US3814974A - Cathode gun device - Google Patents
Cathode gun device Download PDFInfo
- Publication number
- US3814974A US3814974A US00349156A US34915673A US3814974A US 3814974 A US3814974 A US 3814974A US 00349156 A US00349156 A US 00349156A US 34915673 A US34915673 A US 34915673A US 3814974 A US3814974 A US 3814974A
- Authority
- US
- United States
- Prior art keywords
- foil
- cathode
- heat
- support member
- conduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011888 foil Substances 0.000 claims abstract description 93
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 238000012546 transfer Methods 0.000 claims description 25
- 230000005855 radiation Effects 0.000 claims description 13
- 238000003466 welding Methods 0.000 claims description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 239000011733 molybdenum Substances 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 7
- 229910052702 rhenium Inorganic materials 0.000 claims description 5
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 16
- 238000010438 heat treatment Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000004049 embossing Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- SYOKIDBDQMKNDQ-XWTIBIIYSA-N vildagliptin Chemical compound C1C(O)(C2)CC(C3)CC1CC32NCC(=O)N1CCC[C@H]1C#N SYOKIDBDQMKNDQ-XWTIBIIYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/20—Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/02—Electrodes; Magnetic control means; Screens
- H01J23/04—Cathodes
Definitions
- Basiulis CATHODE GUN DEVICE Algerd Basiulis, Redondo Beach,.
- This invention relates generally to traveling wave tubes (TWT) and more particularly to a TWT utilizing a foil insulated cathode that is maintained at thermionic emission temperature with substantially less power than previous insulated cathodes.
- a traveling wave tube includes an electron gun assembly and a collector assembly coupled together by a slow-wave structure.
- the electron gun assembly emits a stream of electrons which travels through the slowwave structure and is collected by the collector assembly.
- the stream of electrons is caused to interact with a propagating electromagnetic wave in a manner which amplifies the electromagnetic energy.
- the electromagnetic wave is propagated along the slow-wave structure, such as a conductive helix wound about the path of the electron stream.
- the slow-wave structure provides a path of propagation for the electromagnetic wave such that the traveling wave effectively propagates at nearly the veelectric field may be applied for focusing the electron stream emitted from the cathode electrode.
- An accelerating anode may be used to accelerate the electrons before the stream enters the slow-wave structure.
- the above-mentioned electrical components are positioned in a supporting structure which is attached to one end of the slow-wave structure.
- Thermionic emission from the cathode takes place when the cap is heated to approximately I,000C by the cathode heater. Along with the cathode heater and the cathode being heated to I,O00C the other components and the support structure are also heated to approximately the cathode temperature by both radiation and conduction from the cathode electrode. Since essentially the entire electron gun assembly is heated by the cathode heater to a very high temperature, sufficient power must be supplied to the cathode heater to maintain the cathode at the proper thermionic emission temperature. The requirement of additional power to maintain the entire cathode gun assembly at an ele vated temperature may place excessive demands on a limited power source such asin a space vehicle.
- heating of components other than the cathode heater and the cathode induces problems of alignment of these other electrodes, i.e. metals expand causing position changes of these various electrodes making alignment difficult. High temperature operation may also tend to induce metal fatigue resulting in a shortened life for the cathode gun assembly.
- a cathode electrode includes a cathode mounted to one end of a tubular cathode support member.
- a polished, embossed, thin foil made of a low thermal conductivity and low emissivity metal is coiled about the cathode electrode such that adjacent coils are separated from each other by the embossed surfaces.
- An effective plurality of individual heat shields is then formed wherein there is low thermal conductivity along the length of the foil and from coil to coil.
- the polished foil surface reflects heat back to a heatsource while a minimum of heat is radiated by the low emissivity foil.
- FIG. 1 is a partial longitudinal sectional view illustrating a cathode gun as is known in the prior art
- FIG. 2 is a side view, partially broken away, of a cathode gun and heat shields according to an embodiment of the present invention
- FIG. 3 is a top view of the invention according to the embodiment of FIG. 2;
- FIG. 4 is a graph of number ofcoil turns versus heat loss represented as temperature of an outside coil, for the parameters of: conduction, radiation, and a combination of conduction and radiation.
- a cathode gun device may be seen to include a cathode electrode 10, a heater electrode 20, and a heat reflective shield 30.
- the cathodeheater 20 heats the cathode electrode 10 to thermionic emission temperature, approximately 1,000C, andthe heat reflective shield 30, surrounding the exterior of the cathode electrode 10, reflects back some heat that is radiated from the circumference of the cathode electrode 10.
