US3874181A - High load carrying capacity, freeze and crack-proof concrete metal pile - Google Patents

High load carrying capacity, freeze and crack-proof concrete metal pile Download PDF

Info

Publication number
US3874181A
US3874181A US401778A US40177873A US3874181A US 3874181 A US3874181 A US 3874181A US 401778 A US401778 A US 401778A US 40177873 A US40177873 A US 40177873A US 3874181 A US3874181 A US 3874181A
Authority
US
United States
Prior art keywords
pile
concrete
internally
tubular member
resilient element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US401778A
Inventor
Ivo C Pogonowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Priority to US401778A priority Critical patent/US3874181A/en
Priority to US05/520,709 priority patent/US3995438A/en
Application granted granted Critical
Publication of US3874181A publication Critical patent/US3874181A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/02Enlarging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • B21D39/20Tube expanders with mandrels, e.g. expandable
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/48Piles varying in construction along their length, i.e. along the body between head and shoe, e.g. made of different materials along their length
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/54Piles with prefabricated supports or anchoring parts; Anchoring piles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49938Radially expanding part in cavity, aperture, or hollow body
    • Y10T29/4994Radially expanding internal tube

Definitions

  • six hydraulic swaging rams are utilized in joining a smaller upper end of one casing to a larger bottom end of an upper casing, as by dimpling as illustrated in my U.S. Pat. No.
  • Another primary object of this invention is to provide at least two embodiments for carrying out or practicing the disclosed method.
  • Another object of this invention is to provide a device for swaging or deforming one tubular member inside of another which is easy to operate, is of simple configuration, is economical to build and assemble, and is of greater efficiency for providing more working space internally of the tubular members.
  • Another object of this invention is to provide a method for joining two horizontal telescopic pipe ends together.
  • a further object of this invention is to provide a swaging mechanism for carrying out the method of joining two horizontal pipes together.
  • a still further object of this invention is to provide an insert for water immersed pipes for preventing cracking thereof.
  • Another object of this invention is to provide a method and mechanism for increasing the load capacity and pull-out resistance of piling driven in the ground.
  • FIG. 1 is a schematic plan view of one embodiment of the new tubular swaging device
  • FIG. 2 is a section at 2-2 on FIG. 1;
  • FIG. 3 is a section at 3-3 on FIG. 2;
  • FIG. 4 is a schematic section at 44 on FIG. 1;
  • FIG 5 is a vertical sectional view of another modification of the embodiment of FIG. 1;
  • FIG. 6 is a schematic sectional view of another modi fied swaging device for joining two tubes together illustrating the deforming tips in retracted position;
  • FIG. 7 is a section at 77 on FIG. 6;
  • FIG. 8 is a section of the truck and swage of FIG. 6 with the deforming tips illustrated in extended position for swaging the two tubes together;
  • FIG. 8a is a detailed sectional view of the depressions of FIG. 8;
  • FIG. 9 is a schematic sectional view of a composite steel-concrete pile immersed in freezing water with an insert therein;
  • FIG. 10 is a section at 10l0 on FIG. 9;
  • FIG. 11 is a section at 11-11 on FIG. 10.
  • FIG. 12 is a graph illustrating the increased load carrying capacity and pull-out resistance added to the pile by the anchor knobs.
  • This invention comprises a few methods for eliminating the shelf formed on the inner surface of a well casing larger end by a non-round upper end portion of a well casing smaller end secured therein comprising the steps of,
  • a second method comprises,
  • Another method for deforming a smaller-end of a first pipe internally of a larger end of a second pipe comprises,
  • FIGS. 1 4 and FIG. 5 Two embodiments are disclosed in FIGS. 1 4 and FIG. 5, respectively, for practicing or carrying out the above methods of the invention.
  • FIG. 1 a plan view of a swage 10, illustrates hydraulicoil lines for supplying pressure fluid to swaging actuators disclosed hereinafter.
  • a deforming means 12 such as a plurality of pistons and cylinders, pistons 12a, 12d and their respective cylinders 13a, 13d being illustrated in this figure.
