US3824159A - Method of anodically coating aluminum - Google Patents
Method of anodically coating aluminum Download PDFInfo
- Publication number
- US3824159A US3824159A US00251917A US25191772A US3824159A US 3824159 A US3824159 A US 3824159A US 00251917 A US00251917 A US 00251917A US 25191772 A US25191772 A US 25191772A US 3824159 A US3824159 A US 3824159A
- Authority
- US
- United States
- Prior art keywords
- aluminium
- bath
- acid
- water
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title abstract description 77
- 229910052782 aluminium Inorganic materials 0.000 title abstract description 48
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title abstract description 47
- 238000000576 coating method Methods 0.000 title abstract description 36
- 239000011248 coating agent Substances 0.000 title abstract description 23
- 239000003792 electrolyte Substances 0.000 abstract description 28
- 239000000126 substance Substances 0.000 abstract description 25
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 1
- 239000004411 aluminium Substances 0.000 description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 238000011282 treatment Methods 0.000 description 18
- 230000003647 oxidation Effects 0.000 description 17
- 238000007254 oxidation reaction Methods 0.000 description 17
- 150000003839 salts Chemical class 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 239000011888 foil Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000007654 immersion Methods 0.000 description 9
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical class OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 6
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 5
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 5
- 239000005030 aluminium foil Substances 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 239000011244 liquid electrolyte Substances 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 238000004026 adhesive bonding Methods 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000007645 offset printing Methods 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000007743 anodising Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 3
- NWELCUKYUCBVKK-UHFFFAOYSA-N pyridin-2-ylhydrazine Chemical class NNC1=CC=CC=N1 NWELCUKYUCBVKK-UHFFFAOYSA-N 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 239000001476 sodium potassium tartrate Substances 0.000 description 3
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- FQEPHIZROZSUOU-UHFFFAOYSA-N 1-nitropropane-1,1-diol Chemical compound CCC(O)(O)[N+]([O-])=O FQEPHIZROZSUOU-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- BKMMTJMQCTUHRP-UHFFFAOYSA-N 2-aminopropan-1-ol Chemical compound CC(N)CO BKMMTJMQCTUHRP-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- HGWOSUKIFQMEIF-ZETCQYMHSA-N 3-bromo-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(Br)=C1 HGWOSUKIFQMEIF-ZETCQYMHSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 2
- 229960001553 phloroglucinol Drugs 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- WRHZVMBBRYBTKZ-UHFFFAOYSA-N pyrrole-2-carboxylic acid Chemical compound OC(=O)C1=CC=CN1 WRHZVMBBRYBTKZ-UHFFFAOYSA-N 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000001433 sodium tartrate Substances 0.000 description 2
- 229960002167 sodium tartrate Drugs 0.000 description 2
- 235000011004 sodium tartrates Nutrition 0.000 description 2
- IXHMHWIBCIYOAZ-UHFFFAOYSA-N styphnic acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C(O)=C1[N+]([O-])=O IXHMHWIBCIYOAZ-UHFFFAOYSA-N 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- BDDLHHRCDSJVKV-UHFFFAOYSA-N 7028-40-2 Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O BDDLHHRCDSJVKV-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical class C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001676573 Minium Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 239000013527 degreasing agent Substances 0.000 description 1
- 238000005237 degreasing agent Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- DVECLMOWYVDJRM-UHFFFAOYSA-N pyridine-3-sulfonic acid Chemical compound OS(=O)(=O)C1=CC=CN=C1 DVECLMOWYVDJRM-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- DOYOPBSXEIZLRE-UHFFFAOYSA-N pyrrole-3-carboxylic acid Natural products OC(=O)C=1C=CNC=1 DOYOPBSXEIZLRE-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- RLQWHDODQVOVKU-UHFFFAOYSA-N tetrapotassium;silicate Chemical compound [K+].[K+].[K+].[K+].[O-][Si]([O-])([O-])[O-] RLQWHDODQVOVKU-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/06—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
Definitions
- the present invention relates to a method of coating parts or objects made entirely or partly of aluminium or an aluminium alloy, and to parts or objects coated by this method.
- a method of coating a part or object made entirely or partly of' aluminium or an aluminium alloy wherein the part that is to be coated is submitted to a process of anodic oxidation in an electrolyte bath containing at least one alkaline silicate soluble in the liquid electrolyte and at least one organic complex-forming substance, with the application of a D.C., and A.C. or a pulsed voltage.
- the parts or objects that are to be coated may be of any shape. For instance, they may be in the form of sheet, mouldings, castings or foil of which the thickness may be as little as a few microns.
- the parts or objects that are to be coated may, as already stated, consist in their entirety or only partly of aluminium or an aluminium alloy.
- sheet, mouldings or foil of which only the surfaces consist of an aluminium alloy may be treated by the present method.
- a plastics film bearing a vapour-deposited surface film, of aluminium which is only 0.01 micron thick can be satisfactorily coated by the present method. Reference to these two extremes, viz. coating parts which are solid aluminium or aluminium alloy and parts which merely have an aluminium or aluminium alloy surface, illustrates the range of application of the present method.