- the cathode electrode 10 includes an electron emitting cathode cap 11, a cathode support member 14,
- the electron emissive cathode cap hereinafter called cathode 11, is a cylindrically shaped disk with a concave surface at one end 12 from which electrons are emitted and a flat surface at the other end 13.
- the cathode 11 may be made of a material suitable for electron emission when heated to the proper thermionic temperature such as molybdenum or tantalum, for example.
- the flat end 13 of the cathode 11 is mounted to one end of a tubular cathode support member 14 which may be made of a metal such as molybdenum.
- the other end 15 of the cathode support member 14 is mounted to a tubular cathode sleeve 16 that is made of a material having lower thermal conductivity than the cathode support 14 such as tantalum.
- a heat reflective shield 30 is disposed about the circumference of the cathode 11, the cathode support member 14, and is attached to the cathode sleeve 16.
- the heat reflective shield 30 is tubular in shape with a substantial portion of its length having an inside diame ter larger than the cathode 11 or the cathode support member 14 such that the heat reflective shield 30 is spaced away from cathode 11 and the cathode support 14.
- One end of the heat reflective shield 30 has a sufficiently reduced diameter to be attached onto the cathode sleeve 16 by any convenient method such as spot welding, for example, along the circumference indicated as point 31.
- the cathode heater 20 for heating the cathode 11 to thermionic emission temperature of approximately 1,000C.
- the cathode heater 20 is in close proximity to the cathode 11 for maximum heat transfer to the cathode 11.
- An insulating structure 21, such as a suitable high temperature potting compound, may be used to space the cathode heater 20 away from the cathode 11 and the cathode support 14. Terminals 22 and 23 of the cathode heater element 20 may extend beyond the cathode sleeve 16 for convenient electrical connection.
- such a heat reflective shield 30 is unstable during period of mechanical vibration. Since one end is unsupported, it is free to oscillate in response to mechanical vibration and cause mechanical and electrical malfunction of the electron gun assembly by shorting out some of the neighboring electrodes and structure.
- a cathode gun assembly may be seen to include a cathode electrode 10, a cathode heater electrode 20, a first heat shield 40, and a second heat shield 50.
- the cathode electrode 10 and the cathode heater electrode 20 are similar to the corresponding components described in FIG. 1 having the corresponding reference designations.
- Each of the first and second heat shields, 40 and 50 respectively, is an effective plurality of heat shields made of low thermal conductivity, low emissivity metal foil having a very small thickness and a polished surface.
- the first heat shield 40 is disposed about the outer circumference of the cathode electrode 10, while the second heat shield 50 is disposed about the inner circumference of the cathode electrode 10.
- the first heat shield 40 is a thin embossed metal sheet or foil 41 attached to the outside diameter of the cathode electrode 10 and wound or coiled several times around the cathode electrode 10, thereby forming a plurality of layers of a spiral configuration about the cathode electrode 10.
- the leading edge of the foil 41 is attached to the cathode electrode 10 by welding or spot welding along the line 42.
- the foil 41 may be kept from unwinding by securing the outermost coil by welding or spot welding along the line 43 or by a sleeve 44, shown as a dotted line in H0. 2, being positioned over the heat shield 40.
- the foil 41 thickness in the illustrated arrangement is approximately 0.0002 inch.
- the embossing may be in any convenient pattern that projects or extends a substantially small portion of the foil surface above the rest of the surface.
- the projections may be dimples or trough-like depressions that are made with a punch and die.
- the embossing or projections, herein shown extending from the polished surface 47, may extend from either side of the foil. Projections may also be made in an additive manner by welding beads on one surface of the foil 41.
- the embossed pattern or the projections is such that a surface placed face-to-face on the projections is separated from the substantially flat surface of the embossed foil 41 by those projections.
- the apex of a typical projection is preferably relatively pointed or sharp so that it contacts a very small area on an adjacent contacting surface.
- An embossed pattern is provided on the foil 41 and the various coils about the cathode electrode 10 may be seen to be spaced away from each other.
- Each succeeding coil 41B is separated from the preceding coil 41A by a dimple 45 provided by the embossed pattern on the succeeding coil 418.
- the tip 46 of the dimples, such as 45 makes minimal contact with the preceding coil 41A and a very small amount of heat is transferred by conduction through such a small area from one coil to another.