  • the cylindrical swage block 11 is small enough to loosely fit internally of the enlarged lower end of. a tube, as av well casing 14, and large enough to rest on the upper deformed edge a of the upper end of a second well casing 15. While the lattercasing is secured to the upper well casing 14 a little below the illustrated section of FIG. 2, the upper deformed edge 15a has straight portions which extend inwardly from the inner wall or are spaced from the inner wall of the casing 14 to accordingly form a shelf on which all items being lowered in the well tend to hand up on.
  • FIG. 3 a sectional view at 3-3 on FIG. 2, with parts in section illustrates a swage comprising six pistons and cylinders for swedging or deforming into the cylindrical casing wall 14, FIG. 2, any section of the cylindrical casing wall 15 spaced from the wall of casing 14, as straight sections particularly.
  • cylinders 13b to 13f are illustrated with their pistons 12b to 12f removed for clarity of disclosure, as well as cylinders 13a and 13d on FIG. 2.
  • These straight sections occur when an inner casing or tube is attached to an outer casing or tube by riveting or swaging as by the forming of dimples through the walls of both tubes, as shown in my above-mentioned U.S. Pat. No. 3,555,831.
  • the upper edge 15a of casing 15 forms a rough hexagon in plan view and accordingly six pistons and cylinders are required to reshape the hexagon back into its original cylindrical shape. If eight dimples are utilized as illustrated in inventors above identified patent, to secure an inner casing upper end to an outer casing lower end, then an octagon shaped free upper edge is formed immediately above the dimples on the inner casing upper end.
  • FIG. 4 a sectional view at 44 on FIG. 1, illustrates more details of the supply and return hydraulic ducts for the pistons and cylinders shown in FIG. 3.
  • Piston and cylinders, 12a, 13a, respectively, are typical.
  • Actuating fluid under high pressure from a high pressure source (not shown) on top of the cylinder block 11, FIGS. 1 and 4, is supplied through passages 16 and 17 to a central reservoir 18.
  • the high pressure, fluid from central reservoir 18 passes to cylinder 13a, FIG. 3, for example, and behind piston 12a through ducts (not shown) and also directly to the inner end 19 of piston rod 20 for actuating piston 12a radially outwardly.
  • Piston 12a FIG. 3 has a case-hardened deforming or coldworking tip 21 secured-thereto with screws 22 for swaging or deforming inner casing 15, FIG. 2, against casing 14. End 19, FIG. 3, of the piston rod 20 is enlarged to form a return stroke piston.
  • the return stroke of piston 12a is accomplished by depressurizing conduits 16 and 17, FIG. 4, and pressurizing conduits 23, 24a, and 25a leading to conduit 26, FIG. 3, and to small cylinder 17 to actuate return stroke piston 19 radially inwardly to the position illustrated.
  • Three vertical ducts 25a, 25b, and 250 are utilized, each duct supplying piston-return-movement-pressure fluid for a pair of pistons. With inward return movement of piston 19, reverse flow occurs in reservoir 18, FIG. 4, and conduits 17 and 16.
  • Pistons 12b 12f, FIG. 3 are actuated similarly and simultaneously with piston 12a in their respective cylinders to deform the casing edge 15a, FIG. 2, against outer casing 14.
  • FIG. 5 illustrates schematically, in a vertical section, another embodiment for practicing the aforementioned method of the invention.
  • This swage 10a comprises a swage block 11a supporting seven rows of pistons 28 34, each row being similar to the row of the first modification of FIG. 3, with six equally spaced pistons in each row operable in their respective seven rows of cylinders 28 41.
  • reservoir 18a supplies high pressure fluid to the pistons for actuatingall pistons for deforming inner casing 15 against outer casing 14.
  • this swage includes return stroke pistons and their accompanying pressure conduits similar to those of the first embodiment for retracting the pistons within the swage after the swaging or deforming operation.
  • the swage of each of the above disclosed embodiments have either a self-contained unit mounted thereon including a pump and reservoir of hydraulic fluid with control cables running up the swage support wire, or they have long pressure hoses extending up the swage support wire to the pumps and reservoirs.
