US3810602A - Ceramic disk faucet - Google Patents
Ceramic disk faucet Download PDFInfo
- Publication number
- US3810602A US3810602A US00244503A US24450372A US3810602A US 3810602 A US3810602 A US 3810602A US 00244503 A US00244503 A US 00244503A US 24450372 A US24450372 A US 24450372A US 3810602 A US3810602 A US 3810602A
- Authority
- US
- United States
- Prior art keywords
- disk
- stem
- valve
- disks
- apertures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K19/00—Arrangements of valves and flow lines specially adapted for mixing fluids
- F16K19/006—Specially adapted for faucets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K11/00—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
- F16K11/02—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
- F16K11/06—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
- F16K11/072—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
- F16K11/074—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
- F16K11/0746—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces with two or more closure plates comprising a single lever control
Definitions
- ABSTRACT This covers a control valve for a kitchen or like faucet embodying a cartridge or container housing two contiguous ceramic disk elements and a vertical rotary stem. One of the elements is positioned at the base of the stem and is a rotatable member while the other element is a stationary member upon which the rotatable member is slid.
- the stationary member has inlet and outlet ports both so arranged that, when the movable member is rotated about its axis through a limited angle, the movable member is rotated about its axis through a limited angle, the movable member will be rotatably slid over both ports of the stationary ceramic member to determine the relative sizes of the openings of both ports. Either hot water or cold water, whichever is fed to the inlet port, may be transmitted through the valve and the angular position of the movable member will alone control the volume of water flow through the valve.
- the slidable member includes a cavity having a plurality of steps or ridges positioned in the path of the water reaching the slidable member, and they reduce the noise level that would otherwise be developed upon water flow through the valve.
- This application relates to control valves such as may be used in faucets providing hot and cold water to various plumbing fixtures, such as shower stalls or kitchen sinks or lavatories.
- the present invention is directed to an improved control valve that is superior in performance characteristics, ease of operation, ease of maintenance, and life span when compared to a conventional or so-called compression type of valve quite commonly and generally used for decades in faucets for plumbing fixtures.
- valve structure such as disclosed in the above-mentioned patents, which employ ceramic disks.
- the valve structure to be disclosed in this appli-. cation fills that need and at the same time embodies additional features an qualities, as will be briefly explained hereinafter.
- each control valve is composed of a handle-controlled rotary stem at one end of which a rubber-like or flexible substantially flat circular element, commonly called a seat washer, is affixed by means of a screw serving to hold the rubber-like (elastomer) seat washer element at the end of the stem.
- the control valve is equipped with a valve seat positioned upon and concentric with the input water port, the.
- valve seat being stationary and positioned opposite the vertically movable rubber-like seat washer element.
- the rubber-like element may be moved vertically toward or away from the valve seat to close or open the water input port as may be desired.
- the handle-controlled stem is therefore rotated in one direction so as to advance the rubber-like seat washer element along its axis toward and against the valve seat which is usually positioned at the top of the input water port to seal the valve seat and its input Water port to cause the flow of water to be stopped.
- the rubber-like seat washer element becomes displaced from the valve seat along the very same axis so as to open the input water port and allow water to flow through the control valve to an output port.
- This type of mechanism in which the rubber-like seat washer element is changed in itsparallel spacing from the valve seat and'from the input water port, is widely used in control valves to control the flow rate of the water through faucets which are parts of plumbing fixtures, such as sinks or lavatories.
- the elastomer seat washer is subjected to considerable abrasive wear and this it due principally to the amount of mechanical pressure thatis usually applied to the elastomer in closing and opening the valve.
- the elastomerseat washer which is attached to the stem, is rotated with a twisting motion so as to drive the seat washer against the valve seat in attaining a good shut-off of the valve.
- This highly abrasive rotary or shearing motion causes wear both to the elastomer seat washer and to the'surfaceof the valve seat which is usually metallic.
- the elastomer seat washer becomes worn down orcut away to render its surface uneven so that a good clean valve closure of the washer against the metallic valve seat may not be achievable. This usually results in difficulty in closing the valve and thedifficulty necessarily increases with time. Greater mechanical pressure on the handle is then required to openand closethe valve. Abrasion and wear are further magnified in localities where the water supply pressure is high because, in such areas, still greater forces are required to open or close the valve.
- the rubber washerand the valve seat of the conventional control valve areoften subjected to a number of environmental conditions that additionally shorten their lives.
- sand or other foreign particles are found in the water system and, when caught between the rubber washer and the seat, often become embedded in the rubber washer and scratch the valve seat as the faucet valve is closed.
- a scratch or nick is made in the valve seat, more force is naturally required by the user to fully close the valve to eliminate leakage and a shortened life of the valve is inevitable.
- a faucet having this type of valve structure is allowed to drip for a length of time, the pressur ized water under relatively higher velocity in passing through a small nick in the valve seat will erode the seat in due course, causing the scratch or nick to enlarge.
- the temperature-sensitive elastomer washer element will have a minimal dimens'ion when the valve is closed or when cold water is received, but the element will expand when it is subjected to the elevated temperature of hot water.
- the size of the opening of the valve having such an expandible and contractable element in the control path will vary, depending upon the temperature of the incoming water. As the temperature rises and the elastomer element necessarily expands, the size of the water opening will be correspondingly reduced and soon reduce the amount of warm or hot water delivered through the valve. This can be especially uncomfortable in a shower stall because the temperature of the water will change even though the user intends to maintain the temperature substantially constant and therefore has not readjusted the valve. This constitutes another important deficiency in the common conventional compression type of valve and points up an added reason for effectively removing elastomer elements from essential flow paths or otherwise minimizing the difficulties that may be developed by their presence.
- valve of this invention may be used interchangeably for either hot water or cold water, whether for kitchens or bathrooms.
- the present invention is, therefore, directed to a highly improved, simplified, longlived, and relatively silent control valve which may be opened repeatedly or intermittently through a predetermined angle to establish a corresponding predetermined volume flow rate, and opened through another predetermined angle to obtain another corresponding predetermined volume flow rate, and closed, whenever desired, to completely shutoff the flow of water.
- valve of this invention may be accomplished with ease and without the employment of excessive manual or mechanical pressure and without damage to or destruction of any of the movable and stationary elements.
- This valve structures meets a long felt want, especially because it virtually eliminates the serious difficulties encountered in conventional water control valve for conventional plumbing fixtures.
- the control valve includes a pair of hard contacting ceramic members, one of which is always stationary and entirely free of any motion, while the other member is controlled by arotary stem which never moves axially, so that the other element is always in slidable contact with the stationary element to control the volume flow rate of the water.
- the handle-controlled stem of the control valve is rotated for opening the valve, the slidable ceramic element will he slid along the surface of thestationary ceramic element and the slidable element may be moved over an angle which corresponds to the angle of rotation of the stem to achieve a predetermined opening of the valve port without changing the spacing or continuous contact between both ceramic elements.