- the foil 41 has a polished inside surface 47 such that radiant thermal energy emitted by the cathode electrode 10 is reflected by the polished surface; and the foil may be made of a low emissivity material, in the neighborhood of e 0.], so that each coil radiates a small amount'of heat.
- the outer surface 48 need not be highly polished.
- the material should also have a low thermal conductivity constant such that heat transfer by conduction along the length of the foil from the innermost coil to the outermost is low. Materials having thermal conductivity constants ranging from 0.1 l l to 0.390 cal/cm /C/sec may be used with satisfactory results.
- the foil 41 should be very thin, approximately 0.0002 inch thick, for example, so that the area through which heat is conducted, i.e., along the length of the foil from the innermost to the outermost coil, is very small, thereby limiting heat conduction.
- the second heat shield 50 is formed by attaching a foil 51 to the inside diameter of the cathode electrode l and winding the foil 51 several times within itself.
- the foil is welded to the cathode electrode 10 along the line 52 and the innermost coil is welded along the line 53 to prevent it from unwinding.
- a sleeve 54 may be placed inside the heat shield 50 to prevent the foil 51 from unwinding.
- the second heat shield 50 may be of the same type of material as the first foil 41, i.e., thin, embossed, low thermal conductivity and low emissivity polished surface for providing thermal insulation similar to the first heat shield 10. It is pointed out that it is not necessary in accordance with the invention that the first and second heat shields, 40 and 50, respectively, be used in conjunction with each other, but they may be used individually.
- foils 41 and 511 A partial listing of suitable materials from which the foils 41 and 511 may be made is given below. These materials were chosen because they are typically employed in making cathode electrodes and they can withstand the high temperature requirements of normal cathodes. It is further pointed out the other materials may be used which fulfill the above-described requirements and the invention is not to be limited to those materials listed. Some of the materials that may be utilized for the foils 41 and 51 in practicing the invention include:
- the thermal conductivity constants given are at 0C, while the emissivity constants are at l,000C.
- a top view of the invention according to FIG. 2 includes the cathode electrode and a first heat shield 40 as shown in FIG. 2.
- the innermost coil is welded to the cathode electrode 10 along the line extending downwards (into the drawing) from point 42.
- the outermost coil is welded to the previous coil along the line extending downward (into the drawing) from the point 43.
- An alternate method of preventing the foil 411 from unwinding is by placing the sleeve 44, shown by a dashed outline, about or around the outer surface of the foil 41.
- Q KA /LAT where Q heat in calories/sec; K thermal conductivity of the material in cal-cm/cm -sec-T;
- a cross-sectional area of the foil in a plane orthogonal to the length of the foil strip in the direction of winding in cm (thickness x width along axis of cathode in the direction of the longitudinal center axis of the coil; L length of the foil along the length of the foil winding along which the heat flows in cm; and A T difference in temperature between the cathode temperature (approx. 1,000C) and room temperature (2pm;- 2
- K room temperature
- AJIIS minimized by using a very thin foil, i.e., .0902 inch thick.
- the length is maximized by using a relatively long foil, i.e., long relative to the thickness, such as with a relatively large number of coils. Therefore, as a result of selecting these parameters, the ratio A /L may be made relatively small.
- Minimum heat flow along the length of the foil also requires using materials having a low thermal conductivity constant, K, as described above.
- the foil 40 instead of being considered as a continuous coiled sheet, is considered as individual heat shields or coils coaxially disposed about each other and spaced away from each other, thereby ignoring the effects of thermal transfer by conduction. Since the coils have a polished inner surface, most of the heat that is radiated by the cathode electrode 10 will be reflected back to that cathode electrode 10. During steady state operation, the heat that is absorbed by the coils will be radiated outwardly according to the following equation:
- the coordinates of the graph represent steady state temperature of the outer surface of a coil in C versus the number of turns or coils that make up the total heat shield.
- the solid curve 60 represents heat transfer by conduction along a continuously wrapped foil according to the first equation and is an approximation of the temperature of the outermost coil.
- the short dashed curve 70 represents heat transfer by radiation between coaxially disposed heat shields according to the second equation and is an approximation of the temperature of the outermost shield.
- the long dashed curve 80 represents an approximation of the temperature of the last coil due to the cumulative effects of both conduction and radiation according to both of the above equations. It is further pointed out that these curves are calculated approximations based on radiation or conduction only and are illustrative of the relationship among these various parameters and they are not illustrative of any absolute values.
- the present invention provides a simple and reliable shielded cathode electrode.
- the device may reduce the input power required to maintain the cathode at thermionic emission temperature by as much as 50 percent.