- the portions or objects that are to be coated consist only partly of aluminium or an aluminium alloy, then the nature of the portion not consisting of aluminium or an aluminium alloy makes no diiference if this portion is non-conducting.
- the only requirement is that the nonconducting portion should bear a coherent film of aluminium or aluminium alloy. It is obvious that the nonconducting portion must not be soluble in the electrolyte. If the portion not consisting of aluminium or aluminium alloy is an electrically conducting substance, then it must be completely enveloped on every side by a coherent conducting layer of aluminium or aluminium alloy, but such a layer may contain pores of a diameter smaller than or equal to the diameter of the gas bubbles which are evolved during the anodic oxidation treatment of the part or object.
- the composition of the alloy may vary within wide limits.
- the present coatings can still be deposited on alloys containing not more than 5% of alu- 3,824,159 Patented July 16, 1974 minium and these coatings will still have properties equal to those obtainable on pure aluminium.
- the liquid electrolyte is preferably water or a mixture of water and a solvent aid, such as methanol or isopropanol, but preferably dimethyl formamide
- the alkaline silicate that is soluble in the liquid electrolyte is preferably a water-soluble silicate, more preferably an alkali metal silicate, such as sodium, potassium or lithium silicate.
- the electrolyte bath may contain one or more such silicates.
- the silicate concentration in the electrolyte may widely vary, but it is preferably from 0.1 to 15%, more preferably from 5 to 9% (by Weight).
- the complex-forming substances that are used in the present method must be soluble in the electrolyte employed. Should the desired complex-forming substances be insoluble or not sufficiently soluble for instance in the preferred liquid electrolyte, viz. water, then a mixture of water and one or more solvent aids may be provided, the choice of the solvent aid(s) naturally depending upon the nature of the complex-forming substance. Hence, in the presence of a solvent aid, compounds that are of limited solubility in water, such as pyridines or pyridine bases, can be readily employed.
- alkanolamines such as alkanolamines, mono-, diand triethanolamine, 2-aminopropanol, 3-dimethyl-2-aminoethanol, salts of ethylene diamino-
- Amino acids in the form of water-soluble salts possibly substituted, such as glycine, alanine, glutamic acid, tryptophan, methionine, tyrosine, 3-bromotyrosine, aspartic acid, oxylysine and oxyproline.
- Water-soluble monohydric or polyhydric substituted or unsubstituted phenols such as phenol, cresol, resorcinol, 2,4,6-trinitroresorcinol, phloroglucinol andpyrogallol.
- Water-soluble polyhydric alcohols possibly substituted, such as ethylene glycol, propylene glycol, poly-. propylene glycol, nitropropanediol.
- Monoethanolamine has proved to be an outstandingly good complex-former.
- the complex-forming substances may be introduced individually or as a mixture of two or; more thereof.
- the concentration of the complex-forming substance may vary Within Wide limits, but will usually be from 0.1% to 40%, preferably from 1% to 12%, of the electrolytic bath.
- the coatings may be formed in the present method by using a D.C. voltage, the workpieces being connected to the positive pole of a D.C. source and the bath toth e, negative pole.
- the present method. is therefore an anodic" oxidation of aluminium in an alkaline medium, the formation of aluminium hydroxide being suppressed by using an alkaline silicate as an electrolyte and by introducing complex-forming substances.
- the formation of the coatings by the present method may be effected by the application of a pulsed current.
- the use of current pulsing is preferred in cases in which electronically controlled rectifier equipment is available.
- coating is effected by immersing the part in the bath and by then controllably raising the voltage, and possibly thereby keeping the current density constant, or by slowly lowering the part into the bath whilst the voltage remains constant.
- An alternating current can also be used, particularly for coating foil or thin surfaces, and the materials thus obtained can be very suitably used in the making of capacitors.
- the parts that are to be coated are preferably treated at voltages up to 500 volts, more preferably up to 350 volts.
- the treatment may be a single treatment or it may be repeated.
- the anodic oxidation may proceed for instance by once or repeatedly immersing the parts in the electrolyte bath or by performing the treatment continuously to the extent the parts that are to be coated lend themselves to this variant of the method (for instance by continuously drawing foil or sheet material through the electrolyte bath or conveying objects through the bath on an aluminium suspension, etc.).
- the objects which are to be treated by the present method are electrically connected as the anode.
- the tank containing the electrolyte will conveniently function as the cathode but there would naturally be no objection to the use of an insulated cathode.
- the cathode material does not detectably affect results, excepting when alternating current is used, in which case both electrodes should preferably be of aluminium, unless they are separated by a diaphragm.
- the present method is preferably performed at a temperature of from C. to 95 C., more preferably from 15 C. to 40 C., so that the employment of heated or cooled baths can generally be avoided.
- the time needed for coating has generally been found to be from 0.1 to 30 minutes, preferably from 0.5 to 5 minutes, to give satisfactory results.
