamination by, for example, the formation of oxides.
By the use of conventional wire feeding apparatus a wire or rod with the chemical analysis desired in the final powder product is brought into contact with a disc which is rotating in a strong magnetic field produced by an electromagnet. The wire and disc are attached to a source of direct current and sufficient voltage is impressed across them to cause electrical current to flow through the circuit to produce the required heat at the point of contact between the wire and disc to rapidly melt the metal. The flow of current through the wire produces a magnetic field around the wire. This field interacts with the magnetic field produced by the electromagnet to force the metal particles away from the point of contact between the wire and the rotating disc. The cooled and solidified particles are thereafter collected.
Means are provided for cooling theapparatus and for avoiding the tendency of the powder particles to agglomerate between the pole pieces of the electromagnet. In addition, means are provided to remove any build up of powder particles which may form on the rotating disc.
A more complete understanding of our invention may be gained from the following description and from the annexed drawings, in which:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a front elevational view of apparatus, partly in section, embodying features of this invention.
FIG. 2 is a vertical section taken generally along the line 2'-2 of FIG. 1, with water cooling pipes and electrical connections omitted.
FIG. 3 is a horizontal section taken generally along the line 3--3 of FIG. 1.
FIG. 4 is a perspective view of the electromagnet and water-cooled copper terminals utilized in the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawings, a deeply grooved disc 10 is placed in the gap 12 of electromagnet 14 energized by coil 16. The disc is mounted for rotation on watercooled shaft 18 driven through pulley 19 by motor 20. Each end of shaft 18 is provided with vacuum-tight rotary joints (not shown). Electrical current is supplied to disc 10 by means of a slip ring 22 mounted on shaft 18 in contact with carbon brush 24 which in turn is connected by conductor 25 to the negative terminal of a source of direct current (not shown).
A wire reel 26 is mounted for rotation in frame 28. Metal wire 30 having a chemical composition of that desired in the final powder product is drawn from the reel by a conventional wire feeder 32 powered by a variable speed motor 34 controlled by electronic controller 36 adjustable through knob 37. Wire 30 is fed downwardly through guide tube 38 water cooled by housing 40. Electrical current is supplied to wire 30 through guide tube 38 which is connected by conductor 41 to the-positive terminal of the source of direct current that supplies currentto disc 10.
Thus, when the tip 42 of wire 30 makes contact with the disc 10, a closed electrical circuit is formed from the positive terminal of the direct current source through conductor 41 to guide tube 38 to wire 30 through tip 42 to disc 10 to shaft 18 to slip ring 22 to carbon brush 24 and through conductor 25 to the negative terminal of the direct current source.
When the wire 30 makes contact with the disc 10 the current flow between the advancing tip 42 and disc 10 causes the tip 42 to melt. This melting action together with rotation of the disc 10 breaks the contact between wire 30 and disc and causes the formation of an arc. The arc creates a high temperature which melts an additional portion of the continuously advancing wire. The end of the continuously advancing wire again makes contact with the rotating disc, extinguishing the arc. The tip of the wire melts, and again, the combined melting action and the rotation of the disc 10 causes the breaking of the contact and reformation of the arc. This making and breaking of the arc with the attendant formation of molten metal particles 47 continues at a relatively rapid rate.
The flow of electrical current through the wire 30 produces a magnetic field around the wire in accordance with well known principles of electricity and magnetism. The direction of feed of the wire is substantially perpendicular to the axis of rotation of disc 10 and in addition is substantially perpendicular to the lines of magnetic force (not shown) in the gap 12 between pole pieces 44 and 46 of electromagnet 14.
The metal particles 47 formed are driven out of the area of contact between the metal wire and the disc due to the interaction between the magnetic field produced by the passage of an electrical current in the wire and the second magnetic field transverse thereto produced by the electromagnet.
As shown in FIG. 2 the direction in which the metal particles 47 are flung by the interaction of the two magnetic fields is shown by the directional arrows as being from right to left and generally perpendicular to the axis of rotation of the disc 10. In the embodiment shown the pole piece 44 is north and the pole piece 46 is south. Reversal of these pole pieces will cause the molten particles to be thrown from left to right and generally perpendicular to the axis of rotation of the disc 10. This illustrates that it is the interaction of the magnetic fields and not the direction of rotation of the disc that controls the direction in which the molten particles are driven.
Once the individual metal particles 47 have left the point of contact between wire 30 and disc 10 there is no further driving force to accelerate them since there is no current flowing through them and thus there are no lines of magnetic flux about each as is created by the flow of current through the wire as described above. In addition, because most of the particles flung from the point of contact will be in their molten state, and thus above their Curie point, they will be nonmagnetic and will not be attracted to the pole pieces 44 and 46 of the electromagnet 14.
However, there are some particles that cool quickly and are attracted to and gather at the pole pieces 44 and 46 of the electromagnet 14. Unless some means is provided to remove these particles, they will quickly bridge across the gap 12 and block the escape path of other particles. To overcome this problem either or both of two devices may be utilized. The first is the placement of two water-cooled copper terminals 48 and 50 on the upper surfaces of pole pieces 44 and 46, respectively, held in place by cement 52 which is resistant to high temperature. These terminals are supplied with M0 volt AC power and serve to burn out any bridge of agglomerated powder particles that may tend to form across the gap 12.
A second device which acts to keep the gap 12 free from solidified metal particles which may tend to bridge between pole pieces 44 and 46 is a deeply grooved copper disc 54 mounted for rotation within gap 12 of electromagnet 14 and in close proximity to disc 10. The axis of rotation of disc 54 is parallel to that of disc 10. However, the direction of rotation of disc 54 is opposite that of disc 10, as shown by directional arrows 55 and 57, so that the adjacent peripheral surfaces of the two discs move generally in the same direction, i.e., from right to left as shown in FIG. 2. Disc 54 is rotated through pulley 56 driven by motor 20. A crossover belt arrangement is utilized to drive disc 54 in the opposite direction to that given to disc 10.
