US3823956A - Ski - Google Patents
Ski Download PDFInfo
- Publication number
- US3823956A US3823956A US00210915A US21091571A US3823956A US 3823956 A US3823956 A US 3823956A US 00210915 A US00210915 A US 00210915A US 21091571 A US21091571 A US 21091571A US 3823956 A US3823956 A US 3823956A
- Authority
- US
- United States
- Prior art keywords
- ski
- insert
- layers
- stiffness
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004033 plastic Substances 0.000 claims abstract description 6
- 229920003023 plastic Polymers 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 12
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 3
- 230000001413 cellular effect Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 2
- 239000011152 fibreglass Substances 0.000 claims 1
- 239000002657 fibrous material Substances 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 230000003014 reinforcing effect Effects 0.000 description 9
- 239000010410 layer Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000003365 glass fiber Substances 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000011496 polyurethane foam Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C5/00—Skis or snowboards
- A63C5/12—Making thereof; Selection of particular materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Definitions
- laminated skis have been developed containing one or several core layers andlor an upper surface portion consisting of tough orgic or vegetable a high tensile strength interposed beneen the wooden layers or veneers. Said layer extemk over the whole length and width of the ski and is potioned close to the running surface, preferably on top of it.
- An object of this invention is to produce a ski combining the stiffness in the longitudinal fiection of conventional skis with a considerably grater stiffness in the transverse direction as compared to known designs.
- a ski is to be provided which is resistant to torsional forces, thus ensuring a high amount of grip. Moreover, it is intended to reduce the weight of the ski to a minimum.
- this object is obtained by using fibrous material for the reinforcing elements having a high specific stiffness (modulus of elasticity/specific weight ratio) which is wound about a core and cured after resin impregnation, or pre-treated and cured matted fibrous material with the threads wound at an angle of approximately 30 to 60', preferably 45, to the longitudinal axis of the ski in a criss-cross pattern over the width of the ski.
- fibrous material for the reinforcing elements having a high specific stiffness (modulus of elasticity/specific weight ratio) which is wound about a core and cured after resin impregnation, or pre-treated and cured matted fibrous material with the threads wound at an angle of approximately 30 to 60', preferably 45, to the longitudinal axis of the ski in a criss-cross pattern over the width of the ski.
- the advantage of this invention con ists in that the material properties (modulus of elasticity E, transverse stiffness G) of a fiber reinforced material of great specific stiffness and strength can be mixed by wrapping the threads at the proposedangle between approximatch ⁇ 30 to :60; preferably 4s', to the longitudinalaxis thus ensuring an amount of flexibility in the longitudinal direction comparable to known plastic and metal skis but a much-greater transverse stiffness.
- a ski of the above design offers a transverse stiffness. never obtained before without requiring reinforcement ribs or similar features impairing. the flexibility and increasing the risk of failure.
- An advantageous embodiment of this invention is the use of infinitely long, approximately 1 2 km, threads for the core with high specific stiffness and a thermal expansion coefficient approximately constant in the longitudinal direction, which are treated with resin, wrapped around a core member and then cured to form a flat hollow body positioned approximately in the neutral zone and extending over .the whole length and width of the ski.
- Said hollow core can be formed in the following manner: An infinitely long resin-impregnated strand of unidirectional fiber threads is wrapped about a core of constant section, e.g., a form-retaining metaf strip, preferably at an angle of 45 to the longitudinal axis; the side surfaces of the hollow body should form a maximum radius because of the high specific stiffness.
- the resin is cured at the minimum permissible temperature, in the case of epoxy resins and the metal strip is then removed from the hollow body at an extremely low temperature; this is possible because the radial dimensions of the core remain constant whereas the metal strip is subject to large shrinkage due to is great thermalexpansion coefficient.
- 'Another embodiment of this invention comprises a core of cellular material, e.g., polyurethane foam or a wooden core of-any desired section which can preferably be adaptedito the section of the ski. in this case, the core cannot removed after the wrapping operation.
- a core of cellular material e.g., polyurethane foam or a wooden core of-any desired section which can preferably be adaptedito the section of the ski. in this case, the core cannot removed after the wrapping operation.
- the resulting flat and laminated hollow body forms the reinforcing element of the ski which shows a great resistance to torsion, of
- the. characteristics of the ski can be variedfrom great flexibility as obtained by a core roughly corresponding to the sectional height of the ski.
- a significant advantage lies in the fact that both the ski of high flexibility and of low flexibility offers great transverse stiffness.
- Said hollow reinforcing core can advantagcously be positioned in the neutral zone of the ski since the stiffness is ensured by the configuration of the core.
- resin-impregnated matted fibrous material can be provided in one or seria pla'ri'es of the ski with the individual threads also positioned at an angle of to 60, preferably 45, to the longitudinal axis of the ski and in a criss-eross pattern.
- this invention additionally provides the use of individual short filaments embedded in a resin matrix insteadof a hollow body or matted material.
- carbon or boron-fibers are used;.an outstanding feature of said fibers is theirhigh specific modulus of elasticity or stiffness, i.e., the
- FIG. 3 is a crossssectional view of the center portion.