- the voltage may remain constant or it may gradually be controllably raised up to higher values as the treatment proceeds.
- Constant voltage treatments are usually preferred when the process is continuous. If the voltage used is from 180 to 350 volts, then the resultant layer will have a thickness of from 8 to 50 microns, depending upon the duration of the treatment. On the other hand, if a lower voltage is applied, a layer thickness up to about 5 microns will be obtained, also varying with the duration of the treatment.
- the thickness of the resultant coating again depending upon the duration of the treatment and upon the level up to which the voltage is raised.
- the current density employed affects the thickness, porosity, adhesive strength and uniformity of the resultant coatings.
- the coatings will be the thicker and the more porous the higher the current density and at the same time its power of adhesion and its uniformity will both lessen.
- the distance between the electrodes is relevant only in the production of coatings of great porosity, uniformity and fineness, for which purposes the electrode spacing 4 should be close and the cathode/ anode ratio should preferably be 1 or more.
- the aluminium oxide surfaces obtained by the present method have a number of outstanding properties and are largely stable to alkaline media and cold water, but not to attack by mineral acids and boiling water; nor are they attacked by organic solvents. No silicate could be detected in the coatings.
- the coatings have electrical insulating properties and, according to layer thickness, their breakdown resistance may be asvhigh as 500 volts. In thicknesses upwards of a few microns, the coatings have a white appearance and they exhibit excellent adhesive bonding abilities. Moreover, they are porous and their powers of absorption are therefore high.
- the present method permits very thin films which are practically incapable of being measured as well as coatings up to 50 microns thick to be obtained.
- the present method therefore enables aluminium and aluminium alloys to be used for a wide diversity of purposes.
- coated aluminium plates provide useful offset printing plates, though a special alloy must be used, the hitherto conventional methods of producing such offset printing plates being multistage processes performed in acid baths.
- the present method permits a 6 to 8 micron coating which externally is of very much the same appearance to be produced by a method comprising not more than two stages, the first stage possibly being a cleaning operation.
- the gradual raising of the voltage preferably up to from to volts has proved most satisfactory;
- the thickness of the coating may be up to about 2 microns.
- An advantage of the present method is not only the considerably lower cost and longer life of the electrolyte bath compared with a chromate sulphuric acid bath, but also in the non-hazardous preparation of the bath and in the absence of difiiculties in connection with its disposal, no efiluent problem arising. It has also been found that at a current density of 0.5 amp./dm. to 3 amp./dm. good layers are formed with satisfactory speed. According to the size of the workpieces and the capacity of the current source, a working cycle of from 0.5 to 10 minutes, preferably from 0.5 to 5 minutes, can be achieved. It will therefore be understood that another advantage of the present method is the substantially higher production rate and hence capacity of the plant.
- Aluminium parts that had been coated by the present method were submitted to conventional tests. It transpired that the quality of the adhesive bond was superior to that of a sheet oxidised by a chemical pickling method. It was also found that objects treated by the present method had a longer storage lifeat least 3 weeks-than objects that had been subjected to the pickling proce s and that must usually be further processed within 24 and not more than 48 hours.
- the present method therefore permits sheet and foil material for adhesive bonding purposes to be supplied in roll form. Another advantage is that for producing by the present method coatings that can be adhesively bonded, a treatment lasting 1 to 3 minutes gives the best results, whereas in the pickling method the treatment time for optimum quality is about 30 minutes.
- aluminium foils or sheets thus produced can be used in the making of skis, in the aircraft industry as well as in the construction of containers and, generally speaking, wherever sandwich-type and composite elementsof aluminium or aluminium alloys, possibly in association with plastics and paper, are needed.
- the cathode is a '5 x cm. steel plate and the anode a S x 10 cm. aluminium plate 0.3 mm. thick.
- the bath temperature is 25 C. and a dc. voltage of up to 150 volts is applied.
- the voltage is raised within a minute from 0 to 150 volts and anodising is continued at this voltage for one more minute.
- the current fails.
- the current density can be kept at about 3 amp./dm'.
- the aluminium plate is taken out of the bath, washed first with tap water, then with distilled water and finally rinsed with acetone and dried.
- a transparent light film has'formed in which no optically visible pore structure is apparent.
- silver varnish is sprayed on the coated aluminium plate so that a surface of 1 sq. cm. is obtained.
- the film of silver varnish is contacted with'a copper wire and the test condenser thus obtained measured. Its capacity is 2000 pf. and the loss factor about -30.10'
- Example 2 The experimental set-up is the same as in Example 1, but the electrolyte has the following composition:
- Example 3 v The experimental set-up is again the same as in Example 1, but the composition of the electrolyte is as A coating is produced using a rising voltage and for different periods of time.
- the capacitiesof condensers thus produced are listed in Table 1 as a function of voltage, the treating time and the .temperature of the bath.
- Example 4 The experimental set-up is again the same as that described in Example 1.