Disc 54 is mounted on water-cooled shaft 58. Rotary joints 60 and 62 serve as support bearings as well as means for getting cooling water through hollow bored shaft 58. Disc 54 may be made of copper because of its excellent heat conduction characteristics and is thus kept cool by the water flowing through shaft 58. A wiper blade 64 is installed in close proximity to the inner faces of the groove in copper disc 54 to prevent metal powder particles from adhering thereto.
The metal particles 47 flung from the area of contact between the continuously advancing wire 30 and the rotating disc 10 rapidly solidify into generally spherical shape varying in size from approximately .001 to .005 inch diameter. These particles strike against sloping wall 68 and are collected in bin 70 for periodic removal.
In the preferred embodiment disc 10 is made of graphite but it could also be made of metal of the same chemical analysis as the final powder product.
The entire apparatus may be mounted within a vacuum chamber 66 connected to vacuum outlet 67. The chamber may be a conventional steel tank with hinged and sealable doors 72 at each end. Sight viewing ports 74 may be installed in several locations along with vacuum-tight electrical and cooling water connections 76.
In operation particles of metal are produced from metal wire 30 by continuously feeding the wire toward rotating disc 10, the axis of rotation of which is substantially perpendicular to the direction of feed of the wire. The advancing end 42 of the wire is brought into contact with the rotating disc 10 within the field of an electromagnet 14 having lines of force with components substantially perpendicular to the direction of feed of the wire and substantially parallel to the axis of rotation of disc 10.
A direct electrical potential is applied between the wire and the disc causing direct current to flow through the wire and the disc, completing an electrical circuit and causing a magnetic field to form around the advancing wire. This magnetic field has lines of force substantially perpendicular to the lines of force of the electromagnetic field of electromagnet 14. The current is of a magnitude sufficient to cause the end of the wire in contact with the disc to melt. Rotation of the disc together with the melting action cause the breaking of electrical contact and the formation of an are between the end of the wire and the disc. Discrete particles 47 of the metal are driven out of the area of contact between the wire and the disc by the interaction between the magnetic field produced by the passage of current in the continuously advancing wire and the magnetic field transverse thereto produced by the electromagnet. 1
Continuously feeding the end of the wire against the rotating disc causes the reestablishment of contact between the end of the wire and the disc. As the end of the wire reestablishes contact with the disc, additional portions of the wire are melted and the rotation of the disc once again causes formation of an arc. The making and breaking of electrical contact with the related formation of the arc are repeated at a relatively rapid rate, resulting in the production of a continuous supply of molten metal and the commensurate discharge of particles from the contact area as above described. The particles are then cooled and collected.
The entire operation may be carried out in a vacuum thus avoiding contamination of the formed metal particles.
In the preferred embodiment the material to be powdered is in the form of metal wire. However, a wire rod of substantially increased diameter could be continuously fed, with appropriate changes in the feed mechanism, against the revolving disc 10, which could also be modified to accept a rod of increased diameter. It should therefore be understood that when the term wire is used herein it encompasses not only metal in flexible wire form but also metal in the form of a solid rod up to several inches in diameter.
The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention claimed.
We claim:
ll. Apparatus for producing powder particles from metal wire comprising:
an electromagnet having opposing pole members,
means for supplying a direct electrical current to said electromagnet to form a first magnetic field having lines of force passing between said pole members,
a disc mounted for rotation between the pole members of said electromagnet, the axis of rotation of said disc being substantially parallel to the lines of force of said first magnetic field,
a consumable wire,
means for continuously advancing an end of said wire into contact with the edge of said rotating disc at a point within said first magnetic field and in a direction substantially perpendicular to the axis of rotation of said disc,
means for supplying direct electrical current to said wire and said disc for completing an electrical circuit therein whereby a second magnetic field is formed about said wire with lines of force transverse to the said first magnetic field,
said electrical current being of a magnitude sufficient to melt the advancing end of said wire when in contact with said disc whereby the melting of said wire and the rotation of said disc combine to cause an intermittent breaking of said electrical circuit and the formation of an electrical arc between said wire and said disc within said first magnetic field and whereby discrete particles of metal are formed from said wire and are directed out of the zone of contact of said wire and said disc by interaction of said first and second magnetic fields.
2. Apparatus for producing powder particles from metal wire as defined in claim 1 and means for cooling and collecting said particles.
3. Apparatus for producing powder particles from metal wire as defined in claim 1 wherein said apparatus is mounted within a vacuum chamber.
4. Apparatus for producing powder particles from metal wire as defined in claim 1 wherein said disc includes a deeply grooved edge and said wire makes contact with said disc within said groove.
5. Apparatus for producing powder particles from metal wire as defined in claim 1 and means for removing particles magnetically attracted to said pole members, said means comprising a first and second copper terminal fixed to said pole members, respectively, and means for supplying an alternating electrical current to said terminals during operation of said apparatus.
6. Apparatus for producing powder particles from metal wire as defined in claim 1 or 5 and a second disc mounted for rotation within said first magnetic field and in close proximity to said first mentioned disc, the direction of rotation of said second disc being opposite that of said first disc and the axis of rotation of said second disc being parallel to the axis of rotation of said first mentioned disc.
7. Apparatus for producing powder particles from metal wire as defined in claim 6 wherein said second disc is a deeply grooved water-cooled disc.

