US3900753A - High pressure sodium vapor lamp having low starting voltage - Google Patents

High pressure sodium vapor lamp having low starting voltage Download PDF

Info

Publication number
US3900753A
US3900753A US473613A US47361374A US3900753A US 3900753 A US3900753 A US 3900753A US 473613 A US473613 A US 473613A US 47361374 A US47361374 A US 47361374A US 3900753 A US3900753 A US 3900753A
Authority
US
United States
Prior art keywords
lamp
neon
electrode
high pressure
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US473613A
Inventor
Donald A Richardson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
GTE Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Sylvania Inc filed Critical GTE Sylvania Inc
Priority to US473613A priority Critical patent/US3900753A/en
Priority to DE19752522209 priority patent/DE2522209A1/en
Application granted granted Critical
Publication of US3900753A publication Critical patent/US3900753A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/541Igniting arrangements, e.g. promoting ionisation for starting using a bimetal switch
    • H01J61/544Igniting arrangements, e.g. promoting ionisation for starting using a bimetal switch and an auxiliary electrode outside the vessel

Definitions

  • Such lamps are called high pressure in order to distin guish them from low pressure sodium vapor lamps in which the sodium operating vapor pressure is in the order of a few microns.
  • Low pressure sodium lamps have been in use for about to years. but. although efficient. they produce an unattractive monochromatic yellow light. The color of light from high pressure sodium lamps is considerably improved over that from low pressure sodium lamps.
  • High pressure sodium lamps generally comprise an alumina ceramic arc tube and an arc tube fill of so dium. mercury and an inert gas. usually xenon. Examples of such lamps are shown in the following US. Pat. Nos: 3.248.590. 3.721.846 and 3.746.914.
  • One of the problems of high pressure sodium are discharge lamps relates to the starting thereof. Such lamps require a considerably higher starting voltage to initiate an arc discharge than do other types of arc discharge lamps. such as fluorescent. mercury or metal halide. This higher starting voltage requirement necessitates the use of a special ballast for high pressure sodium lamps.
  • a simpler more economical ballasting arrangement becomes quite preetieable and. in fact conventional mercury lamp ballasts can often be used.
  • Such lamps having reduced starting voltage are shown in US. Pat. Nos. 3.72l.846 and 3.746.914. where the arc tube is heated in order to reduce the starting voltage.
  • the instant invention presents an alternate ap proach to a low voltage starting lamp which is simpler and less expensive to manufacture.
  • FIG. 1 is an elevational view. partly broken away. of a high pressure sodium are discharge lamp in accordance with this invention.
  • FIG. 2 is a chart showing the lowest metastable potential. the lowest excitation potential and the ionization potential for gases commonly used in are discharge lamps.
  • FIG. 3 is a graph showing the relationship between starting aid location and ignition voltage for a lamp in accordance with this invention.
  • a high pressure sodium vapor are discharge lamp in accordance with this invention has an alumina arc tube which contains a fill including sodium. mercury and a Penning mixture starting gas.
  • the arc tube has an encircling wire ring starting aid and a tempera ture actuated circuit breaker in series with the starting aid.
  • Metastable potential At specific energy levels (the metastable potential). an atom will become excited but tend to hang up" in this state. It can actually have an excited life as much as 1000 times as long as the normally excited state. This is known as the metastable state. Metastable atoms tend to lose their energy by collision with other atoms rather than by radiation.
  • ionization potential As higher potentials are applied to atoms. electrons will remove themselves completely from the atom. The atoms become charged ions. The atom will then be in the ionized state and the energy level or potential neecssary to form ions is known as the ionization potential.
  • FIG. 2 is a chart comparing the lowest metastable potential. the lowest excitation potential and the ionization potential of different gases or vapors commoly used in arc discharge lamps.. namely. neon. argon. xenon. mercury and sodium.
  • the lower solid line represents the lowest metastable potential.
  • the dashed line represents its lowest excitation potential.
  • the upper solid line denotes the ionization potential of the gas.
  • the lowest excited state of the major constituent must be a metastable one
  • the metastable potential of the major constituent must be greater than the ionization potential of the minor constituent.