- the electrolyte has the following composition:
- the resultant coating is washed and dried, covered with a PVC-based lacquer and dried for one minute at 130 C.
- the adhesion of the lacquer is excellent and it was found that, compared with untreated aluminium, the improvement in adhesive power is considerable. No loss of adhesion was detected after 240 hours immersion in water.
- the acetone may be replaced by trichloroethylene or some other chlorinated hydrocarbon conventionally used for degreasing.
- the coated aluminium strip is then bonded by a phenolic resin adhesive, the bonded surface being 2 sq. cm.
- Adhesive bonding is carried out at 140 C. under 10 kp./ per sq. cm. pressure for 8 minutes and the bonded strips are stored at room temperature for 24 hours.
- the following tensile test shows that the present method enables bonding strengths to be achieved which are better thanthe I best values obtained by methods at present conventionally It will be' understood from this Table that a treating used. For instance, the breaking strength of samples produced by the present method is 250 kg./sq. em. whereas the peak values obtained with samples (pickling process) produced by conventional methods do not exceed 200 kp./sq. cm.
- EXAMPLE 6 An electrolytic bath is produced by diluting an ap proximately 34% solution. of sodium waterglass with tap water to 8% and adding 5% triethanolamine. This,
- the aluminium plate in then taken out of the bath, rinsed in water and dried which is normally effected in a current of air which may be hot or cold.
- the dry aluminium plates can at once be adhesively bonded, no after-treatment being required.
- two aluminium plates are each completely covered on one side with an epoxy resin adhesive of type AW 136 made by Ciba and then bonded by the application of a pressure of kp./ sq. cm. at a temperature of 130 C., the pressure being maintained for 10 minutes.
- the temperature is then gradually allowed to drop to 40 C. whilst the pressure of 10 kp./sq. cm. continues to be maintained.
- the cooled pressings are then submitted to a bonding strength test, the force being measured which is required to separate the aluminium plates by peeling.
- the test results are assessed by reference to the peeling force and also by examination of the exposed surface. If the bond is satisfactory the adhesive must not have parted from the aluminium surface. In other words, the strength of the adhesive bond to the aluminium surface must be greater than the breaking strength of the adhesive material. In the case of the aluminium samples produced according to Example 1 the result of the peeling test was good, only about of the aluminium oxide layer having a bonding strength that was less than that of the adhesive.
- EXAMPLE 7 An electrolyte solution similar to that in Example 6 but containing 7% triethanolamine is produced and, in an analogous manner, 10 x cm. aluminium plates of 0.5 mm. thickness are anodicaly oxidised in the bath. The oxidised plates are washed and dried and bonded by an epoxy resin adhesive of type AW 106 made by Ciba, a rubber band being interposed between the two aluminium plates. The peeling tests gave very good uniform values for breaking strength and there was no separation of the adhesive from the aluminium oxide surface. In this instance the rubber band was torn apart in such manner that a like rubber surface remained on both plates.
- EXAMPLE 8 An electrolyte solution is produced by diluting a solution of waterglass to 8%, with an addition of 7% of monoethanolamine. In a 30 litre capacity tank made of steel sheet and also serving as the cathode, six 10 x 30 cm. aluminium plates are anodised using a current density of 1.5 amp./dm. A voltage of 180 volts is reached in 2 minutes and, after the current has been switched oif, the plates are taken out of the tank, washed with water and dried. Bonding is effected with an epoxy resin adhesive of the type AW 136 made by Ciba, a rubber film being interposed and bonded between the two aluminium plates. The following test gave particularly good results. After peeling, both plates exhibited an unexceptionable rubber surface. The breaking strength was characterised by a. curve of very uniform shape.
- EXAMPLE 9 A plastics tank 150 mm. wide, 1100 mm. high and 1100 mm. long, is filled with an electrolyte of the following composition:
- the cathode is an x cm. steel sheet 1 mm. thick, and an aluminium sheet that is to be coated is 0.3 mm.
- An anode is contacted with the aluminium sheet with the aid of three suction electrodes having a diameter of 10' cm., and then immersed into the tank, coating being performed in 30 minutes by using a pulsed current supplied by a thyristorcontrolled rectifier.
- the voltage is raised from 0 to 220' Since the best results are achieved at a bathtemperature of 45 C. to 50 C. it is necessary to heat up the bath at 45 C. before starting thetreatment and this is accomplished by using large electric immersion heaters.
- the bath is cooled by circulating the electrolyte through a heat exchanger during the anodising process.
- Another advantage of a layer produced according to the invention is its substantially lighter whitish grey colour which provides a better contrast for copying.
- the cathode is a steelsheetlOO cm. long, 15 cm. broad and 1 mm. thick.
- An aluminium plate that is to be coated consists of a 99.5% aluminium and is 100 cm. long, 10 cm. wide and 1 mm. thick.
