US3810756A - Method of making valve seat rings from a mixture of c,pb and a pre-alloy of fe-co-ni-mo by powder metallurgy - Google Patents
Method of making valve seat rings from a mixture of c,pb and a pre-alloy of fe-co-ni-mo by powder metallurgy Download PDFInfo
- Publication number
- US3810756A US3810756A US00237504A US23750472A US3810756A US 3810756 A US3810756 A US 3810756A US 00237504 A US00237504 A US 00237504A US 23750472 A US23750472 A US 23750472A US 3810756 A US3810756 A US 3810756A
- Authority
- US
- United States
- Prior art keywords
- mixture
- valve seat
- cobalt
- alloy
- rings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title abstract description 23
- 239000000956 alloy Substances 0.000 title abstract description 11
- 229910045601 alloy Inorganic materials 0.000 title abstract description 11
- 238000004519 manufacturing process Methods 0.000 title abstract description 6
- 238000004663 powder metallurgy Methods 0.000 title description 2
- 239000000843 powder Substances 0.000 abstract description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 19
- 229910017052 cobalt Inorganic materials 0.000 abstract description 18
- 239000010941 cobalt Substances 0.000 abstract description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052799 carbon Inorganic materials 0.000 abstract description 12
- 229910052742 iron Inorganic materials 0.000 abstract description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 8
- 239000011733 molybdenum Substances 0.000 abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 239000011133 lead Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 8
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
Definitions
- the present invention relates to a method of making valve seat rings by a powder metallurgical method, according to which an iron powder having added thereto carbon and lead, and other alloying constituents is briquetted, sintered, and subjected to a post treatment.
- This post treatment may consist either in a hot compression or in a cold compression at a pressure which exceeds the briquetting pressure.
- the heat compression or cold compression may be followed by a heat treatment according to which the workpiece is briefly heated to a temperature above the AC3-point whereupon it is quickly cooled and annealed at temperatures up to 650 C. If desired, prior to the cold compression, an additional heat treatment may be carried out.
- a sliding and wear-resistant material for cylinder bushings and valve rings has become known which is produced according to the above mentioned method, and which for purposes of increasing its strength also contains from 1 to 4% lead, and nickel in quantities of from 0.5 to 5%, in addition to iron and carbon, which in the finished product is contained in quantities of from 0.5 to 1%.
- valve seat rings For certain uses, for instance, when making valve seat rings for outlet rings of motor vehicles, it is necessary that the material in addition to the above mentioned strength properties also has an increased heat resistance which means it has suflicient heat resistance at temperatures up to 650 C.
- valve seat rings with increased heat resistance have been disclosed in US. Pat. 3,471,343, which are made of a pulverous mixture which prior to the above described treatment has the following composition:
- the individual powders are mixed and are then briquetted at a pressure of approximately 3.5 tons per square centimeter and are subsequently at a temperature of approximately 1100" C. sintered in a neutral atmosphere for approximately three hours.
- the sintered workpieces are then cooled and are subjected to a cold compression at a pressure of approximately 12 tons per square centimeter, are heated for fifteen minutes to a temperature above the AC3-point, and then quickly cooled, and are annealed at a temperature of 580 C. for a period of thirty minutes.
- the Brinell hardness of the material is approximately 320 kilograms per square millimeter at room temperature and 205 kilograms per square millimeter at a temperature of 600 C.
- Valve seat rings made in conformity with this method thus have an increased heat resistance and can be used as outlet valves for motor vehicles. Practical tests of these rings which have proved very satisfactory, and which tests have been carried out on the test stand under full load have shown a useful running period of 250 hours.
- the present invention consists primarily in that as starting mixture there is employed a pulverized pre-alloy which contains from 1 to 2% of nickel, from 1 to 2% of molybdenum, from 6 to 7% of cobalt, and the remainder iron, while the prealloyed steel powder has added thereto carbon in a quantity of from 0.5 to 1%, and lead in a quantity of from 0.7 to 1%, whereupon said mixture is, in a manner known per se, briquetted, sintered, cold or hot post compressed, and, if desired, is annealed.
- the present invention furthermore provides that the pre-alloy from which the starting powder is made will, in addition to the above mentioned alloy components, also contain chromium in a quantity of from 1 to 2%, and titanium in a quantity of from 0.3 to 0.5%.
- valve seat rings made according to the method of the present invention have proved that the employment of a prealloy instead of individual powders of the alloys components will yield rings which have a considerably improved running behavior with regard to heat resistance, corrosion resistance, and erosion resistance. Furthermore, a considerable increase in the heat withdrawal or heat deduction was ascertained. Whereas with running tests under full load, the heretofore known valve seat rings made with a powder mixture containing 12% cobalt failed after a running period of approximately 25 0 hours, which is rather high, motors equipped with valve seat rings according to the present invention have run still highly satisfactorily after a running period of 500 hours. This result was ascertained not only when employing lead-containing fuel, but also when employing lead-free fuel. This fact is of particular importance, because lead-free fuels are and will be employed more and more, in view of the ecology and the heretofore insert cast rings have an unsatisfactory life span when employing lead-free fuel.