  • argon is a major constituent with argon. This is the mixture of starting gases selected for the Penning start high pressure sodium lamp. Typical Penning mixtures of neon-argon gases contain argon approximately 0.1 to IV: of the mixture. Thus we can expect from to [000 times the number of atoms of neon compared with the number of argon atoms.
  • the argon atoms When tye collide and impart their energy to argon atoms, the argon atoms will become ionized. This of course is because the energy imparted by the neon atom will be higher than the [5.8 volts required to ionize argon atoms. This process will continue until the gas becomes ionized and current flows. thereby starting the lamp.
  • the Penning mixture substantially reduced the starting voltage from that of the conventional xenon filled high pressure sodium lamp. It was still not sufficiently reduced to provide satisfactory starting with mercury ballasts.
  • a starting ring is wrapped around the arc tube. The starting ring. which is near one electrode. is at the potential of the opposite electrode. Thus the full open circuit voltage would exist between the starting ring and the nearest electrode. Ionization is initiated to the starting ring and then tends to avalanche to the opposite electrode.
  • a lamp in accordance with this invention as shown in FIG. 1. comprises a hermetically sealed alumina arc tube I disposed within an outer glass jacket 2 which is sealed at the bottom to the flare of the usual stem press 3 and has the usual metal threaded base 4. Lead-in wires 5 and 6 are supported in stem press 3 and are connected to base 4 in the usual manner.
  • Support rod 7 is welded to lead-in wire 5 and extends roughly from the bottom to the top of the lamp.
  • the upper end of arc tube 1 is supported by a rod 8 which is welded between support rod 7 and niobium tube 9.
  • Tube 9 is sealed through the upper end of arc tube l and supports electrode [0 within are tube 1. Electrical connection to electrode [0 is provided by metal strap 11 which is welded between rod 7 an niobium tube 9.
  • tube I The lower end of are tube I is supported by metal strap I2 which securely encircles lower niobium tube 13 and is welded to lead-in wire 6.
  • Tube I3 is sealed through the lower end of are tube 1 and supports electrode I4 within arc tube 1.
  • Wire ring 15 is welded to a support wire I6 which is embedded in a quartz rod l7. Quartz rod 17 is supported by another support wire 18 which is embedded thereon and is welded to support rod 7. Another wire 19 is embedded in quartz rod 17 and is also welded to rod 7. A U shaped bimetallic switch 20 is welded to wire 19 and makes pressure contact. at room temperature, with wire 16. Thus. when the lamp is initially energized. wire ring 15 has the same voltage as electrode [0. Wire ring 15 is electrically removed from the circuit by the opening of switch 20.
  • switch 20 which occurs after a few seconds or minutes when switch 20 is heated to its actuating temperature, for example [05C, by the heat generated by the lamp. Removal of wire ring 15 from the circuit is necessary in order to avoid electrolysis. during normal operation. which could draw sodium in the are tube through the walls thereof.
  • Tube I contains sodium, mercury and a Penning mixture gaseous filling. for example, neon and argon.
  • wire ring starting aid 15 is critical for attainment of lowest ignition voltage.
  • the effect of the location of wire ring 15 upon the starting of a particular watt lamp is shown in FIG. 3.
  • the arc length of the lamp was approximately 69 mm.
  • the starting aid location shown in FIG. 3 is the distance between wire ring 15 and electrode l4.
  • the optimum location in this example was about l7 mm.
  • Optimum starting aid location is dependent on the pressure and composition of the Penning gas mixture. For example. in an arc tube having a 69 mm arc length and containing 99% neon l7r argon at l4 torr. the minimum starting voltage of volts was attained at a starting aid location of 24.1 mm. For a Penning mixture of 99.7% neon 013% argon at 34 torr, the location of the starting aid to obtain minimum starting voltage was l6.2 mm.
  • a high pressure sodium are discharge lamp comprising an alumina arc tube disposed within an outer jacket, the arc tube having an electrode at each end and containing a fill including sodium. mercury and a Penning gas mixture; a wire ring starting aid encircling the are tube. more proximate one electrode than the other. and electrically connected to said other electrode through a temperature actuated switch which is normally closed at room temperature and which is open during normal lamp operation. thereby electrically disconnecting the wire ring starting aid.
  • the lamp of claim I wherein said are tube has an arc length of 69 mm.
  • said Penning gas mixture is 99.7% neon and 0.371 argon and said wire ring starting aid is 16.2 mm from said more proximate one electrode.