  • FIGS. 6, 7, and 8 disclose a swage cold working pipe connector for practicing one of the methods described above for permanently connecting or sealing two telescopic horiiontal pipes together, as for cargo pipe lines, particularly, in addition to air cargo lines (air in the pipe being the vehicle), oil lin'es, gas lines, and water lines. 1
  • FIG. 6 is a schematic view, with parts in section, of a swaging mechanism 10b for joining together two horizontal external and internal pipe ends, 14b and 15b, respectively.
  • the truck 50 supporting the swage 10b centrally of the pipes is rolled internally of the pipes by expanding of telescopic arm 51 from-a hydraulic actuator as tractor 52 having hydraulic fluid hose 53.
  • FIG. 7 a sectional view at 7-7 on FIG. 6, illustrates centering wheels 55a, 55b, and 550 for supporting truck 50 for longitudinal movement internally of the pipes.
  • FIG. 8,.a sectional view at 8-8 on FIG. 7, illustrates the case-hardened tips 21b of the pistons (not shown) of the swage 10b being extended for deforming and dimpling the pipe ends 14a and b.-
  • the actuating mechanism comprising the pistons for operating in cylinders of this modified.
  • swage 10b are very similar to those illustrated in FIG. 3 of swage '10. All dimples or deformations are swaged beyond the yield point to prevent springback.
  • FIG. 8A illustrates the flow of the elastic material between the two telescopic pipes in the area-ofthe dimples throughthe walls of the two pipes.
  • FIG. 6 illustrates the sealing swage 10b for sealing the two horizontal (or vertical like well casing) pipes together comprising a swage block 11b having five parallel rows of six pistons and cylinders veach for forming five rows of dimples or depressions in the two joining ends of the horizontal cargo pipes.
  • the outer and inner pipes, 14b and 15b, respectively are shown as alternating slightly smaller and larger diameter pipes, they may all be formed alike with one enlarged end each to slide over the smaller end, if so required and desired for providing constant inside diameter for laminar flow.
  • An annular lining 54 of rubber-like material such as but not limited to silicon rubber having a working temperature resistance range ofl 30F. to +500F. circumscribes the inner end 15b prior to swaging or cold working in the dimples.
  • This swage 10b is used to form rows of continuous dimples almost touching ,each other.
  • the swage is actuated by first moving outwardly all pistons from their respective hydraulic cylinders to form with their case-hardened tips parallel rows of six evenly spaced deep dimples 60 apart around the internal peripheral pipe surface.
  • the pistons are retracted, the telescopic rod 51 and when using a sleeve gasket or lining 54, the swedge 1012 are rotated 12 degrees about the longitudinal axis of the rod, and the pistons are actuated outwardly again to form a second set of dimples adjacent to the first.
  • This process is repeated by the swage 4 times after the initial actuation to provide another set of six dimples spaced radially by l2.
  • This radial spacing may be decreased to 6 with nine additional actuations by the swage, the greater the pipe diameter, the greater the number of swage operations is preferred.
  • Quick field connections may be made on an oil or gas line with the above swage deformations for providing a very good fluid-tight seal orjoint without time taking, slow. expensive welding.
  • insulating fluid-tight gasket 54 provides a pipe line cathodic corrosive protection system. This cold working process generates less tendency and susceptibility of the pile to galvantic corrosion than does the welding process. as the latter process results in uninterrupted electrical conductivity throughout the length ofthe pipe line, thereby enhancing the corrosion damage and increasing the cost of preventative measures. Accordingly a more economical and faster pipe connection results. particularly in areas inaccessible to welding.
  • this cold-working pipe connection provides quick field assembly in a hostile environment.
  • a constant internal diameter pipeline may be constructed without field welding using prefabrication, prepositioned seal, and cold working by the hydraulic swage.
  • Insert 61 is weighted at the bottom with a suitable inert weight-62, such as but not limited to the resistant mineral barite, it also may be concrete.'Thus the insert would be squeezed and contracted as the water freezes internally of thepile and cracking thereof is obivated for the full length of formation of the resultant ice block in the pile.