- the coating treatment is performed by slowly immersing the aluminium plate into the bath with the application of a voltage of 200 volts. With a violent display of sparks and flashovers between the metal surface and the electrolyte a white film immediately forms and the resultant insulating effect of this layer soon causes the sparking and flashovers between the electrode surface and the electrolyte to be reduced to a level at which only very small sparks can be seen.
- the rate of immersion is usually high enough to achieve a current density of 3 amp./dm. to 5 amp./dm. The rate of immersion thus primarily depends upon the performance of the rectifier and the thickness of the.
- EXAMPLE 11 A 34% solution of waterglass is diluted to 5% with demineralised water, and 4% monoethanolamine and 1% sodium fluoride are added as a complex-forming substance, the volume of the solution being litres. Aluminium foil of 0.2 mm. thickness and 50 mm. width is coated. A 20 cm. length of foil is slowly dipped into the solution at avoltage of 220 volts. Immersion proceeds at a rate at which the current will not exceed 5 amp. The entire foil is immersed in the bath in 15 seconds. The foil is then taken out and the coating process is repeated at a voltage of 250 volts. Again the rate of immersion is so chosen that the current is about 5 amp./dm.
- the foil is taken out of the bath, washed with water and then dried.
- the foil is now covered with a uniform white film which has an excellent bonding strength, and which is very suitable for decorative purposes, for instance as a wallcovering.
- EXAMPLE 12 In the same manner as described in the preceding Example, an electrolyte solution containing 1% sodium waterglass, 5% triethanolamine, 1% methyl pyridine and 20% acetonitrile is prepared with demineralised water. An aluminium foil 0.1 mm. thick, 50 mm. wide and 20 cm. long is slowly immersed in this solution with the application of a voltage of 180 volts, the rate of immersion being so chosen that the current does not exceed 3 amp./drn. In half a minute the immersion is completed. This process is repeated at 220 volts and at 250 volts, the current being again held at 3 amp. After the third immersion, the foil is washed with demineralised water and dried.
- the layer thickness is 35 microns and the breakdown resistance is about 400 volts A.C.
- Strips 20 X 50 mm. are cut from this foil and two such strips are superimposed with the interposition of a paper fleece that has been impregnated with a boric acid electrolyte. The capacity is then determined with the aid of an RC-bridge circuit. The measurements gave 1500 pf./sq. cm., a relatively high value for a product of such a kind.
- a method of coating a part or object made entirely or partly of aluminum or an aluminum alloy comprising submitting the part to be coated to anodic oxidation in an electrolyte bath containing in solution at least one bath-soluble alkali metal silicate, a liquid electrolyte selected from the group consisting of water and mixtures of water and at least one organic solvent and at least one bath-soluble organic complex-forming substance selected from the group consisting of water-soluble primary, secondary and tertiary amines, water-soluble salts of amino acids, water-soluble salts of carboxylic acids, watersoluble salts of sulfonic acids, water-soluble monoand polyhydric phenols, and water-soluble polyhydric alcohols, with the application of a direct current, an alternating current or a pulsating current.
- organic complex-forming substance is a primary, secondary or tertiary amine.
- the organic complex-forming substance is from the group consisting of water soluble salts of an organic carboxylic acid which may contain multiple bonds, a salt of a substituted carboxylic acid, an amino acid, a substituted amino acid, a sulphonic acid, a substituted sulphonic acid, a monoor polyhydric substituted or unsubstituted phenol, a water soluble, polyhydric substituted or unsubstituted alcohol, and a mixture thereof.
- the organic complex-forming substance is from the group 10- consisting of 2-amino-propanol, B-dimethyI-Z-aminoethanol, a salt of ethylenediamino-tetraacetic acid, a salt of cyclohexanediamino-l, Z-tetraacetic acid, a salt of nitrilotriacetic acid, a pyridine-2,6-dicarboxylic acid, 2- pyridyl hydrazine, a pyridine-3 sulphonic acid, pyrrolidone, a pyrrole-2-carboxylic acid and pyrimidine.
- the organic complex-forming substance is from the group consisting of a water soluble salt of glycine, alanine, glutamic acid, tryptophan, methionine, tyrosine, 3-bromotyrosine, aspartic acid, oxylysine and oxyproline.
- the organic complex-forming substance is from the group consisting of a water soluble salt of maleic acid, furnaric acid, acrylic acid, methacrylic acid, p yromellitic acid, citric acid, tartaric acid, aconitic acid and cinammic acid.