- the height of the laminated hollow body corresponds to the sectional thickness of the ski as can also be seen from FIG.- 4, which is a cross-sectional view of the ski tail portion.
- the hollow body is again of extremely flat configuration.
- FIG. 5 is a cross-sectional view of another embodiment of the ski according to this invention. In this case,
- ferentfthickness where the thickness is selected according t'o'the desired flexibilityof the ski.
- the longitudinal direction of the ski reinforcing elements of higher flexibility preferably of glass fiber J reinforced plastic, forming the top and/or bottonsurface portion of the ski. This arrangement is advantageous'when the shell of the ski is to be of glass fiber re-; inforced plastic.
- a skids obtained having great-transverse stiffness over its whole length, and in addition. its flexibility can be controlled as desired dur-' 7 ing manufacture by different filament angles and,
- the ski of this invention will retain its excellent-material properties over a longer period than 'skis' largely mechanized so that the customer can be ofi'ered a reasonable priced high-perfonnan'ceski even with higher material costs.
- FlGg-l is a plan view of the ski, partly shown in sectioniifh FlC S .-'2, 3 and 4 are. respectivey *cross-sectional views-taken on the lines "-11. lllglll and lV-lV in FIG-.51: and
- i-lGjLQSv is a cross-sectional n'ewthfrough a modificafl:
- FlGL-fi is a cross-sectional view hrough a further modification of the ski.
- a ski S has the top surface removed from its tail portion so that unidirectional carbon fibers l a criss-cross pattern at an angle a of to the ski longiof known design.
- the manufacturelof this ski can be .145
- Themeans by which the objects of'this invention are obtained are described more fully reference to the v provided in three planes with two layers of polyurethane foam 8 in between.
- the side surfaces and the top and bottom surfaces ⁇ . and 9a consist of resin reinforced by glass fiber in the embodirne howmthe running edges are indicated by grooves'ltliand the running surface represented only by a line! 1; fe-two items'are bonded to the bottom surface fiortiom; t
- this invention is not limited to the embodiments showmbut may include a-number of other embodiments which can also be a combination of the embodiments slibwn; "as an 'example,'the carbon fiber reinforced layers 7a,. 711,70 might be so connected at their side edges tliat an'-S-type section is formed or fibers reinforced' 'res'i Having now describedthemeans'by which the objects of this invention are obtained, j-
- a torsion-resis longitudinally elastic plastic ski having an elongated j nsertincluding fibers extending transversely to the lengthof the ski, said insert comprising a preimpregnated and hardened fiber compound the foam material tif-ll yersfi might be replaced by glass layers of fiber-reinforced plastic material whose strands extend at an angleoflfrom 30? to 60 transversely to the length of the ski, saidflayers' being connected along the edges of the insert adjacent the edges in such a way that they form an S in cross-section.
- ski of claim 1 in which cellular material is p0.- and 2 areivisible embedded in a layer-fof epoxy resin in 0', "sitioned betweenthe-layers of the insert.
Landscapes
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Tires In General (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2063167A DE2063167B2 (de) | 1970-12-22 | 1970-12-22 | Ski |
Publications (1)
Publication Number | Publication Date |
---|---|
US3823956A true US3823956A (en) | 1974-07-16 |
Family
ID=5791853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00210915A Expired - Lifetime US3823956A (en) | 1970-12-22 | 1971-12-22 | Ski |
Country Status (9)
Country | Link |
---|---|
US (1) | US3823956A (enrdf_load_stackoverflow) |
JP (1) | JPS5127179B1 (enrdf_load_stackoverflow) |
CH (1) | CH555186A (enrdf_load_stackoverflow) |
DE (1) | DE2063167B2 (enrdf_load_stackoverflow) |
FI (1) | FI58438C (enrdf_load_stackoverflow) |
FR (1) | FR2119548A5 (enrdf_load_stackoverflow) |
GB (1) | GB1379749A (enrdf_load_stackoverflow) |
IT (1) | IT944157B (enrdf_load_stackoverflow) |
NO (1) | NO130264B (enrdf_load_stackoverflow) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4261778A (en) * | 1976-11-23 | 1981-04-14 | A/S Norske Skiprodukter | Method of producing skis |
JPS6171078A (ja) * | 1984-09-13 | 1986-04-11 | 長谷川化学工業株式会社 | スキ− |
US5492357A (en) * | 1993-11-30 | 1996-02-20 | Skis Rossignol Sa | Ski with longitudinal reinforcement |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE7806170L (sv) | 1977-06-10 | 1978-12-11 | Norsk Skiforsk | Vallningsfritt skidbelag av plast samt sett for dess framstellning |