  • Anew method for'increasing the load carrying capacity and pull-out resistance of a hollow pile comprises the steps of,
  • a method step intermediate: the above steps (1) and (2) may include:
  • This composite pile 60 comprises a 54 inch outside diameter concrete pipe portion 63 joined to a 3 foot outside diameter metal pipe portion 64, the latter pipe portion having metal gussets 65 joined to the former pipe portion with grout 66.
  • the lower end of the metal pipe portion 64 has defor- I mations or anchor bumps 67 formed therein by a swage like 10b, FIGS. 6-8, to protrude outwardly a distance of at least the thickness of the pile wall after the pile is driven in the marsh, tundra, lake, or ocean bottom, for example.
  • a composite steel-concrete pile for resisting freezing water internally thereof comprising,

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

At least two methods for swaging one vertical smaller tubular member internally of a larger tubular member are disclosed. One device for practicing the method comprises a cylindrical swage block for loosely fitting in the large tubular member and resting on the upper edge of the inner smaller tubular member. A plurality (preferably six) pistons and cylinders are suspended from the swage block a precise distance below the upper edge and actuatable radially from the longitudinal axis of the smaller tubular member for deforming the upper edge portion thereof against the larger tubular member for providing more working space internally of the tubular members. A modification comprises a plurality as seven axially spaced apart, parallel layers of swaging pistons and cylinders suspended from the swage block. Other new devices utilizing the multiple piston and cylinder swage are a mechanisms for cold-work connecting two telescopic pipe ends together, and a mechanism for making a new pile with anchor knobs for increased load carrying capacity and pull-out resistance.

Description

United States Patent Pogonowski 1451 Apr. 1, 1975 METAL PILE Primary Examiner-Jacob Shapiro Attorney, Agent, or Firm-T. H. Whaley; C. G. Ries ABSTRACT [75] Inventor: Ivo C. Pogonowski, Houston, Tex. [57] [73] Assigneez Texaco Inc. New York, NY. At least two methods for swagmg one vertical smaller tubular member internally .of a larger tubular member [22] Filed: Sept. 28, 1973 are disclosed. One device for practicing the method comprises a cylindrical swage block for loosely fitting [2]] Appl' 401778 in the large tubular member and resting on the upper Related U.S. Application Data edge of the inner smaller tubular member. A plurality [62] Division of Ser. No. 247,584, April 26, 1972, Par. (P y pistons and cylinders are Suspended No. $795,035. from the swage block a precise distance below the upper edge and actuatable radially from the longitudi- [52] U.S. Cl 61/53, 61/1, 6l/53.6, nal axis of the smaller tubular member for deforming 61/53.68, 138/28 the upper edge portion thereof against the larger tubu- [51] Int. Cl E02d'5/48, E02d 31/12 lar member for providing more working space inter- [58] Field of Search 61/1, 53, 54, 56; 138/28; nally of the tubular members. A modification com- 220/85 B prises a plurality as seven axially spaced apart, parallel layers of swaging pistons and cylinders suspended [56] References Cited from the swage block.
UNITED STATES PATENTS Other new devices utilizing the multiple piston and 2.409.304 10/1946 Morrison 138/28 Cylinder swage are a mechanisms for Cold-Work 1629.402 2/1953 Cook connecting two telescopic pipe ends together, and a 2948.432 8/1960 Bodlcy ct al. 220/85 B mechanism for making a new pile with anchor knobs for increased 103d carrying capacity and pull-out 1119,4547 12/1959 France 138/28 reslstance' 6 Claims, 13 Drawing Figures x 5 N f I l i .1 T 1 2/ PJJENTED APR 1 5 SHEET 1 OF 6 FEJENTED APR 1 SHEET 2 BF 6 Aia PATENTEUAPR NW5 874, 1 81 susnanre snmunys fllflltlifll.