Claims (7)

1. Apparatus for producing powder particles from metal wire comprising: an electromagnet having opposing pole members, means for supplying a direct electrical current to said electromagnet to form a first magnetic field having lines of force passing between said pole members, a disc mounted for rotation between the pole members of said electromagnet, the axis of rotation of said disc being substantially parallel to the lines of force of said first magnetic field, a consumable wire, means for continuously advancing an end of said wire into contact with the edge of said rotating disc at a point within said first magnetic field and in a direction substantially perpendicular to the axis of rotation of said disc, means for supplying direct electrical current to said wire and said disc for completing an electrical circuit therein whereby a second magnetic field is formed about said wire with lines of force transverse to the said first magnetic field, said electrical current being of a magnitude sufficient to melt the advancing end of said wire when in contact with said disc whereby the melting of said wire and the rotation of said disc combine to cause an intermittent breaking of said electrical circuit and the formation of an electrical arc between said wire and said disc within said first magnetic field and whereby discrete particles of metal are formed from said wire and are directed out of the zone of contact of said wire and said disc by interaction of said first and second magnetic fields.
2. Apparatus for producing powder particles from metal wire as defined in claim 1 and means for cooling and collecting said particles.
3. Apparatus for producing powder particles from metal wire as defined in claim 1 wherein said apparatus is mounted within a vacuum chamber.
4. Apparatus for producing powder particles from metal wire as defined in claim 1 wherein said disc includes a deeply grooved edge and said wire makes contact with said disc within said groove.
5. Apparatus for producing powder particles from metal wire as defined in claim 1 and means for removing particles magnetically attracted to said pole members, said means comprising a first and second copper terminal fixed to said pole members, respectively, and means for supplying an alternating electrical current to said terminals during operation of said apparatus.
6. Apparatus for producing powder particles from metal wire as defined in claim 1 or 5 and a second disc mounted for rotation within said first magnetic field and in close proximity to said first mentioned disc, the direction of rotation of said second disc being opposite that of said first disc and the axis of rotation of said second disc being parallel to the axis of rotation of said first mentioned disc.
7. Apparatus for producing powder particles from metal wire as defined in claim 6 wherein said second disc is a deeply grooved water-cooled disc.
US00344040A 1973-03-22 1973-03-22 Apparatus for production of metal powder from wire stock Expired - Lifetime US3830603A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US00344040A US3830603A (en) 1973-03-22 1973-03-22 Apparatus for production of metal powder from wire stock
JP49029881A JPS5062852A (en) 1973-03-22 1974-03-15
GB1194174A GB1430500A (en) 1973-03-22 1974-03-18 Production of metal powder
FR7409539A FR2222159B1 (en) 1973-03-22 1974-03-20
DE19742413973 DE2413973C3 (en) 1973-03-22 1974-03-22 Process for the production of metal particles in powder form by melting a wire
US05/463,656 US3931375A (en) 1973-03-22 1974-04-24 Production of metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00344040A US3830603A (en) 1973-03-22 1973-03-22 Apparatus for production of metal powder from wire stock

