US3814971A - Fill gas mixture for glow lamps - Google Patents
Fill gas mixture for glow lamps Download PDFInfo
- Publication number
- US3814971A US3814971A US00336980A US33698073A US3814971A US 3814971 A US3814971 A US 3814971A US 00336980 A US00336980 A US 00336980A US 33698073 A US33698073 A US 33698073A US 3814971 A US3814971 A US 3814971A
- Authority
- US
- United States
- Prior art keywords
- lamp
- xenon
- neon
- percent
- breakdown voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title abstract description 27
- 229910052724 xenon Inorganic materials 0.000 claims abstract description 39
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims abstract description 39
- 230000015556 catabolic process Effects 0.000 abstract description 36
- 229910052754 neon Inorganic materials 0.000 abstract description 26
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 abstract description 26
- RHFWLQOLQAFLGT-UHFFFAOYSA-N neon xenon Chemical compound [Ne].[Xe] RHFWLQOLQAFLGT-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 38
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 31
- 229910052786 argon Inorganic materials 0.000 description 15
- 150000002500 ions Chemical class 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052743 krypton Inorganic materials 0.000 description 6
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000003628 erosive effect Effects 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- LCGWNWAVPULFIF-UHFFFAOYSA-N strontium barium(2+) oxygen(2-) Chemical compound [O--].[O--].[Sr++].[Ba++] LCGWNWAVPULFIF-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- JXBFBSYDINUVRE-UHFFFAOYSA-N [Ne].[Ar] Chemical compound [Ne].[Ar] JXBFBSYDINUVRE-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- UUXFWHMUNNXFHD-UHFFFAOYSA-N barium azide Chemical compound [Ba+2].[N-]=[N+]=[N-].[N-]=[N+]=[N-] UUXFWHMUNNXFHD-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
- H01J61/16—Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
Definitions
- a glow lamp for use as a circuit component or indicator lamp comprising an envelope, electrodes, lead-in wires connected to the electrodes and sealed in said envelope, the envelope contains a Penning mixture of neon and xenon with the xenon varying from 0.001 percent to 1.0 percent by volume.
- the use of the xenon-neon Penning mixture increases the life of the lamp without substantially increasing breakdown voltage.
- the invention relates to discharge devices with particular gas or vapor fillings. More particularly, the invention relates to a discharge device containing two rare gases, namely, neon and xenon.
- the best Penning mixture would be one using neon as a parent gas and argon as the added gas.
- Neon has a metastable level of 16.6 electron volts
- argon has an ionization potential of 15.7 electron volts, a difference of 0.9 electron volts. This small energy difference would allow the rapid ionization of argon atoms through the Penning reaction.
- gases such as Krypton and xenon (with ionization potentials of 14.0 and l2.l electron volts respectively) have much greater energy differences, and,
- emission materials such as barium strontium oxide
- Prior art data shows that for a given electrode material, such as copper. the sputtering yield increases as atomic weight increases. Much of this data, for example, pages 126 and 127, Cold Cathode Discharge Tubes, G. F. Weston, is for ion energy above 100 electron volts.
- Another object of the invention is to make a glow discharge device containing a fill gas which will increase the life of the discharge device.
- Another object of the invention is to design a discharge device containing a fill gas which will extend useful lamp life and at the same time lowerthe breakdown voltage to a value less than that of the constituent gases.
- a lamp comprising an envelope containing two electrodes and lead wires connected to the electrodes and sealed in the envelope, is filled with a particular mixture of neon and xenon. It has been found that the percentage of xenon which acts as a Penning additive and extends the life of a glow discharge device is from 0.001 percent to 1.0 percent, with the remainder of the fill gas being neon by volume.
- the drawing is an elevation view of a glow discharge device utilizing the fill gas of the invention.
- glow lamp I0 is comprised of envelope ll, electrodes 12 and 13, lead-in wires 14 and 15, and stem press I6.
- the lamp of the invention is filled with a unique fill gas of neon and xenon at a predetermined pressure and the envelope is closed and tipped off as shown at 17.
- Electrodes l2 and 13 are coated with an emission mix material such as barium strontium oxide or barium azide. These emission mix materials are high in electron yielding particles and therefore facilitate the discharge between electrodes into the gaseous atmosphere of the lamp.
- Electrodes 12 and 13 are spaced from one another a predetermined distance, and the envelope is filled with a gas at a certain pressure.
- Various adjustments in the distance between electrodes and the pressure of the fill gas cause variations in breakdown voltage. Plots of the breakdown voltage versus the product of gas pressure and electrode spacings for particular gases are known as Paschen curves.