- valve port will be further opened by a proportional increment.
- valve port will be substantially reduced in size to reduce the volume flow rate of water.
- a rotational movement of the handlecontrolled stem of the valve from its initial open position or its initial closed position will cause, for each individual angular rotation of the stem, a predetermined and corresponding change in the opening of the port of the valve.
- the proportionality of the changes in the flow rates will remain substantially the same in both directions of change.
- the mechanism will be substantially free of wear and erosion for many years.
- the movement of the slidable ceramic disk in response to each rotational displacement of the stem of the valve can be achieved with the same relatively small torsional force applied to the stem and will not require the unusual and uneven torsional forces usually required in conventional valves to control such valves when they are to be opened or closed.
- the two ceramic disks employed in and characteristic of this invention are enclosed in a common casing or cartridge and are expected to be used together for a very long time, perhaps twenty years, without requiring any re-adjustment or any maintenance service or any replacement of any of the parts.
- the entire valve structure may be perfected merely by replacing the cartridge. This may be done by almost any unskilled person, so that the need for a plumber to make the valve replacement or repair will be unnecessary.
- FIG. 1 illustrates an exploded view of the structure of the cartridge of the control valve mechanism of this invention
- FIG. 2 shows a perspective view of the structure of the general arrangement of this invention, this figure showing also an exploded view of the left end portion of the faucet;
- FIG. 3 illustrates a front elevational view of the general arrangement of this invention, this figure also illustrating, in cross-section, part of the control valve structure;
- FIGS. 4, 5, 6 and 7 illustrate schematically four different views of the two ceramic disk members corresponding to different angular positions of the movable ceramic disk member
- FIG. 8 shows a cross-sectional view of the two ceramic disk members taken along the line AA of FIG.
- FIG. 9 illustrates two curves generally representing the respective forces required to manipulate the handle of a conventional faucet valve subjected to different pressures of the incoming water, and the handle of a faucet of the kind involved in the present invention and subjected to similar forces;
- FIG. 10 illustrates two curves comparing the flow rates of the conventional valve with the valve of this invention for different angular rotations of the handles of the respective faucet valves.
- the reference character CTG designates a cartridge which houses the two substantially parallel contiguous ceramic disks or elements D81 and D82 employed in this invention.
- the upper ceramic disk D51 is rotatable about its center or axis and, in its rotation, is always slidable along the upper surface of the lower ceramic disk DS2 which is and remains always stationary and immovable and is always held stationary and immovable.
- the upper disk D81 is mounted within and held by projections SP1 and SP2 which are part of and integral with the structure of stem ST so that the upper disk DS!
- the stem ST is rotatable and slidable about its central or vertical axis.
- the stem ST will necessarily rotate both the upper disk DS] and the stem projections SP1 and SP2 which retain the upper disk SDI, through an equal and corresponding angular distance without causing the lower disk DS2 to be rotated or otherwise moved or changed in its position.
- the spacing between the two disks D51 and D82 will nevertheless remain unchanged throughout the sliding motion.
- the two disks D81 and D52 will be maintained in constant contact with each other although the upper disk DSl may be rotated and slid into different angular configurations by various and different rotations of stem ST.
- the stem ST and disks D81 and D82 may be considered to have a common axis, but only the stem ST and the upper disk DSl are revolvable, and they are revolvable as a unit through the same angle about the common axis by any rotation of the stem ST.
- the lower disk D82 is held fixed and immovable, both rotationally and axially or laterally, within the cartridge body BD by the rather wide projections PJ] and PJ2 of disk DS2, the latter projections being held between the pairs of guiding projections GPl and GP2 (see FIG. 1) on the inner wall of the cartridge body BD, as will be later explained.
- the lower disk D82 is retained against downward displacement or movement by a cap CP which has two substantially equal openings CO1 and CO2 for water inflow and outflow, respectively. These openings CO1 and CO2 in cap CP are aligned with two corresponding counterbores CB1 and D02 in the lower or stationary disk DS2 (see FIG. 1).
- the cap CP also embraces and supports two equal cylindrical seal rings SR1 and SR2 which may be made of any forms of elastomer or rubber-like materials and, as may be seen in FIGS. 1 and 3, they are sufficiently long so as to enter into, and be retained by, the two respective counterbores in the lower ceramic disk D52.
- the cap CP is positioned above the base nut BN which may be positioned immediately beneath the support SB which may be, for example, the platform of a kitchen sink, as shown in FIG. 2
- An escutcheon ES serves as a trimming mounted above and about the base nut BN, as shown, the escutcheon ES also having aesthetic value.
- a water inlet passageway IT and a water outlet passageway OT may be aligned with each other somewhat as illustrated in FIG. 3. These passageways IT and OT have neck portions TN] and TN2. Water entering inlet tube or passageway IT will travel upward through the valve mechanism to the cavity in the upper disk DSl, then return via a down path in the valvemechanism, and then traverse the outlettube' or passageway OT to be exited by the faucet spout PT.
- the upper disk DSl significantly has a fluid cavity but no fluid aperture or through passage.
- each of the cylindrical seal rings SR1 and SR2 has a diameter which is appreciably greater than the opening of each of the neck portions TNl and TN2 of passageways IT and OT, respectively.
- the rings SR1 and SR2 are longer than the overall vertical lengths of the two corresponding openings CO1 and CO2 ofithe' CP and the respectivecounterbores CB1 and CB2 of lower disk DS2, as may be apparentfrom FIG. Because of this significant geometry of the indicated components, any expected changes in the sizes of the elastomer rings SR1 and SR2 due to even wide temperature changes will not expand rings SR1 and SR2 so as to reduce or otherwise affect the rate of flow of water through either of the passageways IT or OT. Thus, the flow of water will be maintained rathercompletely independent of changes of the size of the elastomer rings SR1 and SR2 over any very wide temperature range that may be encountered in every day use of the valve mechanisms.
- the base nut BN has an internally threaded section BTH above which may be applied a flat washer WSl.
- the shank 188 will be coupled to the inlet water supply pipe SP as shown (see FIG. 3).
- the base nut BN may be rotated about the externally threaded segment of the shank 158 so as to apply pressure between the base nut RN and the support SB through the washer WSl to hold the base nut BN in a permanently stationary position and thereby hold the faucet against upward movement.
- a handle I'IN is mounted upon the stem ST and is affixed to the stem ST .by a simple screw SC which is threaded into the upper serrated end of the stem ST.
- the opening within the handle l-IN will be brought down almost to the upper surface of escutcheon ES, as seen at the right of FIG. 3.
- the stem ST By rotating the handle I-[N in one direction or the other, the stem ST will be rotated through a corresponding angle to slidably rotate the upper disk DSl on and about the upper surface of the lower disk DS2 without changing the spacing, and without affecting the intimate contact, between the disks D51 and DS2.
