US3797259A - Method for insitu anchoring piling - Google Patents

Method for insitu anchoring piling Download PDF

Info

Publication number
US3797259A
US3797259A US00207144A US3797259DA US3797259A US 3797259 A US3797259 A US 3797259A US 00207144 A US00207144 A US 00207144A US 3797259D A US3797259D A US 3797259DA US 3797259 A US3797259 A US 3797259A
Authority
US
United States
Prior art keywords
piling
ground
tubular
protrusions
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00207144A
Inventor
A Kammerer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Oilfield Operations LLC
Original Assignee
Baker Oil Tools Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Oil Tools Inc filed Critical Baker Oil Tools Inc
Application granted granted Critical
Publication of US3797259A publication Critical patent/US3797259A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/54Piles with prefabricated supports or anchoring parts; Anchoring piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49938Radially expanding part in cavity, aperture, or hollow body
    • Y10T29/4994Radially expanding internal tube

Definitions

  • ABSTRACT Method for securing tubular piling or pile casing in the ground which comprises inserting tubular piling into the ground, preferably heavy piling adapted to be driven into the ground, inserting an expandable mechanism, e.g., an expandable hydraulically actuated mandrel, into the tubular piling at one or more spaced intervals or positions longitudinally along the piling, expanding the mechanism at each such position to expand the piling outwardly to form one or more protrusions spaced longitudinally along the piling, and retracting the expandable mechanism at each such position.
  • an expandable mechanism e.g., an expandable hydraulically actuated mandrel
  • This invention relates to a method for securing tubular piling in the ground, and is particularly concerned with procedure for inserting tubular piling, preferably formed of thick wall heavy pipe, in the ground, as by driving same, and after being inserted to a predetermined depth in the ground, forming protrusions at spaced intervals on the piling to securely anchor the piling in the ground.
  • the load-bearing capacity of longitudinally flat or straight tubular piling is dependent chiefly upon a combination of load-bearing capacity of the soil or ground at the lower end or tip of the piling, and the coefficient of friction between the ground or soil and the piling skin along the length thereof.
  • the piling is made of metal such as steel, such coefficient of friction may be relatively low and hence a major portion of the load bearing capacity is dependent upon the load-bearing capacity at the lower end of the piling. Under these conditions, the cross-sectional area of the piling must be increased, resulting inincreased cost of, the piling and also of its insertion into the ground.
  • Continuously corrugated piling that is pile casing having corrugations which extend over the full length of the casing, as illustrated in FIG. 1 of US. Pat. No. 3,375,670, similarly utilizes friction between the ground and the continuously corrugated skin of the piling, and end bearing loading capacity, to permit loading when inserted into the ground. Additionally, the soil trapped between such continuous corrugations is to some extent mobilized into resistance against itself, but this additional resistance to movement of the pile casing under loading is often insufficient to securely anchor the piling, particularly under heavy loading or when subjected to extreme vibration or shock loading.
  • continuously corrugated light metallic tubular casing is inserted into a predrilled hole in soft soil, after which an expanding mechanism is used to expand the casing to substantially remove the corrugations and to render the walls substantially straight longitudinally.
  • the tubular pile casing previously rendered flat or straight by the initial expanding operation can be further expanded by the formation of further corrugations in the wall of the casing after the original corrugations have been substantially removed.
  • the resulting re-corrugation produces a continuously corrugated piling as illustrated in FIG. 4 of the patent.
  • the re-corrugated pile casing is again essentially a continuously corrugated piling which in many instances, even with the compaction of the surrounding soil produced by the initial expansion and the resistance of the soil trapped in the small areas between the annular re-' corrugations, has a load-bearing capacity which often is insufficient to securely anchor the piling, particularly against heavy or shock loading or vigorous vibration.
  • the above patent is directed to securing light tubular casing in the ground, and which is usually inserted into a predrilled hole.
  • Such light casing cannot ordinarily be driven into the ground, except by the use of a mandrel to support it as it is driven, as noted in the patent.
  • such light tubular piling cannot be employed in many applications for supporting heavy structures and requiring high loading capacity, and is usually filled with concrete to finish the pile.
  • a method of securing tubular piling, preferably formed of thick wall heavy pipe, in the ground which comprises inserting tubular piling having straight longitudinal walls into the ground, eg by driving same, inserting an expandable means into the tubular piling at one or a plurality of spaced predetermined positions longitudinally along the piling, expanding such means at each such position to expand the piling outwardly a predetermined extent to form one or a plurality of protrusions or corrugations extending outwardly at spaced intervals longitudinally along the piling, and retracting the expandable means at each such position after expansion thereof, to thereby secure the piling against the soil of the adjacent ground formation.
  • the distance between the protrusions or corrugations, accordingly, is maintained particularly so that the above-noted condition prevails, that is, so that the angle of shear of the soil adjacent the casing is of a magnitude such that the soil is in shear solely with itself substantially along-the entire: length of the piling between the uppermost and lowermost protrusions on the piling.
  • the ratio of the outside diameter of the piling to the wall thickness of the piling be within certain limits, as noted hereinafter.
  • the protrusions or corrugations formed at spaced intervals insitu on the piling wall have substantially the same configuration and extend outwardly substantially the same amount from. the piling wall, although these conditions can vary as desired, for examplc the extent of protrusion of the corrugations can vary, since it is often difficult when expanding the piling wall by the expandable means described more fully below, to have each corrugation or protrusion extend outwardly from the piling wall the same amount. Also, the distance between adjacent corrugations or protrusions formed on the piling wall can be substantially the same or can be varied as desired depending upon the soil conditions encountered.
  • tubular piling where formations of different types are encountered along the length of the tubular piling, for example stratas of sand and clay, only a portion of the longitudinal length of the tubular piling can be corrugated insitu according to the invention, e.g., where the adjacent formation is of a sandy nature, the remainder of the tubular piling wall remaining longitudinally straight.
  • the tubular piling is generally formed of metals or metal alloys such as iron, steel, copper, and the like. Any suitable material of construction can be utilized which is sufficiently ductile to be expanded to form the spaced corrugations or protrusions thereon according to the invention.
  • the tubular piling is inserted into ground having a high shear strength value relative to its coefficient of friction against the pile surface.
  • the insitu corrugated piling according to the invention has high effectiveness in soils having a sandy content, such as sand itself, and particularly in shale.
  • the resistance to axial forces of the insitu corrugated piling of the invention is generally in proportion to the difference between the insitu properties of a particular soil in shear versus friction against the piling skin.
  • the insitu piling produced according to the invention successfully resists pullout forces of about twice the level of longitudinally straight or flat piling, and substantially higher then that of continuously corrugated pile casing of the type illustrated in FIGS.
  • Any suitable expandable means or mechanism can be employed for insertion into the tubular piling after it is placed in the ground, for expanding the tubular piling at one or more predetermined positions along the piling to provide the insitu corrugations or protrusions on the piling wall.
  • a tool having a hydraulically inflatable mandrel comprising a short rubber-like packing element can be employed to bulge the piling outwardly to form the corrugations and the packing retracted by relieving the pressure.
  • suitable mechanical, explosive or vibrating type tools can be employed for this purpose.
  • FIG. 1 is a longitudinal and partial sectional view of tubular piling in position in the ground prior to expansion or deformation of certain portions thereof according to the invention
  • FIG. 2 is a longitudinal and partial sectional view of the tubular piling in the ground following expansion of the circumference of the casing to form the protrusions or corrugations thereon;
  • FIG. 3 is a longitudinal view partly in cross section of a hydraulically actuated tool for insertion into the tubular piling of FIG. 1, to expand the piling and form the protrusions at predetermined spaced intervals as shown in FIG. 2;
  • FIG. 4 is a longitudinal view of continuously corrugated tubular casing positioned in the ground, not in accordance with the invention, but for comparison purposes;
  • FIG. 5 illustrates practice of the invention wherein tubular piling is expanded only in certain locations along the length of the piling
  • FIG. 6 is a longitudinal view partly in section of insitu corrugated piling in the ground and illustrating a modification of the invention wherein the distance between adjacent protrusions or corrugations varies and also the extent of bulging of the respective protrusions varies;
  • FIG. 7 is a longitudinal view partly in section of step taper tubular piling having protrusions or corrugations formed insitu thereon after the piling is inserted in the ground.
  • tubular steel piling 10 having a longitudinally straight wall 12 is driven into the ground 14 by any suitable means.
  • the invention is particularly directed to the use of thick wall heavy tubular piling which can be driven into the ground without predrilling a hole therein, and without use of special means such as a supporting mandrel as is required for driving light tubular casing.
  • the wall thickness of the tubular piling employed according to the invention can range from about three-sixteenths to about 1 inch.