PHENTEU 1 195 PATENTED APR 1 975 sum 5 o g 50R wukmk $06k 1 HIGH LOAD CARRYING CAPACITY, FREEZE AND CRACK-PROOF CONCRETE METAL PILE BACKGROUND OF THE INVENTION In the swage joining of two oil well casings by hydraulic expanding devices, a permanent deformation often results in two overlapping casings, depending on the type ofjoint formed. Where six hydraulic swaging rams are utilized in joining a smaller upper end of one casing to a larger bottom end of an upper casing, as by dimpling as illustrated in my U.S. Pat. No. 3,555,831, the free upper edge of the smaller inner casing end often distorts into a hexagonal shape with six straight sides spaced from the wall of the larger upper casing. These straight sides accordingly leave less working space in the casings for drill bits, drill stems, etc., for example.
OBJECTS OF THE INVENTION Accordingly, it is a primary object of this invention to provide at least one method for eliminating protuberances internally of tubular joints for producing more operating space therein.
Another primary object of this invention is to provide at least two embodiments for carrying out or practicing the disclosed method.
Another object of this invention is to provide a device for swaging or deforming one tubular member inside of another which is easy to operate, is of simple configuration, is economical to build and assemble, and is of greater efficiency for providing more working space internally of the tubular members.
Another object of this invention is to provide a method for joining two horizontal telescopic pipe ends together.
A further object of this invention is to provide a swaging mechanism for carrying out the method of joining two horizontal pipes together.
A still further object of this invention is to provide an insert for water immersed pipes for preventing cracking thereof.
Another object of this invention is to provide a method and mechanism for increasing the load capacity and pull-out resistance of piling driven in the ground.
Other objects and various advantages of the disclosed method and devices for swaging one tubular member inside another tubular member will be apparent from the following detailed description, together with accompanying drawings, submitted for purposes of illustration only and not intended to define the scope of the invention, reference being had for that purpose to the subjoined claims.
BRIEF DESCRIPTION OF THE DRAWINGS The drawings diagrammatically illustrate by way of example, not by way of limitation, two forms or mechanisms for carrying out the method of the invention wherein like reference numerals have been employed to indicate similar parts in the several views in which:
FIG. 1 is a schematic plan view of one embodiment of the new tubular swaging device;
FIG. 2 is a section at 2-2 on FIG. 1;
FIG. 3 is a section at 3-3 on FIG. 2;
FIG. 4 is a schematic section at 44 on FIG. 1;
FIG 5 is a vertical sectional view of another modification of the embodiment of FIG. 1;
FIG. 6 is a schematic sectional view of another modi fied swaging device for joining two tubes together illustrating the deforming tips in retracted position;
FIG. 7 is a section at 77 on FIG. 6;
FIG. 8 is a section of the truck and swage of FIG. 6 with the deforming tips illustrated in extended position for swaging the two tubes together;
FIG. 8a is a detailed sectional view of the depressions of FIG. 8;
FIG. 9 is a schematic sectional view of a composite steel-concrete pile immersed in freezing water with an insert therein;
FIG. 10 is a section at 10l0 on FIG. 9;
FIG. 11 is a section at 11-11 on FIG. 10; and
FIG. 12 is a graph illustrating the increased load carrying capacity and pull-out resistance added to the pile by the anchor knobs.
DESCRIPTION OF THE INVENTION fore set forth will occur to those skilled in the art. 7
Therefore, all such modifications and variations which are within the spirit and scope of the invention herein are included and only such limitations should be imposed as are indicated in the appended claims.
DESCRIPTION OF THE METHODS This invention comprises a few methods for eliminating the shelf formed on the inner surface of a well casing larger end by a non-round upper end portion of a well casing smaller end secured therein comprising the steps of,
l. swaging the non-round portions of the upper edge of the inner well casing outwardly firmly against the larger well casing inner surface, and
2. simultaneously swaging the non-round portions spaced below the upper edge of the smaller well casing firmly against the larger well casing inner surface.
A second method comprises,
l. positioning a plurality of pistons and cylinders in a horizontal plane and a precise distance below the upper edge of the smaller well casing, and
2. deforming the upper edge of the well casing smaller end firmly against the well casing larger end surface by simultaneous actuation of at least two pistons and cylinders directly opposite from each other for providing more operating room internally of the well casings.