- the ceramic disks DS] and D82 remain in firm contact with each other and the upper disk DSl remains inslidable contact with the lower disk D82 even though the upper disk D81 is rotated to enlarge or reduce the. effective. sizes of the portal openings within the lower or stationary disk D52, as may be desired, through which water may enter via the inlet IT and exit through the outlet OT to the faucet spout Fl.
- the rotation of the handle I-IN simply produces a rotational movement of the stern ST without changing the longitudinal position of the handle RN and without translatory movement of the stem ST and without changing the longitudinal position of the movable upper disk DSl with respect to the stationary disk D52. There is, therefore, no longitudinal movement of any of the parts of the cartridge CTG at any time, even while the volume flow rate of water is changed from time to time as desired by the user.
- a further feature is the continuous upward pressure exerted by the incoming water against the inner wall of the lower stationary disk DS2 acting to firmly hold the lower disk DS2 sealed against the upper disk DSl while allowing the disk DS2 to be held stationary and allowing the upper disk DSl to berotated and slid, as often as desired, over the surface of the lower disk DS2 by rotation of the handle HN and of the stem ST by the user.
- a washer W82 (see FIG. 1) is mounted about stem ST above the shoulders or projections SP1 and SP2 of the stem ST and within the inner wall-of the body BD of the cartridge CTG.
- This washer W52 is preferably made of Teflon or a like material which will have a sufficiently low coefficient'of friction so as not to retard or otherwise interfere with the rotary action of the stem ST when the handle HN is manipulated to change the flow rate.
- the washer WS2 serves as a thrust washer to prevent the upward movement of the stem ST in re sponse to the pressure of the water received through the water inlet IT as the water travels through the two apertures of the lower disk D82 and through the stepped cavity of the upper disk DSl to be emitted by outlet OT (see FIG. 2).
- FIG. 1 shows the exploded view of the components of the cartridge CTG with the handle HN of the valve removed.
- the two retaining screws RS serve to maintain the cartridge CTG affixed to the faucet pad FP (see FIG. 2) in which there are two internally threaded openings to receive the screws RS.
- the threaded openings in pad FP serve to grip and hold the ends of screws RS.
- FIG. 2 shows the relative positions of the retaining screws RS with respect to the cartridge CTG.
- FIGS. 4, 5, 6 and 7 are views looking at the underside of the cartridge CTG, with the cap CP and the seal rings SR1 and SR2 removed. These views show the various, openings of the inlet port D01 and outlet port D02 as the stem ST may be rotated to certain angular positions.
- FIG. 4 shows the valve in its closed position, with wings SP1 and SP2 that project from shoulder SS on stem ST abutting projections GPl and GP2 of body DB. It is noted that there is an appreciable distance between the edge of the inlet port D01 of lower disk D82 and the edge of the stepped cavity STP in upper disk D8! which has no aperture or through passage for fluid transmission. Because the inlet port D01 of the lower disk D52 is spaced from the stepped cavity STP, no water can flow through the outlet port D02.
- FIG. 5 shows the shape of the port openings when the handle is positioned to provide a very low rate of flow through the faucet FT.
- the intersection of inlet port D01 in the lower disk D52 and the stepped cavity STP in the upper disk DSI form a geometric shape that increases slowly and gradually during the first few degrees of opening effected by a small rotation of stem ST near the off-position. This provides fine tuning when low flow rates are desired; This also inhibits water hammer when the stem ST is returned to its closed position even when the handle I-IN is closed quickly.
- FIG. 6 shows the port openings when the valve is placed in a half-open position.
- the inlet port D01 in the lower disk D82 is approximately 50 percent open and the outlet port D02 in the lower disk D52 is approximately 60 percent open.
- This throttling of the outlet port D02 in relationship to the throttling of the inlet port D01 in all partially open positions of the valve induces a back pressure in the stepped cavity STP in the upper disk DSl. This back pressure inhibits cavitation by reducing the number and size of cavitation bubbles that form as the water at high velocity passes through the inlet port D01 into the cavity STP.
- FIG. 7 depicts the valve in its fully open position. Note that both the inlet port D01 and the outlet port D02 are completely open to the stepped cavity STP and that the water cannot now be throttled at either port. Therefore, it can be seen that, because the outlet port D02 is opened in conjunction with the inlet port DOl, this will not reduce the flow rate of the water in the fully open position of the cartridge CTG.
- FIGS. 1 and 8 show the general contour of the steps in the non-apertured cavity STP of the upper ceramic disk DSl.
- the steps are five in number for illustration.
- the cavity STP within disk D81 is bounded by the several steps therein and is part of the fluidic interconnection path for water received from the inlet conduit IT and transmitted through the outlet conduit OT.
- the sizes of the openings made available for water flowing into and out of the stepped region STP will be determined only by the angular displacement of the upper ceramic disk DSl.
- the space within the stepped cavity STP may be completely cut off from the inlet conduit IT merely by rotating the stern ST to one of its two extreme positions (see FIG. 4). n the other hand, coupling space within cavity STP will be brought to its greatest size when the stem ST is rotated about its axis to its other or opposite extreme position (FIG. 7).
- the cavity embodying the five steps in the stepped region STP serves to provide a conduit between the inlet passageway IP and the outlet passageway 0P (see FIG. 2) and the steps in the cavity also provide ridges for the substantial reduction or elimination of noise. It is a well known fact that cavitation will occur when the velocity of a liquid is raised sufficiently high so as to cause the pressure to drop to a very low level a level approximating the vapor pressure of the liquid. Any substantial decrease in pressure often causes air bubbles to be formed and the bubbles grow in size until they reach a fluid zone of higher pressure. The developed higher pressure may be sufficient to burst the bubbles. The sudden collapse of the bubbles generates an undesirable but quite distinct audible noise.
- edges of the ridges project into the fluid stream carrying the bubbles and act to divide or distribute the bubbles.
- the sharp ridges within cavity STP may cause the bubbles to be reduced in size or broken up. Hence, those bubbles that are not broken up are neverthesless prevented from growing large enough to cause excessive noise.
- FIG. 8 shows an enlarged cross-sectional view of the two disks D81 and D82, especially magnifying the ridged region of the upper ceramic disk DSl.
- Each ridge may be regarded as having two semi-circular segments (see FIG. 7). Each segment includes parts of the several ridges and they have a common center as shown. Other parts of the ridges have a like common center.
- the line joining the two centers of the ridged section is pitched at an angle, such as 21, with respect the normal vertical line as shown in FIG. 4.
- the two inner circular openings D01 and D02 of the lower disk DS2 provide the through paths for water flow. Water entering opening D01 reaches the ridged cavity arena STP of the upper disk DSl, then turns around within the cavity of the upper disk D81 and returns through opening D02.