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/463,656 Division US3931375A (en) 1973-03-22 1974-04-24 Production of metal powder

Publications (1)

Publication Number Publication Date
US3830603A true US3830603A (en) 1974-08-20

Family

ID=23348783

Family Applications (1)

Application Number Title Priority Date Filing Date
US00344040A Expired - Lifetime US3830603A (en) 1973-03-22 1973-03-22 Apparatus for production of metal powder from wire stock

Country Status (4)

Country Link
US (1) US3830603A (en)
JP (1) JPS5062852A (en)
FR (1) FR2222159B1 (en)
GB (1) GB1430500A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264641A (en) * 1977-03-17 1981-04-28 Phrasor Technology Inc. Electrohydrodynamic spraying to produce ultrafine particles
WO1990000936A1 (en) * 1988-07-19 1990-02-08 United States Department Of Energy Method and apparatus for atomization and spraying of molten metals
US5062936A (en) * 1989-07-12 1991-11-05 Thermo Electron Technologies Corporation Method and apparatus for manufacturing ultrafine particles
US5194128A (en) * 1989-07-12 1993-03-16 Thermo Electron Technologies Corporation Method for manufacturing ultrafine particles
US20130015608A1 (en) * 2007-05-17 2013-01-17 Hamby Kenneth W Pelletization of pyrolyzed rubber products
CN104493189A (en) * 2015-01-09 2015-04-08 中国久远高新技术装备公司 Method and device for metal powder preparation based on controllable magnetic levitation melting technology
WO2017184194A1 (en) 2016-04-20 2017-10-26 Hrl Laboratories, Llc Apparatus for making nanoparticles and nanoparticle suspensions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017303A1 (en) * 1991-04-04 1992-10-15 Aktsionernoe Obschestvo Server Method and installation for obtaining highly dispersive powders of non-organic substances