  • tubular piling of smaller or larger wall thickness can be employed, and if desired, a hole can be predrilled in the ground and the tubular piling dropped therein, or a combination of these procedures can be employed, that is the tubular piling can be driven into a predrilled hole of somewhat smaller diameter, or alternatively, vibrating or circulating techniques can be employed to insert the piling in the ground.
  • outside diameter of tubular piling employed according to the invention can vary, and can range, e.g. frorn about 6 inches to about 48 inches.
  • the invention principles are particularly applicable for tubular piling wherein the ratio of outside diameter of the piling to the wall thickness ranges from about 25 to about 75.
  • the tubular piling is closed by an end bearing 16 at the lower end of the piling, but it will be understood that alternatively the tubular piling can be open at both ends and after insertion into the ground, soil or sand trapped within the piling can be removed by any suitable means.
  • a hydraulically actuated expander mechanism illustrated in FIG. 3 is lowered into the hollow tubular piling 10 of FIG. 1 to a predetermined position therein.
  • the mechanism illustrated in FIG. 3 comprises a hollow casing 18 carrying a short resilient and inflatable, e.g., rubber-like, packing element 20 around its outer surface.
  • the resilient packing element is in contact with a plurality of circumferentially spaced plates 23, each carrying an arcuate segment 22, and such plates carrying the segments 22 are adapted to be movable radially outward on the tubular casing 18.
  • the tubular element 18 is closed at its lower end by a plug 24.
  • the packing element When the expander is lowered into the tubular piling illustrated in FIG. 1, the packing element is in normal retracted position around the tubular element 18, and the plates 23 and segments 22 are in the positions shown in full lines in FIG. 3.
  • the packer Upon passage of a hydraulic fluid under pressure into the tubular element 18 and via a passage 26 in the casing and into the tubular packer 20, the packer is expanded radially and simultaneously expanding the plates 23 and segments 22 to their position shown in phantom in FIG. 3, and into compressive contact with the inner surface of the tubular piling l0, and bulging or expanding the adjacent circumference of the piling wall 12 to form the protrusion or corrugation indicated at 28 in FIG. 2.
  • the hydraulically actuated cylindrical expander illustrated in FIG. 3 is simply illustrative of any suitable expandable means for expanding the tubular piling to form corrugations or protrusions therein according to the invention, and hence such expander mechanism forms no part of the present invention.
  • the hydraulic pressure in the expansion mechanism is relieved, causing the expandable packer 20 and segments 22 carried thereon to retract to the full line position shown in FIG. 3.
  • the expansion mechanism can then be moved to another predetermined position within the tubular piling and the operation repeated to form another corrugation or protrusion indicated at 28a in FIG. 2. This operation can then be repeated to form any desired additional number of spaced protrusions indicated at 28b in FIG. 2.
  • the spaced apart protrusions or corrugations as illustrated at 28 28a and 28b in FIG. 2 can have a bulge or outward extension generally of at least 5 1 inch and usually not more than about 3 inches beyond the outer surface of the tubular piling wall 12, the extent of bulge or expansion depending on the outside diameter of the piling.
  • a bulge or outward extension generally of at least 5 1 inch and usually not more than about 3 inches beyond the outer surface of the tubular piling wall 12, the extent of bulge or expansion depending on the outside diameter of the piling.
  • the greater the outer extent of the protrusion the more effectively is the soil mobilized against itself between the adjacent corrugations.
  • the shape of the corrugations indicated at 28, 28a and 28b is of generally rounded contour as result of expansion of the outer skin of the tubular piling by the ex pandable tool in the manner described above.
  • the amount of outer radial extension of the respective corrugations is approximately equal, and the distance between adjacent corrugations, e.g., between 28 and 28a, between 28a and 28b and betweenthe other successive corrugations, is substantially equal, making for a substantially symmetrical arrangement of the corrugations formed insitu on the tubular piling wall. This arrangement is preferably employed where the soil conditions are substantially the same throughout the length of the corrugated portion of the tubular piling.
  • the straight sided tubular piling 10 has an outside diameter of 14 inches, a wall thickness of 32 inch, and is corrugated according to the invention as illustrated in FIG. 2, to an outside diameter of 16 inches, that is the corrugations form an outward bulge of 1 inch from the outer wall of the casing, the corruga- -to the invention, the straight sided piling indicated in F IG. 1, initially driven into sand, moved upon the impo sition of a test pull of 47,000 lb. net, whereas the insitu corrugated piling illustrated in FIG. 2 and produced according to the invention moved upon application of a test pull of 64,000 lb. net.
  • the spacing between corrugations is designed so that the shear angle of the soil, e.g., sand, at the ends of the respective protrusions or corrugations, and illustrated at A in FIG. 2, is such that the soil is in shear against itself throughout the entire length of the space between corrugations 28b and is not in shear against the side of the tubular piling.
  • This condition is satisfied by spacing the corrugations so that the shear line 30 of the shear angle A extends from the outer end 31 of one corrugation, e.g., 28b, to the inner end 33 of the adjacent corrugation 2812.
  • the other angle of shear of the soil, illustrated at B, adjacent the corrugations 28b is such that stress is applied along the shear line 32 to a substantially large volume of adjacent soil 14. It is thus seen that the soil trapped between the adjacent corrugations or protrusions of the tubular piling in FIG. 2 and the adjacent volume of soil effectively mobilizes the resistance of the soil against itself over virtually the entire length of the piling, to effectively aid in anchoring the piling securely in the formation. It has been found that the distance between adjacent protrusions preferably is about2 to about 30 times the extent of such protrusion beyond the outer surface of the piling.
  • tubular piling 10a of a structure substantially the same as tubular piling 10, has formed insitu thereon according to the invention principles, only a single protrusion or corrugation 28 adjacent the lower end of the tubular piling
  • a tubular piling 10b again similar to that of tubular piling 10, with four protrusions or corrugations 28 spaced apart and located adjacent the lower end of the piling
  • tubular piling 10c similar to piling 10, having six corrugations or protrusions 28 formed insitu at the lower end of the piling, illustrating :insitu corrugation of only a portion of the tubular piling where the soil conditions at 14 adjacent the insitu formed corrugations, e.g., comprising sand, may be different from the soil conditions of the soil 14a adjacent the upper end of the uncorrugated portion of the respective pilings, e.
  • the soil 14a for example being clay.
  • the insitu formed corrugations according to the invention are not as effective as in the case of said which has a high shear strength value relative to its coefficient of friction against the piling skin.
  • FIG. 6 there is illustrated an unsymmetrical arrangement of corrugations or protrusions on the insitu corrugated piling according to the invention, wherein the distance between adjacent corrugations 28c and 28d is different from the distance between the adjacent pair of corrugatios 28d and 28e.
  • This embodiment is applicable where the soil conditions are different along the various longitudinal locations of the piling.
  • the extent of bulge or outward projection of the corrugations varies, for example, corrugations 280, is smaller than the extent of bulge or outward projection of other corrugations such as 28d and 28e. To a large extent this can be due to the difficulty in expanding each of the spaced apart corrugations the same amount, by the expandable means employed.
  • FIG. 7 there is shown another modification of the invention employing step taper tubular piling 41 and in which one or more protrusions or corrugations 28f are formed insitu on one or more of the respective step portions 42, 44 and 46 of varying diameter, after insertion of the piling in the ground.
  • a mechanism can be employed having multiple expansion elements, e.g., multiple packers of the type illustrated at in FIG. 3, and multiple sets of cooperating plates 23 and segments 22 to form a plurality of spaced apart protrusions or corrugations at the same time.
  • multiple packers of the type illustrated at in FIG. 3 and multiple sets of cooperating plates 23 and segments 22 to form a plurality of spaced apart protrusions or corrugations at the same time.
  • the use ofa tool of the type illustrated in FIG. 3 which forms but a single protrusion at a time is preferable, since it permits greater flexibility in adjusting and varying the distance between adjacent insitu corrugations on the tubular piling.
  • tubular piling can be filled with concrete, but it will be understood that this is not necessary.
  • the invention procedure can be employed for anchoring tubular pilings for support particularly of heavy structures such as buildings, offshore oil drilling platforms, dams, and for tying down bridge abutments of suspension type bridges.
  • the invention provides a novel procedure for inserting and anchoring tubular piling in the ground, particularly where thick heavy wall piling is required.
  • the result of the invention procedure which produces insitu spaced apart corrugations longitudinally along the tubular piling is to substitute the shear strength of the formation itself, e.g. sand, for the shear value as between the formation and the piling skin.
  • the method of securing tubular piling in the ground which comprises inserting tubular piling into the ground having straight longitudinal walls and a wall thickness ranging from about three-sixteenths inch to about 1% inches, inserting an expandable means into said piling, expanding said means against the interior of said piling at intervals along the lengths of said piling to form a plurality of external annular protrusions spaced from each other about 2 to about 30 times the lateral extent of each protrusion beyond the outer surface of said piling and without increasing the internal diameter of the piling between said protrusions, to thereby secure said piling against the soil of the adjacent ground formation, and retracting said expandable means after expansion thereof to enable said means to be moved longitudinally within said piling; said means being expanded against the interior of said piling to form said protrusions extending laterally outwardly beyond the outer surface of said piling an amount ranging from about one-fourth inch to about 3 inches, the piling inserted into the ground having an outside diameter to wall thickness ranging from about 25 to about