- Two valves may be arranged on a sink or lavatory organized so that one of the inlet shanks ISl may receive hot water and the other inlet shank (not shown) may receive cold water.
- the two outlet passageways 0? may be connected by conduit OT to the faucet spout FT, as shown in FIG. 2, to receive and discharge both outputs as water of an intermediate temperature.
- the intermediate temperature will, of course, be fixed by the adjustments of the handles of the two valves.
- each control valve has been shown and described as having a lever handle HN to control the movement of its stem ST, the handle may be a circular handle or any other means for rotating the associated stem ST.
- FIG. 9 presents a chart that shows the torques needed to operate the handle HN of the valve of the disclosed invention as compared to that needed to operate the handle of a conventional compression-type faucet valve.
- the torques needed to turn the handle I-IN are compared at the various inlet supply pressures that are commonly found in this country, the range extending from about 20 psi to about psi.
- the marked lesser force required to adjust the valve of this invention will I be readily apparent.
- the lesser required forces render the device of this invention operable by childrem as well as older or infirm people with equal facility. This is a distinct improvement. rapidly I FIG.
- valve 10 illustrates two curves drawn to compare a conventional valve with the valve of this invention as to the volume flow rate (in g.p.m.) with respect to the angular rotation of the handle l-IN of the valve from its off position.
- the valve of this invention when opened to start its flow, transmits water at a much slower rate of volume growth (see the dotted curve), but that the growth rate rises much more radpily as the angular displacement is increased. Hence a finer control is obtained at the lower flow rates. This makes it easier for the user to select lower flow rates.
- FIGS. 9 and 10 exemplify the surprisingly large advantages of the valve of this invention over conventional valve structures heretofore employed in plumbing fixtures.
- the disks D81 and D82 are preferably made of an alumina ceramic material because such material has dimensional stability and its surfaces canbe ground and polished to such a degree of flatness and smoothnessthat a liquid cannot pass between the contiguous surfaces.
- a predetermined minimum contact pressure should be maintained to hold the surfaces in continu ous abutting relationship even if one :of the disks is to be slid over the surface of the other disk. The contact pressure is achieved without springs.
- the seal rings SR1 and SR2 are 'made longer than the height of the apertures CO1 and C02 within the cap CI thatsupportthe rings (see FIG. 1), so that the upper portions of rings SR1 and SR2 protrude into the enlarged cavities CB1 and CB2, respectively, of the stationary disk DS2. Because of their lengths as already noted, the rings SR1 and SR2 will therefore be compressed, thereby exerting'a continuous upward force against disk D82. The upward force will hold the two disks together.
- the seal of the mating surfaces of disks D81 and D82 remains effective continuously and is virtually independent of the inlet water pressure, however high or low it may be. Because of the low coefficient of friction between disks D81 and D82 and because of the presence of the Teflon washer WS2, the amount of torque required to operate the valve remains quite low even when the water pressure is relatively high.
- the handle HN may be moved to a desired position at different times and'the volume of water flow through the valve will remain unchanged, notwithstanding changes in temperature of the fluid or in the environment or in the time intervals between the suc cessive valve operations.
- the valve can therefore be rapidly brought to a position corresponding to a desired flow rate at any time.
- the valve may therefore be adjusted to a desired flow rate quickly and easily.
- the surfaces of the disks remain smooth and unscratched by foreign particles and are preserved in sealing, leak-proof condition for long periods of time.
- the intimate contact between such flat, highly polished surfaces precludes foreign matter from reaching the surfaces in contact with each other.
- valve cartridge CTG is self-contained and is easily replaceable by the homeowner without encountering the difficult problems usually facing the homeowner in repairing a conventional faucet.
- the faucet becomes operative anew immediately upon the replacement of the cartridge.
- the disks D81 and D82 have been described as made of alumina ceramic materials. Such materials are preferred for the disk devices.
- the disk devices are readily made of such materials in large quantities and at relatively low cost, and their shapes can readily conform to precise dimensions. Such materials can be highly polished to provide easily slidable surfaces presenting minimal resistances. When so polished, leakage of water between adjacent disks becomes virtually nonexistant.
- other hard materials may be used in place of alumina ceramics.
- metals such as stellite or tungsten carbides may be used for the disks, but such hard materials would be more costly to manufacture and, moreover, they do not provide the hardness and protection against sand particles conveyed by the water.
- a Williams Pat. No. 3,009,679 issued Nov. 21, 196i discloses a valve structure having, among other things, a valve seat of a graphite composition positioned on a water inlet passage, an O-ring' mounted around the circumference of the valve seat to seal the valve seat from the inlet passage, a hard valve member rotatably mounted on the valve seat and affixed to a rotatable valve stem, and a spring seated on a shoulder within the inlet passage and pressuring the bottom of the valve seat against the valve member.
- the valve member embodies an eccentric port which may be aligned with another port in the valve seat. By rotating the valve stem, the ports are brought into alignment or registry or out of alignment or registry to control the flow rate through the valve.
- This structure with its O-rings, its through ports in the adjacent valve seat and valve member, its biasing spring, etc. constitute a complicated valve of lesser value in manufacturing, maintenance and operat-' ing features than the simple distinctive cartridge valve of the present invention.
- a faucet valve for controlling the rate of flow of fluid between a first conduit and a second conduit to be coupled to the valve, comprising first and second ceramic disks in contact with each other so as to have a common interface, the first disk having only two apertures for'the flow of fluid, means in the valve to hold said first disk against rotation, said two apertures extending through said disk and coupled respectively to said first and second conduits, the second disk having an elongated unapertured cavity at the common interface of sufficient length and depth so as to provide the sole coupling between the two apertures, manually controlled means peripherally coupled to the second disk for slidably rotating the second disk about a single axis always perpendicular to the common interface for changing the position of its cavity with respect to both apertures and thereby adjusting the fluid flow rate, said manually controlled means including a substantially cylindrical rotary stem mechanically retaining the second disk at one end of said stem, said manually controlled means including means to prevent any motion other than rotary motion of the second disk and to prevent any change in the spacing between the two disks,
- a faucet valve according to claim 1 in which the manipulation of the stem controls only the angular rotation of the second disk, the valve including a substantially cylindrical collar within which the stem is confined so that the second disk is slidably rotatable solely about its axis.
- a faucet valve according to claim 2 including a housing enclosing the first and second disks and the lower segment of the stem, the resilient means including cylindrical elastomer rings inserted within said apertures of said first disk to apply pressure to the first disk to maintain it in contact with the second disk at the interface, and a cap for supporting said elastomer rings and holding said elastomer rings against the first disk.
- a faucet valve according to claim 3 including a handle coupled to theupper segment of the stem for manually imparting rotation to the stem.