Another method for deforming a smaller-end of a first pipe internally of a larger end of a second pipe comprises,
1. positioning a plurality of pistons and cylinders in several planes, each plane being normal to the longitudinal axis of the first pipe at a precise distance from the first pipe smaller end, and
2. deforming the first pipe smaller end against the second pipe larger end by actuation of all pistons and cylinders outwardly in a radial direction opposite from each other for providing more operating room internally of the pipes.
DESCRIPTION OF THE DEFORMING DEVICES Two embodiments are disclosed in FIGS. 1 4 and FIG. 5, respectively, for practicing or carrying out the above methods of the invention.
FIG. 1, a plan view of a swage 10, illustrates hydraulicoil lines for supplying pressure fluid to swaging actuators disclosed hereinafter.
FIG. 2, a schematic sectional view taken at 22 on FIG. 1 of one of the swaging devices for carrying out at least one of the methods of the invention comprises a cylindrical swage block 11 supporting a deforming means 12, such as a plurality of pistons and cylinders, pistons 12a, 12d and their respective cylinders 13a, 13d being illustrated in this figure.
As illustrated in FIG. 2, the cylindrical swage block 11 is small enough to loosely fit internally of the enlarged lower end of. a tube, as av well casing 14, and large enough to rest on the upper deformed edge a of the upper end of a second well casing 15. While the lattercasing is secured to the upper well casing 14 a little below the illustrated section of FIG. 2, the upper deformed edge 15a has straight portions which extend inwardly from the inner wall or are spaced from the inner wall of the casing 14 to accordingly form a shelf on which all items being lowered in the well tend to hand up on.
FIG. 3, a sectional view at 3-3 on FIG. 2, with parts in section illustrates a swage comprising six pistons and cylinders for swedging or deforming into the cylindrical casing wall 14, FIG. 2, any section of the cylindrical casing wall 15 spaced from the wall of casing 14, as straight sections particularly. In FIG. 3, cylinders 13b to 13f are illustrated with their pistons 12b to 12f removed for clarity of disclosure, as well as cylinders 13a and 13d on FIG. 2. These straight sections occur when an inner casing or tube is attached to an outer casing or tube by riveting or swaging as by the forming of dimples through the walls of both tubes, as shown in my above-mentioned U.S. Pat. No. 3,555,831. When an inner tube or casing is thus secured, the result is sometimes inward flaring or warping of the upper free edge of the inner casing. Thus when equally spaced dimples are utilized, the upper edge 15a of casing 15 forms a rough hexagon in plan view and accordingly six pistons and cylinders are required to reshape the hexagon back into its original cylindrical shape. If eight dimples are utilized as illustrated in inventors above identified patent, to secure an inner casing upper end to an outer casing lower end, then an octagon shaped free upper edge is formed immediately above the dimples on the inner casing upper end.
FIG. 4, a sectional view at 44 on FIG. 1, illustrates more details of the supply and return hydraulic ducts for the pistons and cylinders shown in FIG. 3. Piston and cylinders, 12a, 13a, respectively, are typical. Actuating fluid under high pressure from a high pressure source (not shown) on top of the cylinder block 11, FIGS. 1 and 4, is supplied through passages 16 and 17 to a central reservoir 18. The high pressure, fluid from central reservoir 18 passes to cylinder 13a, FIG. 3, for example, and behind piston 12a through ducts (not shown) and also directly to the inner end 19 of piston rod 20 for actuating piston 12a radially outwardly.
Piston 12a, FIG. 3 has a case-hardened deforming or coldworking tip 21 secured-thereto with screws 22 for swaging or deforming inner casing 15, FIG. 2, against casing 14. End 19, FIG. 3, of the piston rod 20 is enlarged to form a return stroke piston. The return stroke of piston 12a is accomplished by depressurizing conduits 16 and 17, FIG. 4, and pressurizing conduits 23, 24a, and 25a leading to conduit 26, FIG. 3, and to small cylinder 17 to actuate return stroke piston 19 radially inwardly to the position illustrated. Three vertical ducts 25a, 25b, and 250 are utilized, each duct supplying piston-return-movement-pressure fluid for a pair of pistons. With inward return movement of piston 19, reverse flow occurs in reservoir 18, FIG. 4, and conduits 17 and 16. Pistons 12b 12f, FIG. 3, are actuated similarly and simultaneously with piston 12a in their respective cylinders to deform the casing edge 15a, FIG. 2, against outer casing 14.