- a cathode electrode according to FIGS. 2 and 3 was constructed and tested using 40 turns of a 0.0002 inch thick molybdenum foil to provide an outer shield. The tests revealed that an unshielded cathode electrode normally requiring 21.5 watts'of input power, with the shielded cathode requiring only 13.3 watts, and it is believed the temperature of the outside coil was slightly above ambient or room temperature.
- a cathode gun device for use in a traveling-wave tube comprising:
- a cathode for being heated to thermionic emission temperature
- tubular cathode support member having one end coupled to said cathode
- a metal foil being coiled about itself several times and being disposed about said cathode support member forming an effective plurality of heat shields
- said foil being relatively long in length for having a relatively long heat conduction path
- said foil having a relatively low thermal conductivity constant for minimizing thermal transfer by conduction along the length of said foil;
- said foil having projections from a selected surface for substantially separating adjacent coils and minimizing thermal transfer by conduction therebetween;
- said foil having a polished surface for effectively refleeting heat from said surface
- said foil having a relatively low emissivity for minimizing thermal transfer by radiation
- said means for mounting said foil comprises a sleeve member positioned to secure said foil to said cathode support member.
- metal foil is a metal selected from the group consisting of:
- a cathode gun device for conserving power in a traveling-wave tube comprising:
- a cathode for being heated to thermionic emission temperature
- said foil being relatively long in length for providing a relatively long heat conduction path
- said foil having a substantially thin cross-sectional area for minimizing heat transfer by conduction along the length of said foil;
- said foil having a relatively low thermal conductivity constant for minimizing thermal transfer by conduction along the length of said foil;
- said foil having projections from a surface for substantially separating adjacent coils and minimizing thermal transfer by conduction therebetween;
- said foil having a polished surface for effectively refleeting heat from said surface
- said foil having a relatively low emissivity for minimizing thermal transfer by radiation.
- metal foil is a metal selected from the group consisting of:
Landscapes
- Solid Thermionic Cathode (AREA)
- Microwave Tubes (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00349156A US3814974A (en) | 1973-04-09 | 1973-04-09 | Cathode gun device |
| GB1297974A GB1424167A (en) | 1973-04-09 | 1974-03-22 | Cathode assembly for a travelling-wave tube |
| NL7404189.A NL163665C (nl) | 1973-04-09 | 1974-03-27 | Kathodekanon voor een lopende golfbuis. |
| DE2415152A DE2415152B2 (de) | 1973-04-09 | 1974-03-29 | Kathodenanordnung für eine Wanderfeldröhre |
| FR7411219A FR2224868B1 (enExample) | 1973-04-09 | 1974-03-29 | |
| JP49039568A JPS503568A (enExample) | 1973-04-09 | 1974-04-09 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00349156A US3814974A (en) | 1973-04-09 | 1973-04-09 | Cathode gun device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3814974A true US3814974A (en) | 1974-06-04 |
Family
ID=23371139
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00349156A Expired - Lifetime US3814974A (en) | 1973-04-09 | 1973-04-09 | Cathode gun device |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3814974A (enExample) |
| JP (1) | JPS503568A (enExample) |
| DE (1) | DE2415152B2 (enExample) |
| FR (1) | FR2224868B1 (enExample) |
| GB (1) | GB1424167A (enExample) |
| NL (1) | NL163665C (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0204541A3 (en) * | 1985-06-04 | 1987-08-12 | English Electric Valve Company Limited | Discharge tube apparatus |
| US5202910A (en) * | 1990-08-28 | 1993-04-13 | North American Philips Corporation | Anode for arc discharge devices |
| EP3699947A3 (en) * | 2019-02-21 | 2020-11-25 | Varex Imaging Corporation | X-ray tube emitter |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS51112166A (en) * | 1975-03-27 | 1976-10-04 | Matsushita Electric Ind Co Ltd | Impregnated cathode |