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1887577A (en) * 1928-03-22 1932-11-15 Bridger Theo Eustace Method of and apparatus for creating metallic spray
US2795819A (en) * 1954-08-23 1957-06-18 Erwin A Lezberg Apparatus for the preparation of metal powder
US3275787A (en) * 1963-12-30 1966-09-27 Gen Electric Process and apparatus for producing particles by electron melting and ultrasonic agitation
US3313608A (en) * 1964-12-11 1967-04-11 Corning Glass Works Method and apparatus for manufacturing glass beads
US3752610A (en) * 1969-12-18 1973-08-14 S Glazunov Device for producing fine powder of liquid metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1887577A (en) * 1928-03-22 1932-11-15 Bridger Theo Eustace Method of and apparatus for creating metallic spray
US2795819A (en) * 1954-08-23 1957-06-18 Erwin A Lezberg Apparatus for the preparation of metal powder
US3275787A (en) * 1963-12-30 1966-09-27 Gen Electric Process and apparatus for producing particles by electron melting and ultrasonic agitation
US3313608A (en) * 1964-12-11 1967-04-11 Corning Glass Works Method and apparatus for manufacturing glass beads
US3752610A (en) * 1969-12-18 1973-08-14 S Glazunov Device for producing fine powder of liquid metal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264641A (en) * 1977-03-17 1981-04-28 Phrasor Technology Inc. Electrohydrodynamic spraying to produce ultrafine particles
WO1990000936A1 (en) * 1988-07-19 1990-02-08 United States Department Of Energy Method and apparatus for atomization and spraying of molten metals
US4919335A (en) * 1988-07-19 1990-04-24 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for atomization and spraying of molten metals
US5062936A (en) * 1989-07-12 1991-11-05 Thermo Electron Technologies Corporation Method and apparatus for manufacturing ultrafine particles
US5194128A (en) * 1989-07-12 1993-03-16 Thermo Electron Technologies Corporation Method for manufacturing ultrafine particles
US20130015608A1 (en) * 2007-05-17 2013-01-17 Hamby Kenneth W Pelletization of pyrolyzed rubber products
US9139738B2 (en) * 2007-05-17 2015-09-22 Tellus Technology, Inc. Pelletization of pyrolyzed rubber products
US9902859B2 (en) 2007-05-17 2018-02-27 Tellus Technology, Inc. Pelletization of pyrolyzed rubber products
CN104493189A (en) * 2015-01-09 2015-04-08 中国久远高新技术装备公司 Method and device for metal powder preparation based on controllable magnetic levitation melting technology
WO2017184194A1 (en) 2016-04-20 2017-10-26 Hrl Laboratories, Llc Apparatus for making nanoparticles and nanoparticle suspensions
EP3445709A4 (en) * 2016-04-20 2019-11-13 HRL Laboratories, LLC Apparatus for making nanoparticles and nanoparticle suspensions

Also Published As

Publication number Publication date
DE2413973B2 (en) 1977-06-08
GB1430500A (en) 1976-03-31
FR2222159B1 (en) 1979-03-16
DE2413973A1 (en) 1974-09-26
FR2222159A1 (en) 1974-10-18
JPS5062852A (en) 1975-05-29