Abstract

Method for securing tubular piling or pile casing in the ground which comprises inserting tubular piling into the ground, preferably heavy piling adapted to be driven into the ground, inserting an expandable mechanism, e.g., an expandable hydraulically actuated mandrel, into the tubular piling at one or more spaced intervals or positions longitudinally along the piling, expanding the mechanism at each such position to expand the piling outwardly to form one or more protrusions spaced longitudinally along the piling, and retracting the expandable mechanism at each such position.

Description

United States Patent [191 Kammeret, Jr.
[451 Mar. 19, 1974 PILING [73] Assignee:
Filed:
Inventor:
Appl. No.:
US. Cl.....
Int. Cl
METHOD FOR INSITU ANCHORING Archer W. Kammerer, Jr., Fullerton, Calif.
Baker Oil Tools, Inc., Los Angeles, Calif.
Dec. 13, 1971 E02d 5/28, B21d 39/00 Field of Search 6l/53.6, 53.68, 53.5, 56,
5 References Cited UNITED STATES PATENTS Long. 61/46 Serota 6l/53.6
FOREIGN PATENTS OR APPLICATIONS Great Britain 6l/53.5 Great Britain 61/53 Primary Examiner-Jacob Shapiro Attorney, Agent, or Firm-Bernard Kriegel [57] ABSTRACT Method for securing tubular piling or pile casing in the ground which comprises inserting tubular piling into the ground, preferably heavy piling adapted to be driven into the ground, inserting an expandable mechanism, e.g., an expandable hydraulically actuated mandrel, into the tubular piling at one or more spaced intervals or positions longitudinally along the piling, expanding the mechanism at each such position to expand the piling outwardly to form one or more protrusions spaced longitudinally along the piling, and retracting the expandable mechanism at each such position.
3 Claims, 7 Drawing Figures METHOD FOR INSTTU ANCHORING PILING This invention relates to a method for securing tubular piling in the ground, and is particularly concerned with procedure for inserting tubular piling, preferably formed of thick wall heavy pipe, in the ground, as by driving same, and after being inserted to a predetermined depth in the ground, forming protrusions at spaced intervals on the piling to securely anchor the piling in the ground.
The load-bearing capacity of longitudinally flat or straight tubular piling is dependent chiefly upon a combination of load-bearing capacity of the soil or ground at the lower end or tip of the piling, and the coefficient of friction between the ground or soil and the piling skin along the length thereof. Where the piling is made of metal such as steel, such coefficient of friction may be relatively low and hence a major portion of the load bearing capacity is dependent upon the load-bearing capacity at the lower end of the piling. Under these conditions, the cross-sectional area of the piling must be increased, resulting inincreased cost of, the piling and also of its insertion into the ground.
Continuously corrugated piling, that is pile casing having corrugations which extend over the full length of the casing, as illustrated in FIG. 1 of US. Pat. No. 3,375,670, similarly utilizes friction between the ground and the continuously corrugated skin of the piling, and end bearing loading capacity, to permit loading when inserted into the ground. Additionally, the soil trapped between such continuous corrugations is to some extent mobilized into resistance against itself, but this additional resistance to movement of the pile casing under loading is often insufficient to securely anchor the piling, particularly under heavy loading or when subjected to extreme vibration or shock loading.
in the above-noted Pat. No. 3,375,670, continuously corrugated light metallic tubular casing is inserted into a predrilled hole in soft soil, after which an expanding mechanism is used to expand the casing to substantially remove the corrugations and to render the walls substantially straight longitudinally. Although this operation increases the total volume of the casing and radial pressure is exerted by the casing against the surrounding soil as a result of this operation, to thereby aid in anchoring the piling, the flattening out of the corrugations according to this process to render the pile casing again longitudinally flat or straight, removes the loadbearing resistance of the soil initially trapped between the corrugations, and the resulting pile casing again depends for load-bearing capacity in large measure only upon the coefficient of friction between the soil and the piling skin.
The above patent states that if desired, the tubular pile casing previously rendered flat or straight by the initial expanding operation, can be further expanded by the formation of further corrugations in the wall of the casing after the original corrugations have been substantially removed. The resulting re-corrugation produces a continuously corrugated piling as illustrated in FIG. 4 of the patent. Although the resulting recorrugations are annular in shape rather than helical, the re-corrugated pile casing is again essentially a continuously corrugated piling which in many instances, even with the compaction of the surrounding soil produced by the initial expansion and the resistance of the soil trapped in the small areas between the annular re-' corrugations, has a load-bearing capacity which often is insufficient to securely anchor the piling, particularly against heavy or shock loading or vigorous vibration.
Also, as previously noted, the above patent is directed to securing light tubular casing in the ground, and which is usually inserted into a predrilled hole. Such light casing cannot ordinarily be driven into the ground, except by the use of a mandrel to support it as it is driven, as noted in the patent. Moreover, such light tubular piling cannot be employed in many applications for supporting heavy structures and requiring high loading capacity, and is usually filled with concrete to finish the pile. i
It is accordingly the object of the present invention to afford a method of inserting and securing tubular piling, particularly thick heavy wall tubular piling, in the ground, and to anchor same in the surrounding soil against vertical movement therein as result of the application of high static loading, shock loading or high vibrational forces.
There is provided according to the present invention a method of securing tubular piling, preferably formed of thick wall heavy pipe, in the ground, which comprises inserting tubular piling having straight longitudinal walls into the ground, eg by driving same, inserting an expandable means into the tubular piling at one or a plurality of spaced predetermined positions longitudinally along the piling, expanding such means at each such position to expand the piling outwardly a predetermined extent to form one or a plurality of protrusions or corrugations extending outwardly at spaced intervals longitudinally along the piling, and retracting the expandable means at each such position after expansion thereof, to thereby secure the piling against the soil of the adjacent ground formation.
The resulting piling with appropriately spaced protrusions or corrugations extending outwardly to a significant extent, as pointed out in greater detail hereinafter, effectively mobilizes the resistance of the adjacent soil, particularly the soil trapped between adjacent protrusions, against itself over virtually the entire length of the tubular piling with high effectiveness, so that the soil adjacent the tubular piling effectively is in shear against itself throughout substantially the length of the piling, rather thanbeing in shear against the side of the piling; The distance between the protrusions or corrugations, accordingly, is maintained particularly so that the above-noted condition prevails, that is, so that the angle of shear of the soil adjacent the casing is of a magnitude such that the soil is in shear solely with itself substantially along-the entire: length of the piling between the uppermost and lowermost protrusions on the piling.
According to another feature of the invention, in order to provide maximum effectiveness of the protrusions formed insitu on the piling according to the invention, it has been found that the ratio of the outside diameter of the piling to the wall thickness of the piling be within certain limits, as noted hereinafter.
Generally, the protrusions or corrugations formed at spaced intervals insitu on the piling wall have substantially the same configuration and extend outwardly substantially the same amount from. the piling wall, although these conditions can vary as desired, for examplc the extent of protrusion of the corrugations can vary, since it is often difficult when expanding the piling wall by the expandable means described more fully below, to have each corrugation or protrusion extend outwardly from the piling wall the same amount. Also, the distance between adjacent corrugations or protrusions formed on the piling wall can be substantially the same or can be varied as desired depending upon the soil conditions encountered.
Also, where formations of different types are encountered along the length of the tubular piling, for example stratas of sand and clay, only a portion of the longitudinal length of the tubular piling can be corrugated insitu according to the invention, e.g., where the adjacent formation is of a sandy nature, the remainder of the tubular piling wall remaining longitudinally straight.