- Electrodes l2 and 13 may be nickel or nickel-coated steel. Both nickel and nickel-plated steel have a tendency to emit electrons at a greater rate than most other metals although other metals may be used.
- the electrodes 12 and 13 are connected to lead-in wires 14 and 15 which are usually made of the wire known as Dumet. Lead-in conductors l4 and 15 are hermetically sealed in the envelope at pinch seal 16. The fill gas of the invention is then added to the envelope at a pressure of between 20 to millimeters of mercury, and the envelope is closed or tipped as shown by residue 17.
- Breakdown voltage can be defined as the voltage between electrodes 12 and 13 at which the fill gas will become sufficiently ionized to allow a current generally of the value of milliamperes to be conducted through the lamp.
- lamps continue to burn, after their initial aging or seasoning of approximately 75 to 100 hours, they begin to resist the passage of current. Accordingly, as time goes on, the breakdown voltage becomes higher and higher until it reaches a point where the circuit using the glow lamp or gas discharge device can no longer energize the lamp.
- An example of this would be an indicator lamp used in a l-volt household circuit. 1f the range of breakdown voltages for a household circuit indicator lamp were from 100 to 105, as time went on and the lamp aged, the breakdown voltage would gradually increase and exceed 120 volts thereby rendering the lamp inoperable in the particular circuit.
- the available data concerning sputtering yields demonstrated that the sputtering yield of xenon is greater than that of argon for a given electrode material. This data was gathered for energy levels between 100 and 1,000 electron volts. An extrapolation of this data would lead one skilled in the art to believe that the sputtering yield, at energy levels less than 100 electron volts, would be larger for xenon than for argon and therefore give a shorter life lamp using xenon. Contrary to this hypothesis, it was found that the sputtering yield for a xenon plus ion is smaller than that for either a krypton plus ion or an argon plus ion. Because of this reduced sputtering yield, the emission mixture is eroded away at a slower rate and, in turn, the rise in breakdown voltage is slowed and the life of the lamp is increased.
- xenon to form a Penning mixture
- the magnitude of the breakdown voltage is dependent upon, in part, the difference between the ionization potential and the mestastable energy level of the parent gas, in this case neon (pages 18 and 19, Cold Cathode Discharge Tubes", G. F. Weston).
- the difference between neon and argon is 0.9 electron volts and between neon and xenon is 4.6 electron volts.
- a lamp using neon and 0.1 percent argon had a breakdown voltage ranging from 70 to 80 volts, and a lamp using neon and 0.1 percent xenon had a breakdown voltage of only 75 to 85 volts.
- the other variables which affect breakdown voltage such as fill gas pressure and electrode spacing were held constant in the above experiments.
- Glow lamps presently marketed usually are used in circuits of 120 volts or less. Certain lamps are used as indicator lamps for household appliances such as the General Electric C2A neon glow lamp which may have a breakdown voltage as high as 120 volts or less.
- the C2A lamp has an electrode spacing of 0.7 millimeters and is filled at a pressure of 38 torr and was made up using a Penning gas mixture containing neon and xenon with the xenon being 0.01 percent of the mixture by volume. This particular mixture of xenon increased the life of the C2A lamp and also gave a narrower range of breakdown voltage.
- the SAH-B lamp is used as a circuit component with less emphasis placed upon light output and more emphasis placed upon the lamp life and breakdown voltage.
- the SAH-B lamp has an electrode spacing of l.1'millimeters and is filled with the Penning mixture at a pressure of 120 torr.
- the particular mixture which was most effective to increase the life of the lamp and stabilize the range of breakdown voltages was one containing neon and 0.1 percent xenon by volume.
- an improved Penning mixture containing neon and between 0.001 percent and 1.0 percent xenon by volume may be used effectively to increase lamp life while maintaining a reduced breakdown voltage level for various types of gas discharge devices.
- Comparative test data of the 5AH-B lamp filled with Penning mixtures of neon plus 0.1 percent argon, neon plus 0.1 percent krypton, and neon plus 0.1 percent xenon indicated that the life of the test group containing argon was 1,265 hours. containing krypton 2,440 hours and that containing xenon was 2,600 hours. As can be seen from the results of this test. the use of xenon almost doubled the expected life of the lamp compared to a lamp filled with argon and increased the lamp life by approximately 10 percent over a lamp filled with krypton. The initial breakdown voltage of the lamp containing xenon increased to to 85 volts as compared to a range of 70 to for a lamp filled with krypton.
- a glow discharge device comprising: an envelope, electrodes, lead-in wires connected to the electrodes, said lead-in wires extending through and hermetically sealed in said envelope, said envelope containing a Penning mixture fill gas of neon and xenon wherein said xenon may vary between 0.001 percent to 1.0 percent by volume.