| JPS5458344A (en) * | 1977-10-19 | 1979-05-11 | Hitachi Ltd | Thermal electron radiation cathode |
| JPS5574032A (en) * | 1978-11-29 | 1980-06-04 | Nec Corp | Indirectly-heated cathode |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2391927A (en) * | 1944-01-08 | 1946-01-01 | Standard Telephones Cables Ltd | Electron discharge device |
| US2518879A (en) * | 1945-02-03 | 1950-08-15 | Kenneth J Germeshausen | Hydrogen thyratron |
| US2577239A (en) * | 1949-09-12 | 1951-12-04 | Eitel Mccullough Inc | Cathode and heater structure for electron tubes |
| US2888592A (en) * | 1954-07-22 | 1959-05-26 | Gen Electric | Cathode structure |
| US2899591A (en) * | 1959-08-11 | Electrical heating device | ||
| US3204140A (en) * | 1961-07-10 | 1965-08-31 | Gen Electric | Hot cathode electron tube |
-
1973
- 1973-04-09 US US00349156A patent/US3814974A/en not_active Expired - Lifetime
-
1974
- 1974-03-22 GB GB1297974A patent/GB1424167A/en not_active Expired
- 1974-03-27 NL NL7404189.A patent/NL163665C/xx not_active IP Right Cessation
- 1974-03-29 DE DE2415152A patent/DE2415152B2/de active Granted
- 1974-03-29 FR FR7411219A patent/FR2224868B1/fr not_active Expired
- 1974-04-09 JP JP49039568A patent/JPS503568A/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2899591A (en) * | 1959-08-11 | Electrical heating device | ||
| US2391927A (en) * | 1944-01-08 | 1946-01-01 | Standard Telephones Cables Ltd | Electron discharge device |
| US2518879A (en) * | 1945-02-03 | 1950-08-15 | Kenneth J Germeshausen | Hydrogen thyratron |
| US2577239A (en) * | 1949-09-12 | 1951-12-04 | Eitel Mccullough Inc | Cathode and heater structure for electron tubes |
| US2888592A (en) * | 1954-07-22 | 1959-05-26 | Gen Electric | Cathode structure |
| US3204140A (en) * | 1961-07-10 | 1965-08-31 | Gen Electric | Hot cathode electron tube |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0204541A3 (en) * | 1985-06-04 | 1987-08-12 | English Electric Valve Company Limited | Discharge tube apparatus |
| US4805180A (en) * | 1985-06-04 | 1989-02-14 | English Electric Valve Company Limited | Discharge tube apparatus |
| US5202910A (en) * | 1990-08-28 | 1993-04-13 | North American Philips Corporation | Anode for arc discharge devices |
| EP3699947A3 (en) * | 2019-02-21 | 2020-11-25 | Varex Imaging Corporation | X-ray tube emitter |
Also Published As
| Publication number | Publication date |
|---|---|
| NL163665B (nl) | 1980-04-15 |
| DE2415152A1 (de) | 1974-11-21 |
| FR2224868B1 (enExample) | 1977-09-30 |
| NL7404189A (enExample) | 1974-10-11 |
| DE2415152B2 (de) | 1975-07-31 |
| GB1424167A (en) | 1976-02-11 |
| NL163665C (nl) | 1980-09-15 |
| FR2224868A1 (enExample) | 1974-10-31 |
| JPS503568A (enExample) | 1975-01-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5804777B2 (ja) | X線発生管及び、x線発生装置 | |
| US3814974A (en) | Cathode gun device | |
| US4461970A (en) | Shielded hollow cathode electrode for fluorescent lamp | |
| JP2607654B2 (ja) | 傍熱形陰極構体及びそれを使用した電子銃構体 | |
| EP0022201B1 (en) | Cathode assembly | |
| US2201731A (en) | Discharge tube electrode assembly | |
| US2032179A (en) | Oxide coated cathode for heavy duty service | |
| US3813571A (en) | Insulated cathode gun device | |
| US3304459A (en) | Heater for an indirectly heated cathode | |
| US1969496A (en) | Electric discharge device | |
| US3010046A (en) | Cathode structure | |
| CN1956124B (zh) | 高效阴极组件 | |
| US3227906A (en) | Cathode support and heat shielding structure for electron gun | |
| US1924318A (en) | Thermionic device | |
| US5422536A (en) | Thermionic cathode with continuous bimetallic wall having varying wall thickness and internal blackening | |
| US1953906A (en) | Rectifier tube | |
| US3227912A (en) | Semi-indirectly heated electron tube cathode | |
| US2724788A (en) | Indirectly heated cathode for gas tubes | |
| US2485668A (en) | Thermionic cathode | |
| US2456540A (en) | Electrode structure for electron discharge tubes | |
| US4902933A (en) | High efficacy discharge lamp having large anodes | |
| JP2590750B2 (ja) | 含浸型陰極構体 | |
| JPH0713162Y2 (ja) | 陰極線管 | |
| US2498775A (en) | Cathode construction | |
| KR950010691Y1 (ko) | 음극선관용 전자총의 캐소드전극 |