Abstract

The alumina arc tube of a high pressure sodium arc discharge lamp contains a Penning mixture gaseous filling and also has an encircling wire ring starting aid, in order to reduce lamp starting voltage. A temperature actuated circuit breaking device is in series with the starting aid in order to electrically remove it from the circuit after the lamp starts.

Description

United States Patent [1 1 Richardson 1 HIGH PRESSURE SODIUM VAPOR LAMP HAVING LOW STARTING VOLTAGE [75] inventor: Donald A. Richardson, Beverly,
Mass
[73] Assignee: GTE Sylvania Incorporated,
Danvers, Mass.
[22] Filed: May 28, 1974 [21] Appl. No.: 473,613
[52] US. Cl. 313/198; 313/201; 313/225;
313/226; 313/229 [51] Int. Cl. H01j 61/54 [58] Field of Search 313/198, 201
[56] References Cited UNITED STATES PATENTS 3.7211145 3/1973 Cohen et a1. 1. 313/17 X [451 Aug. 19, 1975 3,721,846 3/1973 Cohen 313/17 X Primary Examiner-R. V. Rolinec Assistant Examiner-Darwin R. Hostetter Attorney, Agent, or Firm.lames Theodosopoulos l 5 7 ABSTRACT The alumina arc tube of a high pressure sodium arc discharge lamp contains a Penning mixture gaseous filling and also has an encircling wire ring starting aid, in order to reduce lamp starting voltage. A temperature actuated circuit breaking device is in series with the starting aid in order to electrically remove it from the circuit after the lamp starts.
5 Claims, 3 Drawing Figures PATENTED AUB'I 91975 SHEET 1 [1F 2 AUMQIQYB 3,900,753
0 I5- 5 o IO- NEON ARGON XENON MERCURY SODIUM IONIZATION AND EXCITATION POTENTIAL 250- FIG.3
5 I50- I: o IZO- 0 1'0 2'0 3'0 4'0 STARTING AID LOCATION (mm) HIGH PRESSURE SODIUM VAPOR LAMP HAVING LOW STARTING VOLTAGE BACKGROUND OF THE INVENTION 1. Field Of The Invention This invention relates to are discharge lamps and. in particular. to high pressure sodium vapor lamps.
2. Description Of The Prior Art Within the past few years. high pressure sodium vapor lamps have become commercially useful. especially for outdoor lighting applications. because of their high efficiency. The sodium operating vapor pressure in such lamps can vary from several millimeters to about l.000 millimeters Hg.
Such lamps are called high pressure in order to distin guish them from low pressure sodium vapor lamps in which the sodium operating vapor pressure is in the order of a few microns. Low pressure sodium lamps have been in use for about to years. but. although efficient. they produce an unattractive monochromatic yellow light. The color of light from high pressure sodium lamps is considerably improved over that from low pressure sodium lamps.
High pressure sodium lamps generally comprise an alumina ceramic arc tube and an arc tube fill of so dium. mercury and an inert gas. usually xenon. Examples of such lamps are shown in the following US. Pat. Nos: 3.248.590. 3.721.846 and 3.746.914.
One of the problems of high pressure sodium are discharge lamps relates to the starting thereof. Such lamps require a considerably higher starting voltage to initiate an arc discharge than do other types of arc discharge lamps. such as fluorescent. mercury or metal halide. This higher starting voltage requirement necessitates the use of a special ballast for high pressure sodium lamps.
It is an object of this invention to provide a high pressure sodium vapor lamp having a reduced starting volt age. thereby eliminating the high voltage requirements of the ballast. Thus. a simpler more economical ballasting arrangement becomes quite preetieable and. in fact conventional mercury lamp ballasts can often be used. Such lamps having reduced starting voltage are shown in US. Pat. Nos. 3.72l.846 and 3.746.914. where the arc tube is heated in order to reduce the starting voltage. The instant invention presents an alternate ap proach to a low voltage starting lamp which is simpler and less expensive to manufacture.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is an elevational view. partly broken away. of a high pressure sodium are discharge lamp in accordance with this invention.
FIG. 2 is a chart showing the lowest metastable potential. the lowest excitation potential and the ionization potential for gases commonly used in are discharge lamps.
FIG. 3 is a graph showing the relationship between starting aid location and ignition voltage for a lamp in accordance with this invention.
THE INVENTION A high pressure sodium vapor are discharge lamp in accordance with this invention has an alumina arc tube which contains a fill including sodium. mercury and a Penning mixture starting gas. In addition. the arc tube has an encircling wire ring starting aid and a tempera ture actuated circuit breaker in series with the starting aid.