- organic complex-forming substance is from the group consisting of a water soluble salt of benzenesulphonic acid, toluenesulphonic acid and lignosulphonic acid.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Primary Cells (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT429571A AT309942B (de) | 1971-05-18 | 1971-05-18 | Verfahren zum anodischen Oxydieren von Gegenständen aus Aluminium oder seinen Legierungen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3824159A true US3824159A (en) | 1974-07-16 |
Family
ID=3562155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00251917A Expired - Lifetime US3824159A (en) | 1971-05-18 | 1972-05-10 | Method of anodically coating aluminum |
Country Status (16)
Country | Link |
---|---|
US (1) | US3824159A (en:Method) |
AT (1) | AT309942B (en:Method) |
AU (1) | AU468713B2 (en:Method) |
BE (1) | BE783558A (en:Method) |
CA (1) | CA996887A (en:Method) |
CH (1) | CH565871A5 (en:Method) |
DD (1) | DD96260A5 (en:Method) |
DE (1) | DE2223850A1 (en:Method) |
FR (1) | FR2137915B1 (en:Method) |
GB (1) | GB1359770A (en:Method) |
HU (1) | HU165700B (en:Method) |
IT (1) | IT955544B (en:Method) |
NL (1) | NL7206588A (en:Method) |
NO (1) | NO131084C (en:Method) |
SE (1) | SE378621B (en:Method) |
ZA (1) | ZA723336B (en:Method) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4492616A (en) * | 1982-09-01 | 1985-01-08 | Hoechst Aktiengesellschaft | Process for treating aluminum oxide layers and use in the manufacture of offset-printing plates |
EP0149490A3 (en) * | 1984-01-17 | 1986-12-03 | Fuji Photo Film Co., Ltd. | Presensitized plate having an anodized aluminum base with an improved hydrophilic layer |
US4689272A (en) * | 1984-02-21 | 1987-08-25 | Hoechst Aktiengesellschaft | Process for a two-stage hydrophilizing post-treatment of aluminum oxide layers with aqueous solutions and use thereof in the manufacture of supports for offset printing plates |
US4976827A (en) * | 1984-03-16 | 1990-12-11 | Swiss Aluminium Ltd. | Process for pretreating strips and foils of aluminum or aluminum alloys |
US6197178B1 (en) | 1999-04-02 | 2001-03-06 | Microplasmic Corporation | Method for forming ceramic coatings by micro-arc oxidation of reactive metals |
WO2002045104A3 (en) * | 2000-11-13 | 2003-01-30 | Kemet Electronics Corp | Method of and electrolyte for anodizing aluminium substrates |
WO2003029528A1 (en) * | 2001-10-02 | 2003-04-10 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US20040140221A1 (en) * | 2003-01-21 | 2004-07-22 | Kinard John Tony | Method of anodizing aluminum utilizing stabilized silicate solutions |
US6830667B2 (en) * | 2000-10-06 | 2004-12-14 | Yamamoto-Ms Co., Ltd. | Cathode cartridge and anode cartridge of testing device for electroplating |
US20050061680A1 (en) * | 2001-10-02 | 2005-03-24 | Dolan Shawn E. | Article of manufacture and process for anodically coating aluminum and/or titanium with ceramic oxides |
US20050115839A1 (en) * | 2001-10-02 | 2005-06-02 | Dolan Shawn E. | Anodized coating over aluminum and aluminum alloy coated substrates and coated articles |
US20050115840A1 (en) * | 2001-10-02 | 2005-06-02 | Dolan Shawn E. | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
US20060013986A1 (en) * | 2001-10-02 | 2006-01-19 | Dolan Shawn E | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating |
US20070144914A1 (en) * | 2000-05-06 | 2007-06-28 | Mattias Schweinsberg | Electrochemically Produced Layers for Corrosion Protection or as a Primer |
US20080047837A1 (en) * | 2006-08-28 | 2008-02-28 | Birss Viola I | Method for anodizing aluminum-copper alloy |
US20100243457A1 (en) * | 2009-03-31 | 2010-09-30 | Masahiro Fujita | Anodic oxide coating and anodizing oxidation method |
US9701177B2 (en) | 2009-04-02 | 2017-07-11 | Henkel Ag & Co. Kgaa | Ceramic coated automotive heat exchanger components |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2023333B (en) * | 1978-06-14 | 1982-09-08 | Philips Electronic Associated | Electron multipliers |
JPS6014838B2 (ja) * | 1980-09-30 | 1985-04-16 | ワイケイケイ株式会社 | アルミニウム表面に着色筋目模様を形成する方法 |
US4400246A (en) * | 1982-06-28 | 1983-08-23 | International Business Machines Corporation | Process for applying barrier layer anodic coatings |
US4715936A (en) * | 1984-04-02 | 1987-12-29 | Sprague Electric Company | Process for anodizing aluminum for an aluminum electrolytic capacitor |