Similar Documents

Publication Publication Date Title
US3829538A (en) Control method and apparatus for the production of powder metal
US3830603A (en) Apparatus for production of metal powder from wire stock
US4238427A (en) Atomization of molten metals
US4919335A (en) Method and apparatus for atomization and spraying of molten metals
US3931375A (en) Production of metal powder
US3286334A (en) Production of dispersion hardened materials
US3881541A (en) Continuous casting of narrow filament between rotary chill surfaces
US4071588A (en) Process for production of magnetite spheres with an arc heater
US4408971A (en) Granulation apparatus
US4169962A (en) Heat treating apparatus
JPH062882B2 (en) Particle production equipment
US4450885A (en) Process for preparation of granules of low-melting-point metals
US4900355A (en) Method for making high-purity metal powder by jet-cooling
JPH0625716A (en) Production of metal powder
JPS58177403A (en) Method and device for manufacturing ceramic-free high purity metal powder
US5067554A (en) Melt extraction of ceramics
US4781754A (en) Rapid solidification of plasma sprayed magnetic alloys
JP2808836B2 (en) Powder manufacturing apparatus and powder manufacturing method
RU2769116C1 (en) Method for producing metal powder
JP3027785B2 (en) Method of manufacturing magnetic material from machining powder generated by electric discharge machining
JPH03180432A (en) Melting method and melting device of metal
JP2808835B2 (en) Powder manufacturing apparatus and powder manufacturing method
DE2413973C3 (en) Process for the production of metal particles in powder form by melting a wire
JPS6054820B2 (en) Horizontal continuous casting equipment
US4784832A (en) Introducing materials into molten media

Legal Events

Date Code Title Description
AS Assignment

Owner name: SECURITY PACIFIC BUSINESS CREDIT INC., A CORP. OF

Free format text: SECURITY INTEREST;ASSIGNORS:NATIONAL FORGE COMPANY, A CORP. OF DE.;INDUSTRIAL MATERIALS TECHNOLOGY,INC., A CORP. OF DE.;REEL/FRAME:005383/0001

Effective date: 19900614

AS Assignment

Owner name: NATIONAL FORGE COMPANY, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:INDUSTRIAL MATERIALS TECHNOLOGY, INC. 155 RIVER STREETANDOVER, MASS. 01810;REEL/FRAME:006284/0976

Effective date: 19920206

AS Assignment

Owner name: CIT GROUP/CREDIT FINANCE, INC., THE, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:NATIONAL FORGE COMPANY;REEL/FRAME:006478/0185

Effective date: 19921208

AS Assignment

Owner name: NATIONAL FORGE COMPANY, PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CIT GROUP/CREDIT FINANCE, INC., THE;REEL/FRAME:007648/0001

Effective date: 19950627

AS Assignment

Owner name: NATIONAL FORGE COMPANY, PENNSYLVANIA

Free format text: FULL RELEASE;ASSIGNOR:SECURITY PACIFIC BUSINESS CREDIT, INC.;REEL/FRAME:010070/0916

Effective date: 19990413

Owner name: INDUSTRIAL MATERIALS TECHNOLOGY, INC., MASSACHUSET

Free format text: FULL RELEASE;ASSIGNOR:SECURITY PACIFIC BUSINESS CREDIT, INC.;REEL/FRAME:010070/0916

Effective date: 19990413

Owner name: NATIONAL FORGE COMPANY, PENNSYLVANIA

Free format text: FULL RELEASE;ASSIGNOR:SECURITY PACIFIC BUSINESS CREDIT, INC.;REEL/FRAME:010086/0036

Effective date: 19990413

Owner name: INDUSTRIAL MATERIALS TECHNOLOGY, INC., MASSACHUSET

Free format text: FULL RELEASE;ASSIGNOR:SECURITY PACIFIC BUSINESS CREDIT, INC.;REEL/FRAME:010086/0036

Effective date: 19990413

AS Assignment

Owner name: NATIONAL FORGE COMPANY, PENNSYLVANIA

Free format text: MERGER;ASSIGNOR:NFIP, INC.;REEL/FRAME:010710/0833

Effective date: 19990930