F. M. Penning discovered in the 1920's that certain critical mixtures of gases had lower starting voltages than either of the gases separately. This effect has taken his name and Penning mixtures are used in mercury. fluorescent and low pressure sodium lamps.
In order to explain the Penning effect. the terminology and some basic physics concepts concerning gas atoms are reviewed.
Let us first consider an atom in the ground state. This is the normal state of the atom with a full complement of electrons whirling about the nucleus in their normal orbits.
If sufficient energy (the excitation potential) is applied to the atom. an electron will remove itself to a higher energy level or orbit. This is known as the excited state of an atom. An atom in the normal excited state tends to return to the ground state rather quickly. In so doing. it gives up energy in the form of radiation or light.
At specific energy levels (the metastable potential). an atom will become excited but tend to hang up" in this state. It can actually have an excited life as much as 1000 times as long as the normally excited state. This is known as the metastable state. Metastable atoms tend to lose their energy by collision with other atoms rather than by radiation.
As higher potentials are applied to atoms. electrons will remove themselves completely from the atom. The atoms become charged ions. The atom will then be in the ionized state and the energy level or potential neecssary to form ions is known as the ionization potential.
FIG. 2 is a chart comparing the lowest metastable potential. the lowest excitation potential and the ionization potential of different gases or vapors commoly used in arc discharge lamps.. namely. neon. argon. xenon. mercury and sodium. The lower solid line represents the lowest metastable potential. The dashed line represents its lowest excitation potential. The upper solid line denotes the ionization potential of the gas.
In order for a Penning effect to take place certain conditions must be satisfied:
l. A major and minor constituent of the gas mixture must exist;
2. The lowest excited state of the major constituent must be a metastable one;
3. The metastable potential of the major constituent must be greater than the ionization potential of the minor constituent.
Considering the fact that we can select an optimum relationship of the major and minor constituents. it can be observed from FIG. 2 that several Penning mixtures are possible. Among them is argon as the major constituent with mercury. This mixture is used in fluorescent and mercury lamps.
Another possibility is neon as a major constituent with argon. This is the mixture of starting gases selected for the Penning start high pressure sodium lamp. Typical Penning mixtures of neon-argon gases contain argon approximately 0.1 to IV: of the mixture. Thus we can expect from to [000 times the number of atoms of neon compared with the number of argon atoms.
Let us consider random electrons being accelerated down an arc tube containing the above neon-argon mixture. The probability of collisions with neon atoms is much greater than with argon atoms due to their sheer relative number of atoms. It is very probable that some electrons will be able to accelerate to a velocity equivalent to I66 volts of kinetic energy before collision with neon atoms. They would thus give up their energy to the neon atoms and cause them to be in the metastable state. Since this is the lowest excited state of the major constituent, it is very probable that this condition will occur in adequate numbers. The neon atoms tend to remain in their excited metastable state until collision. When tye collide and impart their energy to argon atoms, the argon atoms will become ionized. This of course is because the energy imparted by the neon atom will be higher than the [5.8 volts required to ionize argon atoms. This process will continue until the gas becomes ionized and current flows. thereby starting the lamp.
The Penning mixture substantially reduced the starting voltage from that of the conventional xenon filled high pressure sodium lamp. It was still not sufficiently reduced to provide satisfactory starting with mercury ballasts. In order to design lamps capable of starting at voltages provided by mercury ballasts. a starting ring is wrapped around the arc tube. The starting ring. which is near one electrode. is at the potential of the opposite electrode. Thus the full open circuit voltage would exist between the starting ring and the nearest electrode. Ionization is initiated to the starting ring and then tends to avalanche to the opposite electrode.