The tubular piling is generally formed of metals or metal alloys such as iron, steel, copper, and the like. Any suitable material of construction can be utilized which is sufficiently ductile to be expanded to form the spaced corrugations or protrusions thereon according to the invention.
In preferred practice, the tubular piling is inserted into ground having a high shear strength value relative to its coefficient of friction against the pile surface. Hence the insitu corrugated piling according to the invention has high effectiveness in soils having a sandy content, such as sand itself, and particularly in shale. The resistance to axial forces of the insitu corrugated piling of the invention is generally in proportion to the difference between the insitu properties of a particular soil in shear versus friction against the piling skin. As an illustration, in sand, the insitu piling produced according to the invention successfully resists pullout forces of about twice the level of longitudinally straight or flat piling, and substantially higher then that of continuously corrugated pile casing of the type illustrated in FIGS. 1 and 4 of above Pat. No. 3,375,670. In shale, the relative difference in pullout forces between the insitu corrugated piling of the invention and the straight or continuously corrugated piling noted above increases dramatically in favor of the piling having the spaced corrugations formed insitu according to the invention, e.g., to the extent of say as much as times the pullout resistance of longitudinally straight piling.
Any suitable expandable means or mechanism can be employed for insertion into the tubular piling after it is placed in the ground, for expanding the tubular piling at one or more predetermined positions along the piling to provide the insitu corrugations or protrusions on the piling wall. Thus for example a tool having a hydraulically inflatable mandrel comprising a short rubber-like packing element can be employed to bulge the piling outwardly to form the corrugations and the packing retracted by relieving the pressure. Alternatively, suitable mechanical, explosive or vibrating type tools can be employed for this purpose.
The invention will be more fully understood from a detailed description of certain embodiments thereof taken in connection with the accompanying drawing wherein:
FIG. 1 is a longitudinal and partial sectional view of tubular piling in position in the ground prior to expansion or deformation of certain portions thereof according to the invention;
FIG. 2 is a longitudinal and partial sectional view of the tubular piling in the ground following expansion of the circumference of the casing to form the protrusions or corrugations thereon;
FIG. 3 is a longitudinal view partly in cross section of a hydraulically actuated tool for insertion into the tubular piling of FIG. 1, to expand the piling and form the protrusions at predetermined spaced intervals as shown in FIG. 2;
FIG. 4 is a longitudinal view of continuously corrugated tubular casing positioned in the ground, not in accordance with the invention, but for comparison purposes;
FIG. 5 illustrates practice of the invention wherein tubular piling is expanded only in certain locations along the length of the piling;
FIG. 6 is a longitudinal view partly in section of insitu corrugated piling in the ground and illustrating a modification of the invention wherein the distance between adjacent protrusions or corrugations varies and also the extent of bulging of the respective protrusions varies; and
FIG. 7 is a longitudinal view partly in section of step taper tubular piling having protrusions or corrugations formed insitu thereon after the piling is inserted in the ground.
Referring to FIG. 1 of the drawing, tubular steel piling 10 having a longitudinally straight wall 12 is driven into the ground 14 by any suitable means. The invention is particularly directed to the use of thick wall heavy tubular piling which can be driven into the ground without predrilling a hole therein, and without use of special means such as a supporting mandrel as is required for driving light tubular casing. Thus, the wall thickness of the tubular piling employed according to the invention can range from about three-sixteenths to about 1 inch. However, tubular piling of smaller or larger wall thickness can be employed, and if desired, a hole can be predrilled in the ground and the tubular piling dropped therein, or a combination of these procedures can be employed, that is the tubular piling can be driven into a predrilled hole of somewhat smaller diameter, or alternatively, vibrating or circulating techniques can be employed to insert the piling in the ground.
The outside diameter of tubular piling employed according to the invention can vary, and can range, e.g. frorn about 6 inches to about 48 inches. The invention principles are particularly applicable for tubular piling wherein the ratio of outside diameter of the piling to the wall thickness ranges from about 25 to about 75.
Generally, and-as illustrated in FIG. 1, the tubular piling is closed by an end bearing 16 at the lower end of the piling, but it will be understood that alternatively the tubular piling can be open at both ends and after insertion into the ground, soil or sand trapped within the piling can be removed by any suitable means.
A hydraulically actuated expander mechanism illustrated in FIG. 3 is lowered into the hollow tubular piling 10 of FIG. 1 to a predetermined position therein. The mechanism illustrated in FIG. 3 comprises a hollow casing 18 carrying a short resilient and inflatable, e.g., rubber-like, packing element 20 around its outer surface. The resilient packing element is in contact with a plurality of circumferentially spaced plates 23, each carrying an arcuate segment 22, and such plates carrying the segments 22 are adapted to be movable radially outward on the tubular casing 18. The tubular element 18 is closed at its lower end by a plug 24.
When the expander is lowered into the tubular piling illustrated in FIG. 1, the packing element is in normal retracted position around the tubular element 18, and the plates 23 and segments 22 are in the positions shown in full lines in FIG. 3. Upon passage of a hydraulic fluid under pressure into the tubular element 18 and via a passage 26 in the casing and into the tubular packer 20, the packer is expanded radially and simultaneously expanding the plates 23 and segments 22 to their position shown in phantom in FIG. 3, and into compressive contact with the inner surface of the tubular piling l0, and bulging or expanding the adjacent circumference of the piling wall 12 to form the protrusion or corrugation indicated at 28 in FIG. 2. It will be understood that the hydraulically actuated cylindrical expander illustrated in FIG. 3 is simply illustrative of any suitable expandable means for expanding the tubular piling to form corrugations or protrusions therein according to the invention, and hence such expander mechanism forms no part of the present invention.
Following expansion of the expander mechanism to produce the protrusion or corrugation indicated at 28 in FIG. 2, the hydraulic pressure in the expansion mechanism is relieved, causing the expandable packer 20 and segments 22 carried thereon to retract to the full line position shown in FIG. 3. The expansion mechanism can then be moved to another predetermined position within the tubular piling and the operation repeated to form another corrugation or protrusion indicated at 28a in FIG. 2. This operation can then be repeated to form any desired additional number of spaced protrusions indicated at 28b in FIG. 2.
The spaced apart protrusions or corrugations as illustrated at 28 28a and 28b in FIG. 2, can have a bulge or outward extension generally of at least 5 1 inch and usually not more than about 3 inches beyond the outer surface of the tubular piling wall 12, the extent of bulge or expansion depending on the outside diameter of the piling. Preferably it is desired to obtain the greatest extent of outward bulging of the corrugations or protrusions as possible, dependent on the ability of the tubular piling to be deformed without rupturing. The greater the outer extent of the protrusion, the more effectively is the soil mobilized against itself between the adjacent corrugations.
The shape of the corrugations indicated at 28, 28a and 28b is of generally rounded contour as result of expansion of the outer skin of the tubular piling by the ex pandable tool in the manner described above. In the embodiment illustrated in FIG. 2, the amount of outer radial extension of the respective corrugations is approximately equal, and the distance between adjacent corrugations, e.g., between 28 and 28a, between 28a and 28b and betweenthe other successive corrugations, is substantially equal, making for a substantially symmetrical arrangement of the corrugations formed insitu on the tubular piling wall. This arrangement is preferably employed where the soil conditions are substantially the same throughout the length of the corrugated portion of the tubular piling.