MODIFICATION .1
FIG. 5 illustrates schematically, in a vertical section, another embodiment for practicing the aforementioned method of the invention. This swage 10a comprises a swage block 11a supporting seven rows of pistons 28 34, each row being similar to the row of the first modification of FIG. 3, with six equally spaced pistons in each row operable in their respective seven rows of cylinders 28 41. Similarly, reservoir 18a supplies high pressure fluid to the pistons for actuatingall pistons for deforming inner casing 15 against outer casing 14. Likewise, this swage includes return stroke pistons and their accompanying pressure conduits similar to those of the first embodiment for retracting the pistons within the swage after the swaging or deforming operation.
The swage of each of the above disclosed embodiments have either a self-contained unit mounted thereon including a pump and reservoir of hydraulic fluid with control cables running up the swage support wire, or they have long pressure hoses extending up the swage support wire to the pumps and reservoirs.
MODIFICATION II A method is disclosed for sealing together two telescopic pipe ends comprising the steps of,
l. positioning a sheet of elastic material or cementing the material which requires an undisturbed curing period, i.e. 2 hours, between the two telescopic pipe ends,
2. deforming a circular first row of dimples through both pipes in a plane normal to the pipe longitudinal axis, and
3. deforming a plurality of rows of dimples simultaneously and parallel to the first row of dimples for forming an efficient, quick, and high strength pipe ]OII11L.
FIGS. 6, 7, and 8 disclose a swage cold working pipe connector for practicing one of the methods described above for permanently connecting or sealing two telescopic horiiontal pipes together, as for cargo pipe lines, particularly, in addition to air cargo lines (air in the pipe being the vehicle), oil lin'es, gas lines, and water lines. 1
FIG. 6 is a schematic view, with parts in section, of a swaging mechanism 10b for joining together two horizontal external and internal pipe ends, 14b and 15b, respectively. Here, the truck 50 supporting the swage 10b centrally of the pipes is rolled internally of the pipes by expanding of telescopic arm 51 from-a hydraulic actuator as tractor 52 having hydraulic fluid hose 53.
FIG. 7, a sectional view at 7-7 on FIG. 6, illustrates centering wheels 55a, 55b, and 550 for supporting truck 50 for longitudinal movement internally of the pipes.
FIG. 8,.a sectional view at 8-8 on FIG. 7, illustrates the case-hardened tips 21b of the pistons (not shown) of the swage 10b being extended for deforming and dimpling the pipe ends 14a and b.- The actuating mechanism comprising the pistons for operating in cylinders of this modified. swage 10b are very similar to those illustrated in FIG. 3 of swage '10. All dimples or deformations are swaged beyond the yield point to prevent springback.
FIG. 8A illustrates the flow of the elastic material between the two telescopic pipes in the area-ofthe dimples throughthe walls of the two pipes.
FIG. 6 illustrates the sealing swage 10b for sealing the two horizontal (or vertical like well casing) pipes together comprising a swage block 11b having five parallel rows of six pistons and cylinders veach for forming five rows of dimples or depressions in the two joining ends of the horizontal cargo pipes. While the outer and inner pipes, 14b and 15b, respectively, are shown as alternating slightly smaller and larger diameter pipes, they may all be formed alike with one enlarged end each to slide over the smaller end, if so required and desired for providing constant inside diameter for laminar flow. An annular lining 54 of rubber-like material, such as but not limited to silicon rubber having a working temperature resistance range ofl 30F. to +500F. circumscribes the inner end 15b prior to swaging or cold working in the dimples.