A lamp in accordance with this invention. as shown in FIG. 1. comprises a hermetically sealed alumina arc tube I disposed within an outer glass jacket 2 which is sealed at the bottom to the flare of the usual stem press 3 and has the usual metal threaded base 4. Lead-in wires 5 and 6 are supported in stem press 3 and are connected to base 4 in the usual manner.
Support rod 7 is welded to lead-in wire 5 and extends roughly from the bottom to the top of the lamp. The upper end of arc tube 1 is supported by a rod 8 which is welded between support rod 7 and niobium tube 9. Tube 9 is sealed through the upper end of arc tube l and supports electrode [0 within are tube 1. Electrical connection to electrode [0 is provided by metal strap 11 which is welded between rod 7 an niobium tube 9.
The lower end of are tube I is supported by metal strap I2 which securely encircles lower niobium tube 13 and is welded to lead-in wire 6. Tube I3 is sealed through the lower end of are tube 1 and supports electrode I4 within arc tube 1.
Encircling arc tube 1, the closer to the lower end than to the upper end thereof, is wire ring starting aid 15. Wire ring 15 is welded to a support wire I6 which is embedded in a quartz rod l7. Quartz rod 17 is supported by another support wire 18 which is embedded thereon and is welded to support rod 7. Another wire 19 is embedded in quartz rod 17 and is also welded to rod 7. A U shaped bimetallic switch 20 is welded to wire 19 and makes pressure contact. at room temperature, with wire 16. Thus. when the lamp is initially energized. wire ring 15 has the same voltage as electrode [0. Wire ring 15 is electrically removed from the circuit by the opening of switch 20. which occurs after a few seconds or minutes when switch 20 is heated to its actuating temperature, for example [05C, by the heat generated by the lamp. Removal of wire ring 15 from the circuit is necessary in order to avoid electrolysis. during normal operation. which could draw sodium in the are tube through the walls thereof.
Disposed at the lower end of the lamp. supported on rod 7. are two getters 21. Spring fingers 22. disposed at both ends of the lamp and mounted on rod 7, engage the inner wall ofjacket 2 and aid in positioning are tube 1.
Are tube I contains sodium, mercury and a Penning mixture gaseous filling. for example, neon and argon.
The location of wire ring starting aid 15 is critical for attainment of lowest ignition voltage.
The effect of the location of wire ring 15 upon the starting of a particular watt lamp is shown in FIG. 3. The arc length of the lamp was approximately 69 mm. The starting aid location shown in FIG. 3 is the distance between wire ring 15 and electrode l4. The optimum location in this example was about l7 mm.
Optimum starting aid location is dependent on the pressure and composition of the Penning gas mixture. For example. in an arc tube having a 69 mm arc length and containing 99% neon l7r argon at l4 torr. the minimum starting voltage of volts was attained at a starting aid location of 24.1 mm. For a Penning mixture of 99.7% neon 013% argon at 34 torr, the location of the starting aid to obtain minimum starting voltage was l6.2 mm.
I claim:
I. A high pressure sodium are discharge lamp comprising an alumina arc tube disposed within an outer jacket, the arc tube having an electrode at each end and containing a fill including sodium. mercury and a Penning gas mixture; a wire ring starting aid encircling the are tube. more proximate one electrode than the other. and electrically connected to said other electrode through a temperature actuated switch which is normally closed at room temperature and which is open during normal lamp operation. thereby electrically disconnecting the wire ring starting aid.
2. The lamp of claim I wherein the gas mixture comprises neon and argon.
3. The lamp of claim 2 wherein the gas mixture comprises at least 99% neon.
4. The lamp of claim 1 wherein said are tube has an arc length of 69 mm. said Penning gas mixture is 99% neon and l7r argon and said wire ring starting aid is 24.1 mm from said more proximate one electrode.
5. The lamp of claim I wherein said are tube has an arc length of 69 mm. said Penning gas mixture is 99.7% neon and 0.371 argon and said wire ring starting aid is 16.2 mm from said more proximate one electrode.