US4481084A (en) * | 1984-04-16 | 1984-11-06 | Sprague Electric Company | Anodization of aluminum electrolyte capacitor foil |
DE4139006C3 (de) * | 1991-11-27 | 2003-07-10 | Electro Chem Eng Gmbh | Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen und auf diese Weise erzeugte Gegenstände aus Aluminium, Magnesium, Titan oder deren Legierungen mit einer Oxidkeramikschicht |
CN114016107B (zh) * | 2021-11-08 | 2023-03-14 | 佛山科学技术学院 | 环保宽温的铝合金阳极氧化电解液及其制备方法与应用 |
-
1971
- 1971-05-18 AT AT429571A patent/AT309942B/de not_active IP Right Cessation
-
1972
- 1972-05-01 GB GB2023172A patent/GB1359770A/en not_active Expired
- 1972-05-10 US US00251917A patent/US3824159A/en not_active Expired - Lifetime
- 1972-05-16 NL NL7206588A patent/NL7206588A/xx unknown
- 1972-05-16 CH CH724072A patent/CH565871A5/xx not_active IP Right Cessation
- 1972-05-16 NO NO1734/72A patent/NO131084C/no unknown
- 1972-05-16 IT IT24386/72A patent/IT955544B/it active
- 1972-05-16 DD DD162999A patent/DD96260A5/xx unknown
- 1972-05-16 DE DE19722223850 patent/DE2223850A1/de active Pending
- 1972-05-16 FR FR727217369A patent/FR2137915B1/fr not_active Expired
- 1972-05-16 ZA ZA723336A patent/ZA723336B/xx unknown
- 1972-05-17 AU AU42390/72A patent/AU468713B2/en not_active Expired
- 1972-05-17 CA CA142,392A patent/CA996887A/en not_active Expired
- 1972-05-17 BE BE783558A patent/BE783558A/xx unknown
- 1972-05-17 SE SE7206430A patent/SE378621B/xx unknown
- 1972-05-18 HU HUIO181A patent/HU165700B/hu unknown
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4492616A (en) * | 1982-09-01 | 1985-01-08 | Hoechst Aktiengesellschaft | Process for treating aluminum oxide layers and use in the manufacture of offset-printing plates |
EP0149490A3 (en) * | 1984-01-17 | 1986-12-03 | Fuji Photo Film Co., Ltd. | Presensitized plate having an anodized aluminum base with an improved hydrophilic layer |
US4801527A (en) * | 1984-01-17 | 1989-01-31 | Fuji Photo Film Co., Ltd. | Presensitized O-quinone diazide plate having an anodized aluminum base with an amine compound containing hydrophilic layer |
EP0149490B1 (en) | 1984-01-17 | 1989-04-26 | Fuji Photo Film Co., Ltd. | Presensitized plate having an anodized aluminum base with an improved hydrophilic layer |
US4689272A (en) * | 1984-02-21 | 1987-08-25 | Hoechst Aktiengesellschaft | Process for a two-stage hydrophilizing post-treatment of aluminum oxide layers with aqueous solutions and use thereof in the manufacture of supports for offset printing plates |
US4976827A (en) * | 1984-03-16 | 1990-12-11 | Swiss Aluminium Ltd. | Process for pretreating strips and foils of aluminum or aluminum alloys |
US6197178B1 (en) | 1999-04-02 | 2001-03-06 | Microplasmic Corporation | Method for forming ceramic coatings by micro-arc oxidation of reactive metals |
US20070144914A1 (en) * | 2000-05-06 | 2007-06-28 | Mattias Schweinsberg | Electrochemically Produced Layers for Corrosion Protection or as a Primer |
US6830667B2 (en) * | 2000-10-06 | 2004-12-14 | Yamamoto-Ms Co., Ltd. | Cathode cartridge and anode cartridge of testing device for electroplating |
WO2002045104A3 (en) * | 2000-11-13 | 2003-01-30 | Kemet Electronics Corp | Method of and electrolyte for anodizing aluminium substrates |
US6916414B2 (en) | 2001-10-02 | 2005-07-12 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US20100000870A1 (en) * | 2001-10-02 | 2010-01-07 | Henkel Ag & Co. Kgaa | Article of manufacture and process for anodically coating aluminum and/or titanium with ceramic oxides |
US20050061680A1 (en) * | 2001-10-02 | 2005-03-24 | Dolan Shawn E. | Article of manufacture and process for anodically coating aluminum and/or titanium with ceramic oxides |
US9023481B2 (en) * | 2001-10-02 | 2015-05-05 | Henkel Ag & Co. Kgaa | Anodized coating over aluminum and aluminum alloy coated substrates and coated articles |
US20050115839A1 (en) * | 2001-10-02 | 2005-06-02 | Dolan Shawn E. | Anodized coating over aluminum and aluminum alloy coated substrates and coated articles |
US20050115840A1 (en) * | 2001-10-02 | 2005-06-02 | Dolan Shawn E. | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
US8663807B2 (en) | 2001-10-02 | 2014-03-04 | Henkel Ag & Co. Kgaa | Article of manufacture and process for anodically coating aluminum and/or titanium with ceramic oxides |