- a valve for the control of the rate of flow of fluid through a plumbing fitting comprising a longitudinal non-translatory stem which is rotatable and movable only about its axis without being movable in any other direction, a rotatable solid disk affixed to the base of said stem and rotatable through an angle corresponding to the angle of rotation of the stem and having a longitudinal fluid coupling cavity therein, a stationary solid disk having two parallel identical apertures therein for for the flow of the controllable fluid therethrough, the rotatable disk being slidable along the adjacent surface of the stationary disk, means for applying pressure between the two disks for maintaining the two disks in continuous slidable contact with each other and inde-.
- the cavity providing the coupling between the twoapertures to control the flow of fluid through and between said apertures, two conduits respectively coupled to the two apertures of the stationary disk, one of the apertures being supplied with pressurized water and the other aperture exiting the pressurized water received from the first aperture and transmitted through the cavity of the rotatable disk, said means for maintaining the two disks in continuous slidable contact including a housing having a collar within which the stem is guided to enable the stem to be moved only in rotation about its axis for holding the rotatable disk against movement other than rotary movement, and a stationary abutment means for limiting the angular rotations of the stem and the rotatable disk, said latter means comprising projections on said stem and corresponding curvatures about the rim of the rotatable disk.
- a valve for the control of the rate of flow of fluid through a plumbing fitting comprising first and second I solid disks stacked together so as to be in continuous contact with each other, the first diskhaving a first aperture for the reception of fluid and a second substantially equal aperture for the discharge of the received fluid, an abutment means for holding the first disk stationary, the second disk having a cavity but no apertures, the cavity of the second disk fluidically coupling the two apertures to each other, a rotatable longitudinal stem the end of which has means to hold said stem perpendicular to the second disk to slidably rotate the second disk about its axis and along the adjacent surface of the first disk and to control the angle of slidable rotation of the second disk upon the surface of the first disk, the two disks being held in contact with each other throughout each rotation of the second disk, the valve having means to hold the stern non-movable longitudinally so as to maintain the surface contact between the two disks unchanged and to prevent any motion of the second disk except its rotary motion, whereby the rotation of the second disk
- a valve according to claim 8 including a housing for enclosing and retaining the stem and the two disks in their respective positions, said housing providing the abutment means an abutment for holding the first disk continuously against any movement.
- a valve according to claim 10 including a thrust washer interposed between the stem and the housing, said washer having a low coefficient of friction.
- a valve for a plumbing fitting for the control of the rate of the flow of fluid through the fitting comprising a longitudinal stem which is rotatable about its axis but is not movable in any other direction along its axis, a first solid disk having a first aperture for receiving fluid and a second substantially identical aperture for discharging the received fluid, means for holding the first disk stationary, means for adjustably coupling the apertures of the first disk to each other to control the rate of flow of fluid between saidapertures, said coupling means including a second solid disk having a cavity therein but no aperture so that fluid may flow from said first aperture through the cavity and out of the second aperture, said second disk having at least one pro jection which mates with a corresponding projection formed on one end of said stern so that, in response to collarwithin which the stem is rotatable to prevent any non-axial rotation of the stern and of the second disk.
- a valve according to claim 12 including means supported beneath the first disk for continuously holding the first disk stationary, and for applying pressure against the first disk to hold it in continuous contact with the second disk throughout all rotations of the second disk.
- valve according to claim 13 including first and second elastomer cylindrical units which are larger in their external diameters than the diameters of the apertures of the first disk and are positioned between the first disk and the support means so as to be coaxially within the respective first and second apertures, said cylindrical units applying continuous mechanical pres-v sure between the support means and the first disk.
- a faucet valve for controlling the rate of flow of fluid between a first conduit and a second conduit to be coupled to the valve, comprising first and second ceramic disks in contact with each other so as to have a common interface, the first disk having two apertures extending through said disk and coupled respectively tosaid first and second conduits, the second disk having an elongated unapertured cavity at the common interface of sufficient length and depth so as to provide the sole coupling between the two apertures, manually controlled means peripherally coupled to the second disk for slidably rotating the second disk about a single axis always perpendicular to the common interface for adjusting the fluid flow rate without rotating the first disk and without changing the spacing between the two disks, resilient means for applying pressure against one of the disks for continuously maintaining the two disks in physical contact with each other at the interface during all changes in pressure of the incoming fluid and during all rotations of the second disk, said manually controlled means includes a substantially cylindrical rotary stem mechanically retaining the second disk at one end of said stem to control the angular rotation of the second disk and