Claims (5)

1. A HIGH PRESSURE SODIUM ARC DISCHARGE LAMP COMPRISING AN ALUMINA ARC TUBE DISPOSED WITHIN AN OUTER JACKET, THE ARC TUBE HAVING AN ELECTRODE AT EACH END AND CONTAINING A FILL INCLUDING SODIUM, AN MERCURY AND A PENNING GAS MIXTURE, A WIRE RING STARTING AID ENCIRCLING THE ARC TUBE, MORE PROXIMATE ONE ELECTRODE THAN THE OTHER, AND ELECTRICALLY CONNECTED TO SAID OTHER ELECTRODE THROUGH A TEMPERATURE ACTUATED SWITCH WHICH IS NORMALLY CLOSED AT ROOM TEMPERATURE AND WHICH IS OPEN DURING NORMAL LAMP OPERATION, THEREBY ELECTRICALLY DISCONNECTING THE WIRE RING STARTING AID.
2. The lamp of claim 1 wherein the gas mixture comprises neon and argon.
3. The lamp of claim 2 wherein the gas mixture comprises at least 99% neon.
4. The lamp of claim 1 wherein said arc tube has an arc length of 69 mm, said Penning gas mixture is 99% neon and 1% argon and said wire ring starting aid is 24.1 mm from said more proximate one electrode.
5. The lamp of claim 1 wherein said arc tube has an arc length of 69 mm, said Penning gas mixture is 99.7% neon and 0.3% argon and said wire ring starting aid is 16.2 mm from said more proximate one electrode.
US473613A 1974-05-23 1974-05-23 High pressure sodium vapor lamp having low starting voltage Expired - Lifetime US3900753A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US473613A US3900753A (en) 1974-05-23 1974-05-23 High pressure sodium vapor lamp having low starting voltage
DE19752522209 DE2522209A1 (en) 1974-05-23 1975-05-17 HIGH PRESSURE SODIUM VAPOR LAMP WITH LOW STARTING VOLTAGE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US473613A US3900753A (en) 1974-05-23 1974-05-23 High pressure sodium vapor lamp having low starting voltage

Publications (1)

Publication Number Publication Date
US3900753A true US3900753A (en) 1975-08-19

Family

ID=23880283

Family Applications (1)

Application Number Title Priority Date Filing Date
US473613A Expired - Lifetime US3900753A (en) 1974-05-23 1974-05-23 High pressure sodium vapor lamp having low starting voltage

Country Status (2)