- the sintered rings After the sintered rings had cooled, they were post compressed at a pressure of 12 tons per square centimeter and were heated for fifteen minutes to a temperature above the AC3-point and thereupon were quickly cooled. Subsequently, the rings were annealed for thirty minutes at a temperature of 650 C.
- valve seat rings which in customary manner were produced from a powder mixture with a cobalt content of 12%.
- a powder metallurgical method of making high heat resistant valve seat including the steps of providing a starting mixture of metal powders, briquetting, sintering and post-compressing said mixture, the improvement comprising: providing as said starting mixture, a mixture comprising 0.5 to 1.0% carbon, 0.7 to 1.5% lead and the remainder a pulverized prealloy consisting essentially of from 1.0 to 2.0% of nickel, from 1.0 to 2.0% of molybdenum, from 6.0 to 7.0% of cobalt and the remainder iron.
- the method according to claim 1 which includes the step of when preparing the starting mixture also adding thereto a quantity of from 1 to 2% of chromium and a quantity off rom 0.3 to 0.5% of titanium.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19712114160 DE2114160B2 (de) | 1971-03-24 | 1971-03-24 | Verfahren zur herstellung von ventilsitzringenx auf pulver metallurgischem wege |
Publications (1)
Publication Number | Publication Date |
---|---|
US3810756A true US3810756A (en) | 1974-05-14 |
Family
ID=5802556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00237504A Expired - Lifetime US3810756A (en) | 1971-03-24 | 1972-03-23 | Method of making valve seat rings from a mixture of c,pb and a pre-alloy of fe-co-ni-mo by powder metallurgy |
Country Status (11)
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51110119A (ja) * | 1975-03-25 | 1976-09-29 | Nissan Motor | Nainenkikannobenza |
US4002471A (en) * | 1973-09-24 | 1977-01-11 | Federal-Mogul Corporation | Method of making a through-hardened scale-free forged powdered metal article without heat treatment after forging |
US4077108A (en) * | 1975-03-21 | 1978-03-07 | Ugine Aciers | Process for producing dense machinable alloys from particulate scrap |
US4098607A (en) * | 1976-11-04 | 1978-07-04 | The United States Of America As Represented By The Secretary Of The Army | 18% Ni-Mo-Co maraging steel having improved toughness and its method of manufacture |
US5489324A (en) * | 1992-11-27 | 1996-02-06 | Toyota Jidosha Kabushiki Kaisha | Fe-based sintered alloy having wear resistance |
US20080025863A1 (en) * | 2006-07-27 | 2008-01-31 | Salvator Nigarura | High carbon surface densified sintered steel products and method of production therefor |
CN102672179A (zh) * | 2012-06-07 | 2012-09-19 | 太仓市锦立得粉末冶金有限公司 | 一种粉末冶金制品的生产工艺 |
CN102672186A (zh) * | 2012-06-07 | 2012-09-19 | 太仓市锦立得粉末冶金有限公司 | 一种粉末冶金齿轮圈的制造工艺 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5346768B2 (enrdf_load_stackoverflow) * | 1973-01-11 | 1978-12-16 | ||
US4422875A (en) * | 1980-04-25 | 1983-12-27 | Hitachi Powdered Metals Co., Ltd. | Ferro-sintered alloys |
RU2137860C1 (ru) * | 1998-04-29 | 1999-09-20 | Костромской государственный технологический университет | Порошковый инструментальный сплав на основе железа |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB553297A (en) * | 1939-12-09 | 1943-05-17 | Standard Oil Dev Co | An improved process for the production of beta olefins from alpha olefins and from mixtures containing alpha olefins |
FR1478137A (fr) * | 1965-05-07 | 1967-04-21 | Matériau à bonne caractéristique de glissement |
-
1971
- 1971-03-24 DE DE19712114160 patent/DE2114160B2/de active Pending
-
1972
- 1972-02-24 AT AT152572A patent/AT324382B/de not_active IP Right Cessation
- 1972-03-10 IT IT48899/72A patent/IT952193B/it active
- 1972-03-16 BE BE780761A patent/BE780761A/xx not_active IP Right Cessation
- 1972-03-16 CH CH392172A patent/CH549427A/xx not_active IP Right Cessation
- 1972-03-21 FR FR7209807A patent/FR2130489B1/fr not_active Expired
- 1972-03-22 LU LU65022D patent/LU65022A1/xx unknown
- 1972-03-23 SE SE7203762A patent/SE384040B/xx unknown
- 1972-03-23 CA CA137,991A patent/CA966703A/en not_active Expired
- 1972-03-23 GB GB1377372A patent/GB1338182A/en not_active Expired