US20060013986A1 (en) * | 2001-10-02 | 2006-01-19 | Dolan Shawn E | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating |
WO2003029528A1 (en) * | 2001-10-02 | 2003-04-10 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US8361630B2 (en) | 2001-10-02 | 2013-01-29 | Henkel Ag & Co. Kgaa | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
US7820300B2 (en) | 2001-10-02 | 2010-10-26 | Henkel Ag & Co. Kgaa | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating |
US7452454B2 (en) | 2001-10-02 | 2008-11-18 | Henkel Kgaa | Anodized coating over aluminum and aluminum alloy coated substrates |
US20090098373A1 (en) * | 2001-10-02 | 2009-04-16 | Henkelstrasse 67 | Anodized coating over aluminum and aluminum alloy coated substrates and coated articles |
US7569132B2 (en) | 2001-10-02 | 2009-08-04 | Henkel Kgaa | Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
US7578921B2 (en) | 2001-10-02 | 2009-08-25 | Henkel Kgaa | Process for anodically coating aluminum and/or titanium with ceramic oxides |
US20090258242A1 (en) * | 2001-10-02 | 2009-10-15 | Henkel Ag & Co. Kgaa | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
US6797147B2 (en) | 2001-10-02 | 2004-09-28 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US20080280153A1 (en) * | 2003-01-21 | 2008-11-13 | John Tony Kinard | Method of Anodizing Aluminum Utilizing Stabilized Silicate Solutions |
US20040140221A1 (en) * | 2003-01-21 | 2004-07-22 | Kinard John Tony | Method of anodizing aluminum utilizing stabilized silicate solutions |
US20050103640A1 (en) * | 2003-01-21 | 2005-05-19 | Kinard John T. | Method of anodizing aluminum utilizing stabilized silicate solutions |
US20080047837A1 (en) * | 2006-08-28 | 2008-02-28 | Birss Viola I | Method for anodizing aluminum-copper alloy |
US20100243457A1 (en) * | 2009-03-31 | 2010-09-30 | Masahiro Fujita | Anodic oxide coating and anodizing oxidation method |
US9701177B2 (en) | 2009-04-02 | 2017-07-11 | Henkel Ag & Co. Kgaa | Ceramic coated automotive heat exchanger components |
Also Published As
Publication number | Publication date |
---|---|
GB1359770A (en) | 1974-07-10 |
BE783558A (fr) | 1972-09-18 |
NO131084C (en:Method) | 1975-04-02 |
AU468713B2 (en) | 1976-01-22 |
IT955544B (it) | 1973-09-29 |
SE378621B (en:Method) | 1975-09-08 |
AT309942B (de) | 1973-09-10 |
DD96260A5 (en:Method) | 1973-03-12 |
DE2223850A1 (de) | 1972-12-07 |
NO131084B (en:Method) | 1974-12-23 |
CH565871A5 (en:Method) | 1975-08-29 |
FR2137915B1 (en:Method) | 1974-07-26 |
HU165700B (en:Method) | 1974-10-28 |
CA996887A (en) | 1976-09-14 |
ZA723336B (en) | 1973-03-28 |
NL7206588A (en:Method) | 1972-11-21 |
FR2137915A1 (en:Method) | 1972-12-29 |
AU4239072A (en) | 1973-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3824159A (en) | Method of anodically coating aluminum | |
US4681668A (en) | Anodic aluminium oxide film and method of forming it | |
CN110983415B (zh) | 一种镁锂合金表面复合氧化处理方法 | |
US4293617A (en) | Process for producing strippable copper on an aluminum carrier and the article so obtained | |
US3455775A (en) | Metal-plastic laminate and method for the preparation thereof | |
US4133725A (en) | Low voltage hard anodizing process | |
CN100425740C (zh) | 镁合金在抑弧状态下的阳极氧化电解液及阳极氧化方法 | |
US1971761A (en) | Protection of metals | |
JPH0258094B2 (en:Method) | ||
CN85103365A (zh) | 铝或铝合金表面乳白色薄膜生成法 | |
US3345276A (en) | Surface treatment for magnesiumlithium alloys | |
USRE31743E (en) | AC Etching of aluminum capacitor foil | |
KR100777176B1 (ko) | 마그네슘을 주성분으로 하는 금속체의 표면 처리 방법 | |
US4279714A (en) | AC Etching of aluminum capacitor | |
US3920525A (en) | Process for continuously anodizing aluminum | |
JPH06297639A (ja) | フィルム積層アルミニウム材およびフィルム積層用アルミニウム材の製造方法 | |
EP0120119A2 (en) | Sealing thick anodic coatings on aluminium substrates | |
JP3553288B2 (ja) | 耐食性および光輝性に優れた車両用ホイール | |
JPH08283990A (ja) | アルミニウム材 | |
US3945895A (en) | Method of producing colored anodic coating on aluminum and its alloys | |
US3791943A (en) | Process for after treatment of anodic oxide or chemical conversion coatings of aluminum or aluminum alloys | |
US4735696A (en) | Method of electrolytically graining aluminum metal sheets suitable for lithographic plate supports | |
JP2953474B2 (ja) | アルミニウムおよびアルミニウム合金の電解処理方法 | |
JPH0762595A (ja) | アルミ二ウムの陽極酸化により生成する酸化アルミニウムの積層構造皮膜体及びその製造方法 | |
JPS607039B2 (ja) | アルミニウムまたはアルミニウム合金の電着塗装法 |