Landscapes
- Discharge Lamp (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00336980A US3814971A (en) | 1973-03-01 | 1973-03-01 | Fill gas mixture for glow lamps |
GB527274A GB1450466A (en) | 1973-03-01 | 1974-02-05 | Fill gas mixture for glow lamps |
JP49019605A JPS49116877A (enrdf_load_stackoverflow) | 1973-03-01 | 1974-02-20 | |
DE19742409291 DE2409291C3 (de) | 1973-03-01 | 1974-02-27 | Glimmentladungslampe |
CA193,670A CA996988A (en) | 1973-03-01 | 1974-02-27 | Fill gas mixture for glow lamps |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00336980A US3814971A (en) | 1973-03-01 | 1973-03-01 | Fill gas mixture for glow lamps |
Publications (1)
Publication Number | Publication Date |
---|---|
US3814971A true US3814971A (en) | 1974-06-04 |
Family
ID=23318567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00336980A Expired - Lifetime US3814971A (en) | 1973-03-01 | 1973-03-01 | Fill gas mixture for glow lamps |
Country Status (4)
Country | Link |
---|---|
US (1) | US3814971A (enrdf_load_stackoverflow) |
JP (1) | JPS49116877A (enrdf_load_stackoverflow) |
CA (1) | CA996988A (enrdf_load_stackoverflow) |
GB (1) | GB1450466A (enrdf_load_stackoverflow) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4199701A (en) * | 1978-08-10 | 1980-04-22 | General Electric Company | Fill gas for miniature high pressure metal vapor arc lamp |
US4461981A (en) * | 1981-12-26 | 1984-07-24 | Mitsubishi Denki Kabushiki Kaisha | Low pressure inert gas discharge device |
US4501991A (en) * | 1982-04-12 | 1985-02-26 | Xenell Corporation | Low breakdown voltage, high current glow lamp |
US4723093A (en) * | 1968-10-02 | 1988-02-02 | Owens-Illinois Television Products Inc. | Gas discharge device |
US4929868A (en) * | 1989-01-05 | 1990-05-29 | Gte Products Corporation | Glow discharge lamp containing nitrogen |
US4978892A (en) * | 1988-12-27 | 1990-12-18 | Polaroid Corporation | Variable color-output strobe |
US5006762A (en) * | 1990-04-09 | 1991-04-09 | Gte Products Corporation | Negative glow fluorescent lamp having discharge barrier |
US5049785A (en) * | 1990-04-09 | 1991-09-17 | Gte Products Corporation | Two contact, AC-operated negative glow fluorescent lamp |
US5059864A (en) * | 1989-12-22 | 1991-10-22 | Gte Products Corporation | Negative glow lamp |
US5146135A (en) * | 1990-10-17 | 1992-09-08 | Gte Products Corporation | Glow discharge lamp having anode probes |
US5218269A (en) * | 1991-11-29 | 1993-06-08 | Gte Products Corporation | Negative glow discharge lamp having wire anode |
AU775446B2 (en) * | 2000-10-06 | 2004-07-29 | Sefli, Aupem | A mercury-free luminescent/flourescent lamp with cold hollow cathodes for colored decorative lighting or illuminated signs |
EP1353359A3 (en) * | 2002-04-10 | 2004-10-13 | Lg Electronics Inc. | Lamp bulb and electrodeless lamp therewith |
US20150352370A1 (en) * | 2013-01-21 | 2015-12-10 | Panasonic Intellectual Property Management Co., Ltd. | Flashtube for light irradiation treatment and prevention and light irradiation treatment and prevention device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1949069A (en) * | 1930-03-29 | 1934-02-27 | Air Reduction | Luminescent tube |
US1977688A (en) * | 1930-03-10 | 1934-10-23 | Gen Scientific Corp | Permanent color gaseous conduction tube |
US2622221A (en) * | 1945-11-23 | 1952-12-16 | Westinghouse Electric Corp | Fluorescent discharge lamp |
US2824985A (en) * | 1953-12-11 | 1958-02-25 | Gen Electric | Glow discharge device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS492379A (enrdf_load_stackoverflow) * | 1972-03-14 | 1974-01-10 |
-
1973
- 1973-03-01 US US00336980A patent/US3814971A/en not_active Expired - Lifetime
-
1974
- 1974-02-05 GB GB527274A patent/GB1450466A/en not_active Expired
- 1974-02-20 JP JP49019605A patent/JPS49116877A/ja active Pending
- 1974-02-27 CA CA193,670A patent/CA996988A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1977688A (en) * | 1930-03-10 | 1934-10-23 | Gen Scientific Corp | Permanent color gaseous conduction tube |