As a specific example, but not in limitation of the invention, the straight sided tubular piling 10 has an outside diameter of 14 inches, a wall thickness of 32 inch, and is corrugated according to the invention as illustrated in FIG. 2, to an outside diameter of 16 inches, that is the corrugations form an outward bulge of 1 inch from the outer wall of the casing, the corruga- -to the invention, the straight sided piling indicated in F IG. 1, initially driven into sand, moved upon the impo sition of a test pull of 47,000 lb. net, whereas the insitu corrugated piling illustrated in FIG. 2 and produced according to the invention moved upon application of a test pull of 64,000 lb. net.
As previously noted, the spacing between corrugations, say between the adjacent corrugations 28b in FIG. 2, is designed so that the shear angle of the soil, e.g., sand, at the ends of the respective protrusions or corrugations, and illustrated at A in FIG. 2, is such that the soil is in shear against itself throughout the entire length of the space between corrugations 28b and is not in shear against the side of the tubular piling. This condition is satisfied by spacing the corrugations so that the shear line 30 of the shear angle A extends from the outer end 31 of one corrugation, e.g., 28b, to the inner end 33 of the adjacent corrugation 2812. In addition, the other angle of shear of the soil, illustrated at B, adjacent the corrugations 28b is such that stress is applied along the shear line 32 to a substantially large volume of adjacent soil 14. It is thus seen that the soil trapped between the adjacent corrugations or protrusions of the tubular piling in FIG. 2 and the adjacent volume of soil effectively mobilizes the resistance of the soil against itself over virtually the entire length of the piling, to effectively aid in anchoring the piling securely in the formation. It has been found that the distance between adjacent protrusions preferably is about2 to about 30 times the extent of such protrusion beyond the outer surface of the piling.
On the other hand, in the case of conventional continuous corrugated piling illustrated at 34 in FIG. 4, the small amounts of soil indicated at 36 and trapped be tween the adjacent corrugations 38, although mobi lized into resistance against itself, such resistance is substantially reduced due to the small amount of such compacted soil between such corrugations and the overlapping of the cones of soil-shear angle from one corrugation to thenext, as indicated at, 40.
It will be understood that the soil shear angles indicated at A and B are illustrative and that such shear angles will vary with varying soils. Also it will be understood that the invention is not intended to be limited as to the above-described theory whereby the invention piling is securely anchored.
Referring to FIG. 5 of the drawing, there are illustrated embodiments in which (1) the tubular piling 10a, of a structure substantially the same as tubular piling 10, has formed insitu thereon according to the invention principles, only a single protrusion or corrugation 28 adjacent the lower end of the tubular piling, (2) a tubular piling 10b again similar to that of tubular piling 10, with four protrusions or corrugations 28 spaced apart and located adjacent the lower end of the piling, and (3) tubular piling 10c, similar to piling 10, having six corrugations or protrusions 28 formed insitu at the lower end of the piling, illustrating :insitu corrugation of only a portion of the tubular piling where the soil conditions at 14 adjacent the insitu formed corrugations, e.g., comprising sand, may be different from the soil conditions of the soil 14a adjacent the upper end of the uncorrugated portion of the respective pilings, e. g., the soil 14a for example being clay. In clay, which does not freely flow and reconsolidate, as contrasted to sand, and which does not have high shear strength values relative to its coefficient of friction against the tubular skin of the piling, the insitu formed corrugations according to the invention are not as effective as in the case of said which has a high shear strength value relative to its coefficient of friction against the piling skin.
Referring to FIG. 6, there is illustrated an unsymmetrical arrangement of corrugations or protrusions on the insitu corrugated piling according to the invention, wherein the distance between adjacent corrugations 28c and 28d is different from the distance between the adjacent pair of corrugatios 28d and 28e. This embodiment is applicable where the soil conditions are different along the various longitudinal locations of the piling. Also, in the embodiment of FIG. 6, it is seen that the extent of bulge or outward projection of the corrugations varies, for example, corrugations 280, is smaller than the extent of bulge or outward projection of other corrugations such as 28d and 28e. To a large extent this can be due to the difficulty in expanding each of the spaced apart corrugations the same amount, by the expandable means employed.
In FIG. 7 there is shown another modification of the invention employing step taper tubular piling 41 and in which one or more protrusions or corrugations 28f are formed insitu on one or more of the respective step portions 42, 44 and 46 of varying diameter, after insertion of the piling in the ground.
It will be understood that instead of employing an expandable mechanism which forms only one corrugation or protrusion at a time, a mechanism can be employed having multiple expansion elements, e.g., multiple packers of the type illustrated at in FIG. 3, and multiple sets of cooperating plates 23 and segments 22 to form a plurality of spaced apart protrusions or corrugations at the same time. However, the use ofa tool of the type illustrated in FIG. 3 which forms but a single protrusion at a time is preferable, since it permits greater flexibility in adjusting and varying the distance between adjacent insitu corrugations on the tubular piling.
If desired, following formation of the protrusions or corrugations on the tubular piling, e.g. in the embodiments of FIGS. 2, 5, 6 and 7, the tubular piling can be filled with concrete, but it will be understood that this is not necessary.
The invention procedure can be employed for anchoring tubular pilings for suport particularly of heavy structures such as buildings, offshore oil drilling platforms, dams, and for tying down bridge abutments of suspension type bridges.
From the foregoing, it is seen that the invention provides a novel procedure for inserting and anchoring tubular piling in the ground, particularly where thick heavy wall piling is required. In effect the result of the invention procedure which produces insitu spaced apart corrugations longitudinally along the tubular piling is to substitute the shear strength of the formation itself, e.g. sand, for the shear value as between the formation and the piling skin. This results in substantially increasing the vertical resistance to movement of the insitu corrugated piling of the invention as compared to smooth or uncorrugated piling or as compared to continuously corrugated piling.
I claim:
1. The method of securing tubular piling in the ground, which comprises inserting tubular piling into the ground having straight longitudinal walls and a wall thickness ranging from about three-sixteenths inch to about 1% inches, inserting an expandable means into said piling, expanding said means against the interior of said piling at intervals along the lengths of said piling to form a plurality of external annular protrusions spaced from each other about 2 to about 30 times the lateral extent of each protrusion beyond the outer surface of said piling and without increasing the internal diameter of the piling between said protrusions, to thereby secure said piling against the soil of the adjacent ground formation, and retracting said expandable means after expansion thereof to enable said means to be moved longitudinally within said piling; said means being expanded against the interior of said piling to form said protrusions extending laterally outwardly beyond the outer surface of said piling an amount ranging from about one-fourth inch to about 3 inches, the piling inserted into the ground having an outside diameter to wall thickness ranging from about 25 to about 75, in which protrusions formed by said expanding means are spaced from each other by a distance such that the angle of shear of the soil surrounding said piling and its protrusions is of a magnitude so that said soil is in shear solely with itself substantially along the entire length of said piling between the uppermost and lowermost protrusions on said piling.
2. The method as defined in claim 1; in which said piling is inserted into ground having a high shear strength relative to its coefficient of friction against the external piling surface.
3. The method as defined in claim 1; in which said piling is inserted into ground comprising sand by driving the piling into said ground to a desired depth.
' 2 133 1 11mm) sm'mss by I l v x w .2 .h I
CL 'QUMCATL O1 (,OlhiiaC'llON Patent No. 3,797,259 Dated March 19, 1914 I ,y'iwcntol-(sl fE1 ,L if? M c ab0vc-identifi0d patent that error ap ears in th ted as shown below:
It is certified aten'i; are hcr eby corrcc and that said Letters P a w I 1 Column 5, line, 63: cancel "32''.
- Sigrid and seated this 1st daypf October 1974.
(SEAL) V Attest: f
mccoy'm-clssom JR. c. MARSHALL DANN a Attest'ing Ufficer Commissioner o Patents