- 1972-03-23 US US00237504A patent/US3810756A/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4002471A (en) * | 1973-09-24 | 1977-01-11 | Federal-Mogul Corporation | Method of making a through-hardened scale-free forged powdered metal article without heat treatment after forging |
US4077108A (en) * | 1975-03-21 | 1978-03-07 | Ugine Aciers | Process for producing dense machinable alloys from particulate scrap |
JPS51110119A (ja) * | 1975-03-25 | 1976-09-29 | Nissan Motor | Nainenkikannobenza |
US4098607A (en) * | 1976-11-04 | 1978-07-04 | The United States Of America As Represented By The Secretary Of The Army | 18% Ni-Mo-Co maraging steel having improved toughness and its method of manufacture |
US5489324A (en) * | 1992-11-27 | 1996-02-06 | Toyota Jidosha Kabushiki Kaisha | Fe-based sintered alloy having wear resistance |
US5503654A (en) * | 1992-11-27 | 1996-04-02 | Toyota Jidosha Kabushiki Kaisha | Fe-based alloy powder and adapted for sintering, Fe-based sintered alloy having wear resistance, and process for producing the same |
US5512080A (en) * | 1992-11-27 | 1996-04-30 | Toyota Jidosha Kabushiki Kaisha | Fe-based alloy powder adapted for sintering, Fe-based sintered alloy having wear resistance, and process for producing the same |
US20080025863A1 (en) * | 2006-07-27 | 2008-01-31 | Salvator Nigarura | High carbon surface densified sintered steel products and method of production therefor |
US7722803B2 (en) | 2006-07-27 | 2010-05-25 | Pmg Indiana Corp. | High carbon surface densified sintered steel products and method of production therefor |
CN102672179A (zh) * | 2012-06-07 | 2012-09-19 | 太仓市锦立得粉末冶金有限公司 | 一种粉末冶金制品的生产工艺 |
CN102672186A (zh) * | 2012-06-07 | 2012-09-19 | 太仓市锦立得粉末冶金有限公司 | 一种粉末冶金齿轮圈的制造工艺 |
Also Published As
Publication number | Publication date |
---|---|
LU65022A1 (enrdf_load_stackoverflow) | 1972-07-11 |
FR2130489B1 (enrdf_load_stackoverflow) | 1976-08-06 |
FR2130489A1 (enrdf_load_stackoverflow) | 1972-11-03 |
IT952193B (it) | 1973-07-20 |
CH549427A (de) | 1974-05-31 |
SE384040B (sv) | 1976-04-12 |
BE780761A (fr) | 1972-07-17 |
AT324382B (de) | 1975-08-25 |
CA966703A (en) | 1975-04-29 |
GB1338182A (en) | 1973-11-21 |
DE2114160B2 (de) | 1972-03-16 |
DE2114160A1 (enrdf_load_stackoverflow) | 1972-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0331679B1 (en) | High density sintered ferrous alloys | |
US5859376A (en) | Iron base sintered alloy with hard particle dispersion and method for producing same | |
US4970049A (en) | Sintered materials | |
JP2687125B2 (ja) | エンジン用バルブ部品に用いる焼結金属コンパクトおよびその製造方法。 | |
US4194910A (en) | Sintered P/M products containing pre-alloyed titanium carbide additives | |
US5552109A (en) | Hi-density sintered alloy and spheroidization method for pre-alloyed powders | |
US3810756A (en) | Method of making valve seat rings from a mixture of c,pb and a pre-alloy of fe-co-ni-mo by powder metallurgy | |
US3889350A (en) | Method of producing a forged article from prealloyed water-atomized ferrous alloy powder | |
US3744993A (en) | Powder metallurgy process | |
US3461069A (en) | Self-lubricating bearing compositions | |
US3471343A (en) | Process for the production of sinter iron materials | |
US3183127A (en) | Heat treatable tool steel of high carbide content | |
US3694173A (en) | Ferrous alloys | |
US5069867A (en) | Process of manufacturing high-strength sintered members | |
US4049429A (en) | Ferritic alloys of low flow stress for P/M forgings | |
US2881511A (en) | Highly wear-resistant sintered powdered metal | |
US3809540A (en) | Sintered steel bonded titanium carbide tool steel characterized by an improved combination of transverse rupture strength and resistance to thermal shock | |
US2284638A (en) | Metallurgy of ferrous metals | |
US4018632A (en) | Machinable powder metal parts | |
US3715792A (en) | Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy | |
US4236925A (en) | Method of producing sintered material having high damping capacity and wearing resistance and resultant products | |
US4130422A (en) | Copper-base alloy for liquid phase sintering of ferrous powders | |
US4198234A (en) | Sintered metal articles | |
US2882190A (en) | Method of forming a sintered powdered metal piston ring | |
US2884687A (en) | Wear-resistant sintered powdered metal |