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Multiple-Way Valves (AREA)
- Sliding Valves (AREA)
- Valve Housings (AREA)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00244503A US3810602A (en) | 1972-04-17 | 1972-04-17 | Ceramic disk faucet |
CA163,295A CA981238A (en) | 1972-04-17 | 1973-02-05 | Ceramic disk faucet |
PH14311*A PH10054A (en) | 1972-04-17 | 1973-02-05 | Ceramic disk faucet |
US33561673 US3834416A (en) | 1972-04-17 | 1973-02-26 | Ceramic disc faucet valve |
GB1046673A GB1363835A (en) | 1972-04-17 | 1973-03-05 | Valve and a replaceable valve cartridge |
DE19732314657 DE2314657A1 (de) | 1972-04-17 | 1973-03-23 | Steuerventil |
CH478873A CH560342A5 (enrdf_load_stackoverflow) | 1972-04-17 | 1973-04-04 | |
FR7312834A FR2180744B1 (enrdf_load_stackoverflow) | 1972-04-17 | 1973-04-10 | |
ES1973190607U ES190607Y (es) | 1972-04-17 | 1973-04-12 | Valvula de griferia. |
JP48042268A JPS49108638A (enrdf_load_stackoverflow) | 1972-04-17 | 1973-04-16 | |
BR732752A BR7302752D0 (pt) | 1972-04-17 | 1973-04-16 | Valvula aperfeicoada de torneira, e valvula aperfeicoada dvalvula aperfeicoada de torneira, e valvula aperfeicoada de controle e controle |
IT23061/73A IT983913B (it) | 1972-04-17 | 1973-04-16 | Valvola di regolazione e control lo in particolare per acqua calda e fredda |
BE130143A BE798365A (fr) | 1972-04-17 | 1973-04-17 | Robinet a disques en ceramique |
NL7305405A NL7305405A (enrdf_load_stackoverflow) | 1972-04-17 | 1973-04-17 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00244503A US3810602A (en) | 1972-04-17 | 1972-04-17 | Ceramic disk faucet |
Publications (1)
Publication Number | Publication Date |
---|---|
US3810602A true US3810602A (en) | 1974-05-14 |
Family
ID=22923023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00244503A Expired - Lifetime US3810602A (en) | 1972-04-17 | 1972-04-17 | Ceramic disk faucet |
Country Status (13)
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4821765A (en) * | 1988-06-10 | 1989-04-18 | Kohler Co. | Valve for faucet or the like |
US4889157A (en) * | 1987-10-08 | 1989-12-26 | American Standard Inc. | Cartridge valve assembly |
US4981071A (en) * | 1988-11-03 | 1991-01-01 | Leybold Aktiengesellschaft | Machine element with coating |
US4991822A (en) * | 1988-09-27 | 1991-02-12 | Leybold Aktiengesellschaft | Valve having ceramic valve bodies with low friction coatings |
DE4012406A1 (de) * | 1990-04-19 | 1991-10-24 | Scheffer Franz Armaturen | Sanitaere mischbatterie |
US5174324A (en) * | 1991-01-22 | 1992-12-29 | Amerikam | Ceramic valve |
USRE35545E (en) * | 1991-01-22 | 1997-07-01 | Amerikam, Inc. | Ceramic valve |
WO1998026339A1 (en) * | 1996-12-12 | 1998-06-18 | The Unique Company Limited | Valve system for servo control of fluid flows |
US5904336A (en) * | 1996-04-15 | 1999-05-18 | Emhart Inc. | Valve assembly |
WO2005122664A1 (en) | 2004-06-07 | 2005-12-22 | American Power Conversion Corporation | Data center cooling |
US20060226389A1 (en) * | 2005-04-08 | 2006-10-12 | Jonte Patrick B | Seat keeper |
US7121303B1 (en) * | 2004-08-02 | 2006-10-17 | Ren-Yih Hwang | Mixed water faucet |
US7143786B2 (en) | 2003-12-11 | 2006-12-05 | Newfrey Llc | Two-handle flow-through valve |
US20060272821A1 (en) * | 2005-06-01 | 2006-12-07 | Webb Earl D | Method and apparatus for generating fluid pressure pulses |
US20090056005A1 (en) * | 2007-08-28 | 2009-03-05 | Yu-Chang Liao | Stool flushing device having control switch and locking assembly |
EP2079000A2 (en) | 2003-03-19 | 2009-07-15 | American Power Conversion Corporation | Data center cooling system |
US20090189108A1 (en) * | 2008-01-28 | 2009-07-30 | Ritter David H | Valve assembly |
US20110079307A1 (en) * | 2008-06-25 | 2011-04-07 | Marty Garry R | Centerset Faucet With Mountable Spout |
US20110094604A1 (en) * | 2008-06-20 | 2011-04-28 | Kurt Judson Thomas | Valve assembly for a two handle faucet |
US20140048628A1 (en) * | 2012-08-17 | 2014-02-20 | Moen Incorporated | Cartridge assembly for faucet |
US8689818B2 (en) | 2008-06-25 | 2014-04-08 | Masco Corporation Of Indiana | Widespread faucet |
CN103815793A (zh) * | 2014-03-06 | 2014-05-28 | 广东新功电器有限公司 | 一种饮水器具的出水装置 |
US8739826B2 (en) | 2011-03-11 | 2014-06-03 | Masco Corporation Of Indiana | Centerset faucet body and method of making same |
US8931500B2 (en) | 2012-02-17 | 2015-01-13 | Masco Corporation Of Indiana | Two handle centerset faucet |
US9234597B2 (en) | 2011-03-11 | 2016-01-12 | Delta Faucet Company | Flow control valve |
US11384851B2 (en) | 2019-10-08 | 2022-07-12 | Hector Hernandez | Cartridge assembly for diverting flow |
US11554079B2 (en) | 2019-07-15 | 2023-01-17 | Wexco Incorporated | Integrated manifold and valve assembly |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5477329A (en) * | 1977-12-01 | 1979-06-20 | Toto Ltd | Changeeover valve |
FR2443004A2 (fr) * | 1978-11-29 | 1980-06-27 | Ideal Standard | Perfectionnements aux tetes tournantes de robinet a structure simplifiee |
EP0003459B1 (fr) * | 1978-01-26 | 1981-09-02 | SOCIETE NOUVELLE IDEAL STANDARD Société Anonyme | Tête tournante de robinet |
FR2415762A1 (fr) * | 1978-01-26 | 1979-08-24 | Ideal Standard | Tete tournante de robinet a structures simplifiee |
JPS5568941A (en) * | 1978-11-16 | 1980-05-24 | Toto Ltd | Hot and cool water mixing sluice |
JPS5568942A (en) * | 1978-11-17 | 1980-05-24 | Toto Ltd | Hot and cool water mixing sluice |
IT7934813U1 (it) * | 1979-02-23 | 1980-08-23 | Mingori Diffusion | Rubinetto di tipo perfezionato |
DE2912007A1 (de) * | 1979-03-27 | 1980-10-09 | Scheffer Kludi Armaturen | Wandseitig montierbare bad-mischbatterie mit brauseanschluss |
GB2119483A (en) * | 1982-05-12 | 1983-11-16 | Peglers Ltd | Mixer tap |
JPS59190579A (ja) * | 1983-04-11 | 1984-10-29 | Fujii Gokin Seisakusho:Kk | 弁装置 |
JPS6296169U (enrdf_load_stackoverflow) * | 1985-12-05 | 1987-06-19 | ||
JPS6296168U (enrdf_load_stackoverflow) * | 1985-12-05 | 1987-06-19 | ||