Country Link
US (1) US3900753A (en)
DE (1) DE2522209A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037129A (en) * 1976-03-10 1977-07-19 Gte Sylvania Incorporated High pressure sodium vapor lamp having low starting voltage
US4039880A (en) * 1975-01-17 1977-08-02 U.S. Philips Corporation Method of operating a self-stabilizing discharge lamp
FR2338579A1 (en) * 1976-01-19 1977-08-12 Philips Nv ELECTRICAL DEVICE EQUIPPED WITH A LAMP FOR DISCHARGE IN METAL STEAM
DE2717853A1 (en) * 1976-05-05 1977-11-17 Philips Nv METAL VAPOR DISCHARGE LAMP
FR2386135A1 (en) * 1977-03-30 1978-10-27 Gte Sylvania Inc High pressure sodium vapour lamp - has multiple turn wire starting aid coiled around arc tube intermediate to electrodes
US4179640A (en) * 1977-12-05 1979-12-18 Westinghouse Electric Corp. Hid sodium lamp which incorporates a high pressure of xenon and a trigger starting electrode
US4199701A (en) * 1978-08-10 1980-04-22 General Electric Company Fill gas for miniature high pressure metal vapor arc lamp
FR2478872A1 (en) * 1980-03-19 1981-09-25 Gen Electric HIGH INTENSITY DISCHARGE LAMP WITHOUT AUXILIARY ELECTRODE
EP0075366A2 (en) * 1981-09-17 1983-03-30 Koninklijke Philips Electronics N.V. High-pressure metal vapour discharge lamp
US4418300A (en) * 1980-01-17 1983-11-29 Mitsubishi Denki Kabushiki Kaisha Metal vapor discharge lamp with heat insulator and starting aid
US4491766A (en) * 1982-06-24 1985-01-01 North American Philips Lighting Corporation High pressure electric discharge lamp employing a metal spiral with positive potential
US4677343A (en) * 1983-11-18 1987-06-30 Thorn Emi Plc Sealed beam lamps
US4975622A (en) * 1988-12-30 1990-12-04 North American Philips Corp. HPS discharge lamp with simplified starting aid structure
EP0938127A1 (en) * 1998-02-20 1999-08-25 Osram Sylvania Inc. Starting aid for a high intensity discharge lamp
EP1069596A2 (en) * 1999-07-15 2001-01-17 Philips Patentverwaltung GmbH Discharge lamp with starting aid
DE102004035931A1 (en) * 2004-07-23 2006-02-09 Flowil International Lighting (Holding) B.V. Ignition aid for a high-pressure gas discharge lamp like a high-pressure sodium vapor discharge lamp has a wire antenna coiled round a burner tube
US20080054812A1 (en) * 2006-08-29 2008-03-06 Osram Sylvania Inc. Arc discharge vessel having arc centering structure and lamp containing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721845A (en) * 1972-06-28 1973-03-20 Gte Sylvania Inc Sodium vapor lamp having improved starting means
US3721846A (en) * 1972-06-26 1973-03-20 Gte Sylvania Inc Sodium vapor lamp having improved starting means including a heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721846A (en) * 1972-06-26 1973-03-20 Gte Sylvania Inc Sodium vapor lamp having improved starting means including a heater
US3721845A (en) * 1972-06-28 1973-03-20 Gte Sylvania Inc Sodium vapor lamp having improved starting means