CH668743A5 (de) * | 1985-11-29 | 1989-01-31 | Cellpack Ag | Verstaerkungselement fuer formteile aus kunststoff, kunststoffschaumteil mit verstaerkungselement und ski mit kunststoffschaumteil. |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1092526A (fr) * | 1953-10-28 | 1955-04-22 | Manuf De Confection Berthiot M | Procédé de fabrication des skis |
FR1351207A (fr) * | 1963-03-19 | 1964-01-31 | Ski, notamment ski en matière plastique et son procédé de fabrication | |
US3491055A (en) * | 1965-06-24 | 1970-01-20 | Texaco Inc | Boron filament-epoxy composite high strength structures |
US3503621A (en) * | 1968-05-08 | 1970-03-31 | Kimball Schmidt Inc | Fiber glass ski with channel construction |
US3607608A (en) * | 1966-01-17 | 1971-09-21 | Owens Corning Fiberglass Corp | Fiber-reinforced ceramics |
US3635482A (en) * | 1967-03-30 | 1972-01-18 | Amf Inc | Ski and method of manufacture |
US3700535A (en) * | 1971-03-12 | 1972-10-24 | Atomic Energy Commission | Carbon fiber structure and method of forming same |
-
1970
- 1970-12-22 DE DE2063167A patent/DE2063167B2/de active Granted
-
1971
- 1971-12-20 FI FI3618/71A patent/FI58438C/fi active
- 1971-12-21 CH CH1863371A patent/CH555186A/xx not_active IP Right Cessation
- 1971-12-21 IT IT32684/71A patent/IT944157B/it active
- 1971-12-21 FR FR7145917A patent/FR2119548A5/fr not_active Expired
- 1971-12-21 NO NO04743/71A patent/NO130264B/no unknown
- 1971-12-21 GB GB5943571A patent/GB1379749A/en not_active Expired
- 1971-12-22 US US00210915A patent/US3823956A/en not_active Expired - Lifetime
- 1971-12-22 JP JP46104523A patent/JPS5127179B1/ja not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1092526A (fr) * | 1953-10-28 | 1955-04-22 | Manuf De Confection Berthiot M | Procédé de fabrication des skis |
FR1351207A (fr) * | 1963-03-19 | 1964-01-31 | Ski, notamment ski en matière plastique et son procédé de fabrication | |
US3491055A (en) * | 1965-06-24 | 1970-01-20 | Texaco Inc | Boron filament-epoxy composite high strength structures |
US3607608A (en) * | 1966-01-17 | 1971-09-21 | Owens Corning Fiberglass Corp | Fiber-reinforced ceramics |
US3635482A (en) * | 1967-03-30 | 1972-01-18 | Amf Inc | Ski and method of manufacture |
US3503621A (en) * | 1968-05-08 | 1970-03-31 | Kimball Schmidt Inc | Fiber glass ski with channel construction |
US3700535A (en) * | 1971-03-12 | 1972-10-24 | Atomic Energy Commission | Carbon fiber structure and method of forming same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4261778A (en) * | 1976-11-23 | 1981-04-14 | A/S Norske Skiprodukter | Method of producing skis |
JPS6171078A (ja) * | 1984-09-13 | 1986-04-11 | 長谷川化学工業株式会社 | スキ− |
US5492357A (en) * | 1993-11-30 | 1996-02-20 | Skis Rossignol Sa | Ski with longitudinal reinforcement |
Also Published As
Publication number | Publication date |
---|---|
GB1379749A (en) | 1975-01-08 |
DE2063167C3 (enrdf_load_stackoverflow) | 1975-06-19 |
DE2063167B2 (de) | 1974-10-31 |
FI58438B (fi) | 1980-10-31 |
CH555186A (de) | 1974-10-31 |
NO130264B (enrdf_load_stackoverflow) | 1974-08-05 |
FI58438C (fi) | 1981-02-10 |
IT944157B (it) | 1973-04-20 |
DE2063167A1 (de) | 1972-06-29 |
FR2119548A5 (enrdf_load_stackoverflow) | 1972-08-04 |
JPS5127179B1 (enrdf_load_stackoverflow) | 1976-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4071264A (en) | Ski and method of making same | |
US3902732A (en) | Advanced composition ski | |
US4177306A (en) | Laminated sectional girder of fiber-reinforced materials | |
US2695178A (en) | Laminated ski and method of making same | |
US4358113A (en) | Hockey stick | |
US3740301A (en) | Elongated lightweight structure | |
US4599012A (en) | Self-redressing slalom pole | |
US3503621A (en) | Fiber glass ski with channel construction | |
US2945488A (en) | Composite bow for archers | |
US5948472A (en) | Method for making a pultruded product | |
US3823956A (en) | Ski | |
US3322435A (en) | Ski | |
US4068861A (en) | Lightweight, flexible ski | |
JPH05103854A (ja) | スキー板構造 | |
DE4017539A1 (de) | Ski mit einem zumindest im obergurt integrierten sandwichgurt | |
US3396922A (en) | Spar and wing structure therefrom | |
US3893681A (en) | Ski | |
US4469733A (en) | Foam sandwich construction | |
US5229187A (en) | Rod construction | |
US3415529A (en) | Laminated ski having multiple core elements with individual glass fiber wrappings | |
FI55612C (fi) | Skidstav. | |
US4539785A (en) | Captive column | |
US4700647A (en) | Boom of the wishbone-type for sailing boards | |
DE1809011A1 (de) | Ski(im wesentlichen aus Integralschaum hergestellt) | |
DE2713608A1 (de) | Ski mit schwingungsdaempfungsfaser und verfahren zu seiner herstellung |