JPS6296170U (enrdf_load_stackoverflow) * | 1985-12-05 | 1987-06-19 | ||
GB8724236D0 (en) * | 1987-10-15 | 1987-11-18 | Frys Metals Ltd | Flow valve |
IT1238908B (it) * | 1990-04-24 | 1993-09-07 | Galatron Srl | Valvola miscelatrice di acqua calda e fredda con comandi indipendenti per l'erogazione dei due tipi di acqua |
CH685205A5 (de) * | 1992-05-18 | 1995-04-28 | Fides Treuhand Gmbh | Anschlussvorrichtung für eine sanitäre Mischarmatur. |
US5445181A (en) * | 1994-09-15 | 1995-08-29 | Kohler Co. | Mixing valve |
WO1996008967A1 (en) * | 1994-09-23 | 1996-03-28 | Duke University | Aquatic surface antifouling compositions |
RU2134831C1 (ru) * | 1997-04-23 | 1999-08-20 | Пеньков Иван Иванович | Двухвентильный смеситель |
US5996614A (en) * | 1997-10-20 | 1999-12-07 | T&S Brass & Bronze Works, Inc. | Fluid valve |
DE19816286A1 (de) * | 1998-04-11 | 1999-10-21 | Traenkle Anton Kg | Dichtungselement sowie Ventiloberteil mit einem derartigen Dichtungselement |
RU2175735C1 (ru) * | 2001-01-25 | 2001-11-10 | Немытко Виктор Ефимович | Кран |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1424235A (en) * | 1918-07-10 | 1922-08-01 | Wilhelm B Bronander | Chuck |
GB322273A (en) * | 1928-10-02 | 1929-12-05 | Franz Soukup | Shutting off cock |
US1953448A (en) * | 1934-04-03 | Faucet | ||
GB809548A (en) * | 1955-11-15 | 1959-02-25 | Robert Gonzalez | Improvements in fluid flow control valves |
US3203249A (en) * | 1961-08-18 | 1965-08-31 | Bodenseewerk Perkin Elmer Co | Gas chromatography valving apparatus |
US3331396A (en) * | 1964-09-14 | 1967-07-18 | Willis N Elizabeth | Orifice valve |
US3433264A (en) * | 1967-02-28 | 1969-03-18 | American Standard Inc | Noise reduction structure for mixing valve |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3533436A (en) * | 1969-02-03 | 1970-10-13 | American Standard Inc | Single-control mixing faucet and valve for use therein |
-
1972
- 1972-04-17 US US00244503A patent/US3810602A/en not_active Expired - Lifetime
-
1973
- 1973-02-05 PH PH14311*A patent/PH10054A/en unknown
- 1973-02-05 CA CA163,295A patent/CA981238A/en not_active Expired
- 1973-03-05 GB GB1046673A patent/GB1363835A/en not_active Expired
- 1973-03-23 DE DE19732314657 patent/DE2314657A1/de not_active Ceased
- 1973-04-04 CH CH478873A patent/CH560342A5/xx not_active IP Right Cessation
- 1973-04-10 FR FR7312834A patent/FR2180744B1/fr not_active Expired
- 1973-04-12 ES ES1973190607U patent/ES190607Y/es not_active Expired
- 1973-04-16 JP JP48042268A patent/JPS49108638A/ja active Pending
- 1973-04-16 IT IT23061/73A patent/IT983913B/it active
- 1973-04-16 BR BR732752A patent/BR7302752D0/pt unknown
- 1973-04-17 BE BE130143A patent/BE798365A/xx not_active IP Right Cessation
- 1973-04-17 NL NL7305405A patent/NL7305405A/xx not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1953448A (en) * | 1934-04-03 | Faucet | ||
US1424235A (en) * | 1918-07-10 | 1922-08-01 | Wilhelm B Bronander | Chuck |
GB322273A (en) * | 1928-10-02 | 1929-12-05 | Franz Soukup | Shutting off cock |
GB809548A (en) * | 1955-11-15 | 1959-02-25 | Robert Gonzalez | Improvements in fluid flow control valves |
US3203249A (en) * | 1961-08-18 | 1965-08-31 | Bodenseewerk Perkin Elmer Co | Gas chromatography valving apparatus |
US3331396A (en) * | 1964-09-14 | 1967-07-18 | Willis N Elizabeth | Orifice valve |
US3433264A (en) * | 1967-02-28 | 1969-03-18 | American Standard Inc | Noise reduction structure for mixing valve |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4889157A (en) * | 1987-10-08 | 1989-12-26 | American Standard Inc. | Cartridge valve assembly |
US4821765A (en) * | 1988-06-10 | 1989-04-18 | Kohler Co. | Valve for faucet or the like |
US4991822A (en) * | 1988-09-27 | 1991-02-12 | Leybold Aktiengesellschaft | Valve having ceramic valve bodies with low friction coatings |
US4981071A (en) * | 1988-11-03 | 1991-01-01 | Leybold Aktiengesellschaft | Machine element with coating |
DE4012406C2 (de) * | 1990-04-19 | 1999-02-11 | Scheffer Franz Armaturen | Sanitäre Mischbatterie |
DE4012406A1 (de) * | 1990-04-19 | 1991-10-24 | Scheffer Franz Armaturen | Sanitaere mischbatterie |
US5174324A (en) * | 1991-01-22 | 1992-12-29 | Amerikam | Ceramic valve |
USRE35545E (en) * | 1991-01-22 | 1997-07-01 | Amerikam, Inc. | Ceramic valve |
US6016830A (en) * | 1996-04-15 | 2000-01-25 | Emhart, Inc. | Valve assembly |
US5904336A (en) * | 1996-04-15 | 1999-05-18 | Emhart Inc. | Valve assembly |
US5941503A (en) * | 1996-04-15 | 1999-08-24 | Emhart Inc. | Valve assembly |
US5971359A (en) * | 1996-04-15 | 1999-10-26 | Emhart Inc. | Valve assembly |
WO1998026339A1 (en) * | 1996-12-12 | 1998-06-18 | The Unique Company Limited | Valve system for servo control of fluid flows |
AU753581B2 (en) * | 1996-12-12 | 2002-10-24 | American Standard International Inc. | Valve system for servo control of fluid flows |
US6854658B1 (en) * | 1996-12-12 | 2005-02-15 | American Standard International, Inc. | Valve system for servo control of fluid flows |
EP2079000A2 (en) | 2003-03-19 | 2009-07-15 | American Power Conversion Corporation | Data center cooling system |
EP2261769A2 (en) | 2003-03-19 | 2010-12-15 | American Power Conversion Corporation | Data center cooling system |
US7143786B2 (en) | 2003-12-11 | 2006-12-05 | Newfrey Llc | Two-handle flow-through valve |
WO2005122664A1 (en) | 2004-06-07 | 2005-12-22 | American Power Conversion Corporation | Data center cooling |
US7121303B1 (en) * | 2004-08-02 | 2006-10-17 | Ren-Yih Hwang | Mixed water faucet |
US7461669B2 (en) | 2005-04-08 | 2008-12-09 | Masco Corporation Of Indiana | Seat keeper |
US20060226389A1 (en) * | 2005-04-08 | 2006-10-12 | Jonte Patrick B | Seat keeper |
US20060272821A1 (en) * | 2005-06-01 | 2006-12-07 | Webb Earl D | Method and apparatus for generating fluid pressure pulses |
US7405998B2 (en) * | 2005-06-01 | 2008-07-29 | Halliburton Energy Services, Inc. | Method and apparatus for generating fluid pressure pulses |
US7805778B2 (en) * | 2007-08-28 | 2010-10-05 | Song Yang Ltd., Co | Stool flushing device having control switch and locking assembly |