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039880A (en) * 1975-01-17 1977-08-02 U.S. Philips Corporation Method of operating a self-stabilizing discharge lamp
FR2338579A1 (en) * 1976-01-19 1977-08-12 Philips Nv ELECTRICAL DEVICE EQUIPPED WITH A LAMP FOR DISCHARGE IN METAL STEAM
US4037129A (en) * 1976-03-10 1977-07-19 Gte Sylvania Incorporated High pressure sodium vapor lamp having low starting voltage
DE2717853A1 (en) * 1976-05-05 1977-11-17 Philips Nv METAL VAPOR DISCHARGE LAMP
US4223247A (en) * 1976-05-05 1980-09-16 U.S. Philips Corporation Metal vapor discharge lamp
FR2386135A1 (en) * 1977-03-30 1978-10-27 Gte Sylvania Inc High pressure sodium vapour lamp - has multiple turn wire starting aid coiled around arc tube intermediate to electrodes
US4179640A (en) * 1977-12-05 1979-12-18 Westinghouse Electric Corp. Hid sodium lamp which incorporates a high pressure of xenon and a trigger starting electrode
US4199701A (en) * 1978-08-10 1980-04-22 General Electric Company Fill gas for miniature high pressure metal vapor arc lamp
US4418300A (en) * 1980-01-17 1983-11-29 Mitsubishi Denki Kabushiki Kaisha Metal vapor discharge lamp with heat insulator and starting aid
FR2478872A1 (en) * 1980-03-19 1981-09-25 Gen Electric HIGH INTENSITY DISCHARGE LAMP WITHOUT AUXILIARY ELECTRODE
EP0075366A3 (en) * 1981-09-17 1983-08-17 N.V. Philips' Gloeilampenfabrieken High-pressure metal vapour discharge lamp
EP0075366A2 (en) * 1981-09-17 1983-03-30 Koninklijke Philips Electronics N.V. High-pressure metal vapour discharge lamp
US4491766A (en) * 1982-06-24 1985-01-01 North American Philips Lighting Corporation High pressure electric discharge lamp employing a metal spiral with positive potential
US4677343A (en) * 1983-11-18 1987-06-30 Thorn Emi Plc Sealed beam lamps
US4975622A (en) * 1988-12-30 1990-12-04 North American Philips Corp. HPS discharge lamp with simplified starting aid structure
EP0938127A1 (en) * 1998-02-20 1999-08-25 Osram Sylvania Inc. Starting aid for a high intensity discharge lamp
US6201348B1 (en) 1998-02-20 2001-03-13 Osram Sylvania Inc. Capacitive coupling starting aid for metal halide lamp
EP1069596A2 (en) * 1999-07-15 2001-01-17 Philips Patentverwaltung GmbH Discharge lamp with starting aid
EP1069596A3 (en) * 1999-07-15 2001-02-14 Philips Patentverwaltung GmbH Discharge lamp with starting aid
DE102004035931A1 (en) * 2004-07-23 2006-02-09 Flowil International Lighting (Holding) B.V. Ignition aid for a high-pressure gas discharge lamp like a high-pressure sodium vapor discharge lamp has a wire antenna coiled round a burner tube
DE102004035931B4 (en) * 2004-07-23 2006-06-14 Flowil International Lighting (Holding) B.V. Ignition aid for a high-pressure gas discharge lamp like a high-pressure sodium vapor discharge lamp has a wire antenna coiled round a burner tube
US20080054812A1 (en) * 2006-08-29 2008-03-06 Osram Sylvania Inc. Arc discharge vessel having arc centering structure and lamp containing same
US7619350B2 (en) 2006-08-29 2009-11-17 Osram Sylvania Inc. Arc discharge vessel having arc centering structure and lamp containing same

Also Published As

Publication number Publication date
DE2522209A1 (en) 1975-12-04

Similar Documents

Publication Publication Date Title
US3900753A (en) High pressure sodium vapor lamp having low starting voltage
US3234421A (en) Metallic halide electric discharge lamps
US4281274A (en) Discharge lamp having vitreous shield
KR910004742B1 (en) Rare gas discharge lamp
JPH10294085A (en) Matal halide lamp
US3781586A (en) Long lifetime mercury-metal halide discharge lamps
US4199701A (en) Fill gas for miniature high pressure metal vapor arc lamp
US4788475A (en) Multiple discharge device hid lamp with preferential starting
US3828214A (en) Plasma enshrouded electric discharge device
US4445073A (en) Intimate contact starting aid for arc lamps
JPS64785B2 (en)
US20090174327A1 (en) Rapid re-strike ceramic discharge metal halide lamp
EP0060665B1 (en) High pressure metal vapor discharge lamp
US3721845A (en) Sodium vapor lamp having improved starting means
US5866981A (en) Electrodeless discharge lamp with rare earth metal halides and halogen cycle promoting substance
FI72835C (en) Anode and cathode system in fluorescent lamp.
US3577029A (en) High-pressure electric discharge device containing mercury, halogen, scandium and samarium
US4910433A (en) Emitterless SDN electrode
US3069581A (en) Low pressure discharge lamp
US3755708A (en) Sodium vapor lamps having improved starting means
US5432403A (en) Negative glow discharge lamp having improved color stability and enhanced life
US3373303A (en) Amalgam-containing fluorescent lamp with integral starting aid
US3012165A (en) Fluorescent lamp gas filling
US3448318A (en) Low pressure electric discharge lamp electrode
JPH02267849A (en) Glow discharge lamp containing nitrogen