Claims (3)

1. The method of securing tubular piling in the ground, which comprises inserting tubular piling into the ground having straight longitudinal walls and a wall thickness ranging from about three-sixteenths inch to about 1 1/4 inches, inserting an expandable means into said piling, expanding said means against the interior of said piling at intervals along the lengths of said piling to form a plurality of external annular protrusions spaced from each other about 2 to about 30 times the lateral extent of each protrusion beyond the outer surface of said piling and without increasing the internal diameter of the piling between said protrusions, to thereby secure said piling against the soil of the adjacent ground formation, and retracting said expandable means after expansion thereof to enable said means to be moved longitudinally within said piling; said means being expanded against the interior of said piling to form said protrusions extending laterally outwardly beyond the outer surface of said piling an amount ranging from about one-fourth inch to about 3 inches, the piling inserted into the ground having an outside diameter to wall thickness ranging from about 25 to about 75, in which protrusions formed by said expanding means are spaced from each other by a distance such that the angle of shear of the soil surrounding said piling and its protrusions is of a magnitude so that said soil is in shear solely with itself substantially along the entire length of said piling between the uppermost and lowermost protrusions on said piling.
2. The method as defined in claim 1; in which said piling is inserted into ground having a high shear strength relative to its coefficient of friction against the external piling surface.
3. The method as defined in claim 1; in which said piling is inserted into ground comprising sand by driving the piling into said ground to a desired depth.
US00207144A 1971-12-13 1971-12-13 Method for insitu anchoring piling Expired - Lifetime US3797259A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20714471A 1971-12-13 1971-12-13

Publications (1)

Publication Number Publication Date
US3797259A true US3797259A (en) 1974-03-19

Family

ID=22769379

Family Applications (1)

Application Number Title Priority Date Filing Date
US00207144A Expired - Lifetime US3797259A (en) 1971-12-13 1971-12-13 Method for insitu anchoring piling

Country Status (3)