US20090056005A1 (en) * | 2007-08-28 | 2009-03-05 | Yu-Chang Liao | Stool flushing device having control switch and locking assembly |
US8800962B2 (en) | 2008-01-28 | 2014-08-12 | Kohler Co. | Valve assembly having improved connections |
US9915367B2 (en) | 2008-01-28 | 2018-03-13 | Kohler Co. | Valve assembly having improved rotational feel |
US9476508B2 (en) | 2008-01-28 | 2016-10-25 | Kohler Co. | Valve assembly having improved rotational feel |
US8297305B2 (en) | 2008-01-28 | 2012-10-30 | Kohler Co. | Valve assembly having an improved flow path |
US20090189108A1 (en) * | 2008-01-28 | 2009-07-30 | Ritter David H | Valve assembly |
US9086155B2 (en) | 2008-01-28 | 2015-07-21 | Kohler Co. | Valve assembly having improved rotational feel |
US9309976B2 (en) | 2008-06-20 | 2016-04-12 | Delta Faucet Company | Valve assembly for a two handle faucet |
US20110094604A1 (en) * | 2008-06-20 | 2011-04-28 | Kurt Judson Thomas | Valve assembly for a two handle faucet |
US8881755B2 (en) | 2008-06-20 | 2014-11-11 | Masco Corporation Of Indiana | Valve assembly for a two handle faucet |
US20110079307A1 (en) * | 2008-06-25 | 2011-04-07 | Marty Garry R | Centerset Faucet With Mountable Spout |
US8689818B2 (en) | 2008-06-25 | 2014-04-08 | Masco Corporation Of Indiana | Widespread faucet |
US8695625B2 (en) | 2008-06-25 | 2014-04-15 | Masco Corporation Of Indiana | Centerset faucet with mountable spout |
US9403304B2 (en) | 2011-03-11 | 2016-08-02 | Delta Faucet Company | Centerset faucet body and method of making same |
US9234597B2 (en) | 2011-03-11 | 2016-01-12 | Delta Faucet Company | Flow control valve |
US8739826B2 (en) | 2011-03-11 | 2014-06-03 | Masco Corporation Of Indiana | Centerset faucet body and method of making same |
US9939083B2 (en) | 2011-03-11 | 2018-04-10 | Delta Faucet Company | Flow control valve |
US8931500B2 (en) | 2012-02-17 | 2015-01-13 | Masco Corporation Of Indiana | Two handle centerset faucet |
US9091045B2 (en) * | 2012-08-17 | 2015-07-28 | Moen Incorporated | Cartridge assembly for faucet |
WO2014028151A3 (en) * | 2012-08-17 | 2014-05-30 | Moen Incorporated | Cartridge assembly for faucet |
US20140048628A1 (en) * | 2012-08-17 | 2014-02-20 | Moen Incorporated | Cartridge assembly for faucet |
US9587382B2 (en) | 2012-08-17 | 2017-03-07 | Moen Incorporated | Cartridge assembly for faucet |
CN103815793B (zh) * | 2014-03-06 | 2016-01-20 | 广东新功电器有限公司 | 一种饮水器具的出水装置 |
CN103815793A (zh) * | 2014-03-06 | 2014-05-28 | 广东新功电器有限公司 | 一种饮水器具的出水装置 |
US11554079B2 (en) | 2019-07-15 | 2023-01-17 | Wexco Incorporated | Integrated manifold and valve assembly |
US11384851B2 (en) | 2019-10-08 | 2022-07-12 | Hector Hernandez | Cartridge assembly for diverting flow |
Also Published As
Publication number | Publication date |
---|---|
CA981238A (en) | 1976-01-06 |
ES190607U (es) | 1974-05-16 |
IT983913B (it) | 1974-11-11 |
GB1363835A (en) | 1974-08-21 |
FR2180744B1 (enrdf_load_stackoverflow) | 1978-03-03 |
PH10054A (en) | 1976-07-29 |
CH560342A5 (enrdf_load_stackoverflow) | 1975-03-27 |
BR7302752D0 (pt) | 1974-06-27 |
BE798365A (fr) | 1973-08-16 |
NL7305405A (enrdf_load_stackoverflow) | 1973-10-19 |
DE2314657A1 (de) | 1973-10-25 |
FR2180744A1 (enrdf_load_stackoverflow) | 1973-11-30 |
JPS49108638A (enrdf_load_stackoverflow) | 1974-10-16 |
ES190607Y (es) | 1974-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3810602A (en) | Ceramic disk faucet | |
US4331176A (en) | Replaceable cartridge valve assembly | |
US3860032A (en) | Ball valve with flow control | |
US3677516A (en) | Faucet | |
US4346735A (en) | Water faucet and attachment therefor | |
US3812875A (en) | Valve for proportioning fluid flow | |
US3285278A (en) | R cartridge seal design and arrangement | |
CA2114855C (en) | Diverter and volume control valve | |
US11028942B2 (en) | Fluid control valve | |
US3373770A (en) | Swing spout control mechanism | |
US3370609A (en) | Push-button mixing valve | |
US2609206A (en) | Mixing faucet | |
US3011520A (en) | Faucet assembly | |
US2639116A (en) | Valve structure | |
US3155115A (en) | Cam operated tilting valves | |
US2864398A (en) | Dual action handles | |
US3750701A (en) | Selectable temperature mixing valve | |
US3342448A (en) | Self-closing faucet | |
US3586053A (en) | Mixing valve | |
US3185172A (en) | Push button faucet with alternately seating valves | |
US3840046A (en) | Three outlet mixing and diverter valve | |
EP0077506B1 (en) | Fluid control valve | |
US1846623A (en) | Sanitary frostproof hydrant | |
US2009651A (en) | Tub and shower fitting | |
US3490492A (en) | Fluid flow control mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES) |
|
AS | Assignment |
Owner name: BANKERS TRUST COMPANY Free format text: SECURITY INTEREST;ASSIGNOR:AMERICAN STANDARD INC., A DE. CORP.,;REEL/FRAME:004905/0035 Effective date: 19880624 Owner name: BANKERS TRUST COMPANY, 4 ALBANY STREET 9TH FLOOR, Free format text: SECURITY INTEREST;ASSIGNOR:U.S. PLUMBING, INC., A CORPORATION OF DELAWARE;REEL/FRAME:004905/0159 Effective date: 19880624 Owner name: BANKERS TRUST COMPANY, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:U.S. PLUMBING, INC., A CORPORATION OF DELAWARE;REEL/FRAME:004905/0159 Effective date: 19880624 |
|
AS | Assignment |
Owner name: CHEMICAL BANK, AS COLLATERAL AGENT, NEW YORK Free format text: ASSIGNMENT OF SECURITY INTEREST;ASSIGNOR:BANKERS TRUST COMPANY, AS COLLATERAL TRUSTEE;REEL/FRAME:006565/0753 Effective date: 19930601 |
|
AS | Assignment |
Owner name: AMERICAN STANDARD, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST (RE-RECORD TO CORRECT DUPLICATES SUBMITTED BY CUSTOMER. THE NEW SCHEDULE CHANGES THE TOTAL NUMBER OF PROPERTY NUMBERS INVOLVED FROM 1133 TO 794. THIS RELEASE OF SECURITY INTEREST WAS PREVIOUSLY RECORDED AT REEL 8869, FRAME 0001.);ASSIGNOR:CHASE MANHATTAN BANK, THE (FORMERLY KNOWN AS CHEMICAL BANK);REEL/FRAME:009123/0300 Effective date: 19970801 |
|
AS | Assignment |
Owner name: AMERICAN STANDARD, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CHASE MANHATTAN BANK, THE (FORMERLY KNOWN AS CHEMICAL BANK);REEL/FRAME:008869/0001 Effective date: 19970801 |