US1949069A (en) * | 1930-03-29 | 1934-02-27 | Air Reduction | Luminescent tube |
US2622221A (en) * | 1945-11-23 | 1952-12-16 | Westinghouse Electric Corp | Fluorescent discharge lamp |
US2824985A (en) * | 1953-12-11 | 1958-02-25 | Gen Electric | Glow discharge device |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4723093A (en) * | 1968-10-02 | 1988-02-02 | Owens-Illinois Television Products Inc. | Gas discharge device |
US4199701A (en) * | 1978-08-10 | 1980-04-22 | General Electric Company | Fill gas for miniature high pressure metal vapor arc lamp |
US4461981A (en) * | 1981-12-26 | 1984-07-24 | Mitsubishi Denki Kabushiki Kaisha | Low pressure inert gas discharge device |
US4501991A (en) * | 1982-04-12 | 1985-02-26 | Xenell Corporation | Low breakdown voltage, high current glow lamp |
US4978892A (en) * | 1988-12-27 | 1990-12-18 | Polaroid Corporation | Variable color-output strobe |
US4929868A (en) * | 1989-01-05 | 1990-05-29 | Gte Products Corporation | Glow discharge lamp containing nitrogen |
US5059864A (en) * | 1989-12-22 | 1991-10-22 | Gte Products Corporation | Negative glow lamp |
US5006762A (en) * | 1990-04-09 | 1991-04-09 | Gte Products Corporation | Negative glow fluorescent lamp having discharge barrier |
US5049785A (en) * | 1990-04-09 | 1991-09-17 | Gte Products Corporation | Two contact, AC-operated negative glow fluorescent lamp |
US5146135A (en) * | 1990-10-17 | 1992-09-08 | Gte Products Corporation | Glow discharge lamp having anode probes |
US5218269A (en) * | 1991-11-29 | 1993-06-08 | Gte Products Corporation | Negative glow discharge lamp having wire anode |
AU775446B2 (en) * | 2000-10-06 | 2004-07-29 | Sefli, Aupem | A mercury-free luminescent/flourescent lamp with cold hollow cathodes for colored decorative lighting or illuminated signs |
EP1353359A3 (en) * | 2002-04-10 | 2004-10-13 | Lg Electronics Inc. | Lamp bulb and electrodeless lamp therewith |
US20150352370A1 (en) * | 2013-01-21 | 2015-12-10 | Panasonic Intellectual Property Management Co., Ltd. | Flashtube for light irradiation treatment and prevention and light irradiation treatment and prevention device |
Also Published As
Publication number | Publication date |
---|---|
DE2409291B2 (de) | 1976-11-18 |
DE2409291A1 (de) | 1974-09-05 |
CA996988A (en) | 1976-09-14 |
GB1450466A (en) | 1976-09-22 |
JPS49116877A (enrdf_load_stackoverflow) | 1974-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3814971A (en) | Fill gas mixture for glow lamps | |
US3900753A (en) | High pressure sodium vapor lamp having low starting voltage | |
US1930088A (en) | Electrical discharge device | |
US2567369A (en) | Gas filling for grid control gas tubes | |
JP3718142B2 (ja) | 放電管 | |
US2122932A (en) | Gaseous discharge tube | |
US2802129A (en) | Low pressure fluorescent and discharge lamps | |
US2056662A (en) | Electric gaseous discharge device | |
US2832912A (en) | Electric discharge device | |
GB624013A (en) | Improvements in electric discharge tubes | |
US2824255A (en) | Auxiliary electrode and shield for a low pressure discharge device | |
CN100594579C (zh) | 流明保持改善的石英金属卤化物灯 | |
US2930873A (en) | Glow switch | |
US2116677A (en) | Gaseous electric discharge device and method of operating the same | |
US20030085655A1 (en) | Low-pressure mercury discharge lamp | |
US1984483A (en) | Electric gaseous discharge device | |
US3012165A (en) | Fluorescent lamp gas filling | |
JP4651434B2 (ja) | 放電管 | |
US1648293A (en) | Electric-discharge device | |
US2040752A (en) | Vacuum tube | |
US1725281A (en) | Electrical-discharge device | |
US4323812A (en) | Electric discharge lamp | |
US3198968A (en) | Thermoelectric conversion process and apparatus | |
US3023069A (en) | Method of manufacturing sodiumvapour discharge tubes | |
US3052813A (en) | Helium-argon lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DI | Adverse decision in interference |
Effective date: 19870413 |