Country Link
US (1) US3797259A (en)
CA (1) CA962850A (en)
GB (1) GB1377839A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG80660A1 (en) * 1999-10-27 2001-05-22 Lee Pee Hong Improvements in or relating to piles and anchorages
US20020040787A1 (en) * 1998-12-07 2002-04-11 Cook Robert Lance Forming a wellbore casing while simultaneously drilling a wellbore
US20020100595A1 (en) * 1999-02-26 2002-08-01 Shell Oil Co. Flow control system for an apparatus for radially expanding tubular members
US6470966B2 (en) 1998-12-07 2002-10-29 Robert Lance Cook Apparatus for forming wellbore casing
US20030024708A1 (en) * 1998-12-07 2003-02-06 Shell Oil Co. Structral support
US6557640B1 (en) 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US6575250B1 (en) 1999-11-15 2003-06-10 Shell Oil Company Expanding a tubular element in a wellbore
US6575240B1 (en) 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
US20030116325A1 (en) * 2000-07-28 2003-06-26 Cook Robert Lance Liner hanger with standoffs
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US6640903B1 (en) 1998-12-07 2003-11-04 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20030222455A1 (en) * 1999-04-26 2003-12-04 Shell Oil Co. Expandable connector
US20030233524A1 (en) * 2002-06-12 2003-12-18 Poisner David I. Protected configuration space in a protected environment
US20040045718A1 (en) * 2000-09-18 2004-03-11 Brisco David Paul Liner hanger with sliding sleeve valve
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US20040182569A1 (en) * 1998-12-07 2004-09-23 Shell Oil Co. Apparatus for expanding a tubular member
US20040231855A1 (en) * 2001-07-06 2004-11-25 Cook Robert Lance Liner hanger
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US20050028988A1 (en) * 1998-11-16 2005-02-10 Cook Robert Lance Radial expansion of tubular members
US20050098323A1 (en) * 1999-03-11 2005-05-12 Shell Oil Co. Forming a wellbore casing while simultaneously drilling a wellbore
US20050117975A1 (en) * 2002-01-23 2005-06-02 England Melvin G. Construction and design of foundation elements
US20050173108A1 (en) * 2002-07-29 2005-08-11 Cook Robert L. Method of forming a mono diameter wellbore casing
US20060032640A1 (en) * 2002-04-15 2006-02-16 Todd Mattingly Haynes And Boone, L.L.P. Protective sleeve for threaded connections for expandable liner hanger
US20060102360A1 (en) * 1998-12-07 2006-05-18 Brisco David P System for radially expanding a tubular member
US20060113086A1 (en) * 2002-09-20 2006-06-01 Scott Costa Protective sleeve for expandable tubulars
US7100685B2 (en) 2000-10-02 2006-09-05 Enventure Global Technology Mono-diameter wellbore casing
US7121352B2 (en) 1998-11-16 2006-10-17 Enventure Global Technology Isolation of subterranean zones
US7172024B2 (en) 2000-10-02 2007-02-06 Shell Oil Company Mono-diameter wellbore casing
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7740076B2 (en) 2002-04-12 2010-06-22 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7739917B2 (en) 2002-09-20 2010-06-22 Enventure Global Technology, Llc Pipe formability evaluation for expandable tubulars
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US20110064526A1 (en) * 2009-09-12 2011-03-17 Geopier Foundation Company, Inc. Extensible Shells and Related Methods for Constructing a Support Pier
WO2015003257A1 (en) * 2013-07-11 2015-01-15 P3 Infrastructure Consulting Inc. Apparatus and system for securing a hollow pile in the ground
US9022695B2 (en) 2012-10-18 2015-05-05 P3 Infrastructure Consulting Inc. Apparatus and system for securing a hollow pile in the ground
US9567723B2 (en) 2010-09-13 2017-02-14 Geopier Foundation Company, Inc. Open-end extensible shells and related methods for constructing a support pier
US20200115877A1 (en) * 2015-07-27 2020-04-16 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a ductile support pier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE599786C (en) * 1934-07-09 Otto Kamm Process for the production of in-situ concrete piles
GB431069A (en) * 1934-01-01 1935-07-01 Alexander George Rotinoff Improvements relating to piles and pile driving
GB1034128A (en) * 1963-05-09 1966-06-29 Stanley Serota Improvements in or relating to securing piles
US3375670A (en) * 1965-11-26 1968-04-02 Serota Stanley Method of piling
US3706204A (en) * 1971-02-10 1972-12-19 Erwin L Long Method and apparatus for improving bearing strength of piles in permafrost

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE599786C (en) * 1934-07-09 Otto Kamm Process for the production of in-situ concrete piles
GB431069A (en) * 1934-01-01 1935-07-01 Alexander George Rotinoff Improvements relating to piles and pile driving
GB1034128A (en) * 1963-05-09 1966-06-29 Stanley Serota Improvements in or relating to securing piles
US3375670A (en) * 1965-11-26 1968-04-02 Serota Stanley Method of piling
US3706204A (en) * 1971-02-10 1972-12-19 Erwin L Long Method and apparatus for improving bearing strength of piles in permafrost

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7121352B2 (en) 1998-11-16 2006-10-17 Enventure Global Technology Isolation of subterranean zones
US20050028988A1 (en) * 1998-11-16 2005-02-10 Cook Robert Lance Radial expansion of tubular members
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US7108072B2 (en) 1998-11-16 2006-09-19 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US20030173090A1 (en) * 1998-11-16 2003-09-18 Shell Oil Co. Lubrication and self-cleaning system for expansion mandrel
US20030094279A1 (en) * 1998-12-07 2003-05-22 Shell Oil Co. Method of selecting tubular members
US6640903B1 (en) 1998-12-07 2003-11-04 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20030094278A1 (en) * 1998-12-07 2003-05-22 Shell Oil Co. Expansion cone for radially expanding tubular members
US7159665B2 (en) 1998-12-07 2007-01-09 Shell Oil Company Wellbore casing
US20030098154A1 (en) * 1998-12-07 2003-05-29 Shell Oil Co. Apparatus for radially expanding tubular members
US6561227B2 (en) 1998-12-07 2003-05-13 Shell Oil Company Wellbore casing
US6575240B1 (en) 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
US7108061B2 (en) 1998-12-07 2006-09-19 Shell Oil Company Expander for a tapered liner with a shoe
US6557640B1 (en) 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US20030024708A1 (en) * 1998-12-07 2003-02-06 Shell Oil Co. Structral support
US6631760B2 (en) 1998-12-07 2003-10-14 Shell Oil Company Tie back liner for a well system
US7077213B2 (en) 1998-12-07 2006-07-18 Shell Oil Company Expansion cone for radially expanding tubular members
US6497289B1 (en) 1998-12-07 2002-12-24 Robert Lance Cook Method of creating a casing in a borehole
US6892819B2 (en) 1998-12-07 2005-05-17 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US7048062B2 (en) 1998-12-07 2006-05-23 Shell Oil Company Method of selecting tubular members
US20060102360A1 (en) * 1998-12-07 2006-05-18 Brisco David P System for radially expanding a tubular member
US7044218B2 (en) 1998-12-07 2006-05-16 Shell Oil Company Apparatus for radially expanding tubular members
US7036582B2 (en) 1998-12-07 2006-05-02 Shell Oil Company Expansion cone for radially expanding tubular members
US7011161B2 (en) 1998-12-07 2006-03-14 Shell Oil Company Structural support
US6470966B2 (en) 1998-12-07 2002-10-29 Robert Lance Cook Apparatus for forming wellbore casing
US6725919B2 (en) 1998-12-07 2004-04-27 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US6739392B2 (en) 1998-12-07 2004-05-25 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US7665532B2 (en) 1998-12-07 2010-02-23 Shell Oil Company Pipeline
US6758278B2 (en) 1998-12-07 2004-07-06 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20040182569A1 (en) * 1998-12-07 2004-09-23 Shell Oil Co. Apparatus for expanding a tubular member
US20020040787A1 (en) * 1998-12-07 2002-04-11 Cook Robert Lance Forming a wellbore casing while simultaneously drilling a wellbore
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US20050183863A1 (en) * 1999-02-25 2005-08-25 Shell Oil Co. Method of coupling a tubular member to a preexisting structure
US6966370B2 (en) 1999-02-26 2005-11-22 Shell Oil Company Apparatus for actuating an annular piston
US6631759B2 (en) 1999-02-26 2003-10-14 Shell Oil Company Apparatus for radially expanding a tubular member
US7044221B2 (en) 1999-02-26 2006-05-16 Shell Oil Company Apparatus for coupling a tubular member to a preexisting structure
US6857473B2 (en) 1999-02-26 2005-02-22 Shell Oil Company Method of coupling a tubular member to a preexisting structure
US20020100595A1 (en) * 1999-02-26 2002-08-01 Shell Oil Co. Flow control system for an apparatus for radially expanding tubular members
US6568471B1 (en) 1999-02-26 2003-05-27 Shell Oil Company Liner hanger
US6684947B2 (en) 1999-02-26 2004-02-03 Shell Oil Company Apparatus for radially expanding a tubular member
US7040396B2 (en) 1999-02-26 2006-05-09 Shell Oil Company Apparatus for releasably coupling two elements
US7063142B2 (en) 1999-02-26 2006-06-20 Shell Oil Company Method of applying an axial force to an expansion cone
US6705395B2 (en) 1999-02-26 2004-03-16 Shell Oil Company Wellbore casing
US6631769B2 (en) 1999-02-26 2003-10-14 Shell Oil Company Method of operating an apparatus for radially expanding a tubular member
US20050098323A1 (en) * 1999-03-11 2005-05-12 Shell Oil Co. Forming a wellbore casing while simultaneously drilling a wellbore
US7055608B2 (en) 1999-03-11 2006-06-06 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20030222455A1 (en) * 1999-04-26 2003-12-04 Shell Oil Co. Expandable connector
US6968618B2 (en) 1999-04-26 2005-11-29 Shell Oil Company Expandable connector
SG80660A1 (en) * 1999-10-27 2001-05-22 Lee Pee Hong Improvements in or relating to piles and anchorages
US6575250B1 (en) 1999-11-15 2003-06-10 Shell Oil Company Expanding a tubular element in a wellbore
US20030116325A1 (en) * 2000-07-28 2003-06-26 Cook Robert Lance Liner hanger with standoffs
US7100684B2 (en) 2000-07-28 2006-09-05 Enventure Global Technology Liner hanger with standoffs
US20040045718A1 (en) * 2000-09-18 2004-03-11 Brisco David Paul Liner hanger with sliding sleeve valve
US6976541B2 (en) 2000-09-18 2005-12-20 Shell Oil Company Liner hanger with sliding sleeve valve
US20050087337A1 (en) * 2000-09-18 2005-04-28 Shell Oil Company Liner hanger with sliding sleeve valve
US7172024B2 (en) 2000-10-02 2007-02-06 Shell Oil Company Mono-diameter wellbore casing
US7100685B2 (en) 2000-10-02 2006-09-05 Enventure Global Technology Mono-diameter wellbore casing
US20040231855A1 (en) * 2001-07-06 2004-11-25 Cook Robert Lance Liner hanger
US20050117975A1 (en) * 2002-01-23 2005-06-02 England Melvin G. Construction and design of foundation elements
US7740076B2 (en) 2002-04-12 2010-06-22 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US20060032640A1 (en) * 2002-04-15 2006-02-16 Todd Mattingly Haynes And Boone, L.L.P. Protective sleeve for threaded connections for expandable liner hanger
US7918284B2 (en) 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US20030233524A1 (en) * 2002-06-12 2003-12-18 Poisner David I. Protected configuration space in a protected environment
US20050173108A1 (en) * 2002-07-29 2005-08-11 Cook Robert L. Method of forming a mono diameter wellbore casing
US7739917B2 (en) 2002-09-20 2010-06-22 Enventure Global Technology, Llc Pipe formability evaluation for expandable tubulars
US20060113086A1 (en) * 2002-09-20 2006-06-01 Scott Costa Protective sleeve for expandable tubulars
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
US20110064526A1 (en) * 2009-09-12 2011-03-17 Geopier Foundation Company, Inc. Extensible Shells and Related Methods for Constructing a Support Pier
US8221033B2 (en) * 2009-09-12 2012-07-17 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a support pier
US20170159257A1 (en) * 2010-09-13 2017-06-08 Geopier Foundation Company, Inc. Open-end extensible shells and related methods for constructing a support pier
US9091036B2 (en) 2010-09-13 2015-07-28 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a support pier
US9567723B2 (en) 2010-09-13 2017-02-14 Geopier Foundation Company, Inc. Open-end extensible shells and related methods for constructing a support pier
US10513831B2 (en) * 2010-09-13 2019-12-24 Geopier Foundation Company, Inc. Open-end extensible shells and related methods for constructing a support pier
US9022695B2 (en) 2012-10-18 2015-05-05 P3 Infrastructure Consulting Inc. Apparatus and system for securing a hollow pile in the ground
WO2015003257A1 (en) * 2013-07-11 2015-01-15 P3 Infrastructure Consulting Inc. Apparatus and system for securing a hollow pile in the ground
US20200115877A1 (en) * 2015-07-27 2020-04-16 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a ductile support pier
US10858796B2 (en) * 2015-07-27 2020-12-08 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a ductile support pier
US11479935B2 (en) 2015-07-27 2022-10-25 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a ductile support pier

Also Published As

Publication number Publication date
CA962850A (en) 1975-02-18
GB1377839A (en) 1974-12-18

Similar Documents

Publication Publication Date Title
US3797259A (en) Method for insitu anchoring piling
US3209546A (en) Method and apparatus for forming concrete piles
US3555831A (en) Composite foundation member and method
RU2103482C1 (en) Method for creating bore-hole in underground formation
US5941313A (en) Control set downhole packer
US6354766B1 (en) Methods for forming a short aggregate pier and a product formed from said methods
US4411557A (en) Method of making a high-capacity earthbound structural reference
US3691776A (en) Expansive base pile construction
US11603638B1 (en) Bio-inspired deep foundation pile and anchorage system
US20090269146A1 (en) Method for Construction of Piles and Caissons and Soil Improvement by Using Rubber Hoses
JP6063714B2 (en) Method for creating expandable steel pipe pile and pile structure
US3375670A (en) Method of piling
RU2166585C2 (en) Technique and gear for anchoring in ground
US3540224A (en) Rigidized support element
US4648220A (en) Supporting member
US3913337A (en) Piling
US4661021A (en) Expansion body
US4132082A (en) Piling
US3559412A (en) Method of forming enlarged base encased concrete piles
US4550786A (en) Method of driving steel profiles into a rock substratum
US4199277A (en) Piling
JPH059933A (en) Ready-made tapered pile with rib
US3874181A (en) High load carrying capacity, freeze and crack-proof concrete metal pile
US3543524A (en) Thin-walled pile with closure plug
US4462716A (en) Pile driving