This swage 10b is used to form rows of continuous dimples almost touching ,each other. To accomplish this extraordinary seal, the swage is actuated by first moving outwardly all pistons from their respective hydraulic cylinders to form with their case-hardened tips parallel rows of six evenly spaced deep dimples 60 apart around the internal peripheral pipe surface. The pistons are retracted, the telescopic rod 51 and when using a sleeve gasket or lining 54, the swedge 1012 are rotated 12 degrees about the longitudinal axis of the rod, and the pistons are actuated outwardly again to form a second set of dimples adjacent to the first. This process is repeated by the swage 4 times after the initial actuation to provide another set of six dimples spaced radially by l2. This radial spacing may be decreased to 6 with nine additional actuations by the swage, the greater the pipe diameter, the greater the number of swage operations is preferred.
Quick field connections may be made on an oil or gas line with the above swage deformations for providing a very good fluid-tight seal orjoint without time taking, slow. expensive welding.
Use of the insulating fluid-tight gasket 54 provides a pipe line cathodic corrosive protection system. This cold working process generates less tendency and susceptibility of the pile to galvantic corrosion than does the welding process. as the latter process results in uninterrupted electrical conductivity throughout the length ofthe pipe line, thereby enhancing the corrosion damage and increasing the cost of preventative measures. Accordingly a more economical and faster pipe connection results. particularly in areas inaccessible to welding.
Particularly, this cold-working pipe connection provides quick field assembly in a hostile environment. Further, a constant internal diameter pipeline may be constructed without field welding using prefabrication, prepositioned seal, and cold working by the hydraulic swage. a
MODIFICATION in FIG. 9, a schematic sectional view ,of a water immersed composite concrete and'steel pile 60 with the new insert 61 protruding therein deeper'than the freezing'depth of the water around and inside the pile for preventing cracking due to the water freezing internally of the pile. Insert 61 is a long flexible, soft,and resilient element. It is formed of a soft plastic material as silicon foam rubber, for example. While the cylindrical shape filled with air is preferred, it may alsocomprise instead, a multiplicity of interconnected spheres, if so'desired and required.
Insert 61 is weighted at the bottom with a suitable inert weight-62, such as but not limited to the resistant mineral barite, it also may be concrete.'Thus the insert would be squeezed and contracted as the water freezes internally of thepile and cracking thereof is obivated for the full length of formation of the resultant ice block in the pile. I
MODIFICATION IV Anew method for'increasing the load carrying capacity and pull-out resistance of a hollow pile comprises the steps of,
portion into the ground to the desired and required depth, and
2. forming protrusions or anchor bumps outwardly on the pile external surface. I
A method step intermediate: the above steps (1) and (2) may include:
1a. evacuating any earth inside the pile.
Also, in greater detail, the second step maycomprise swaging recesses outwardly from internally of the pile to form the anchor bumps on the pile external surface.
FIGS. 10 and 11 disclose at least one new pile for car rying out or practicing the above method. This pile 60, which has greatly increased load capacity and pull-out resistance, is disclosed in FIG. 10, a section at 10-10 on FIG. 9 and in FIG. 11, a section at 1111 on FIG. 10.
This composite pile 60 comprises a 54 inch outside diameter concrete pipe portion 63 joined to a 3 foot outside diameter metal pipe portion 64, the latter pipe portion having metal gussets 65 joined to the former pipe portion with grout 66.
The lower end of the metal pipe portion 64 has defor- I mations or anchor bumps 67 formed therein by a swage like 10b, FIGS. 6-8, to protrude outwardly a distance of at least the thickness of the pile wall after the pile is driven in the marsh, tundra, lake, or ocean bottom, for example.
These anchor bumps 67 greatly increase the load carrying capacity and pull-out resistance of the pile 60 as evidenced by the graph of FIG. 12 from the inventors report Test of Skin Friction With and Without Swaging-Comparison of Smooth Pipe vs. Anchor Pattern by Hydraulic Swage. Here the test specimen had a 7 inch ID, 7 %inch OD, and 9 inch length imbedded to a depth of 7 inches in a container of lead having an 1 1 inch ID, 11 /2inch OD, and a inch height.
Accordingly, from FIG. 12, with a total force required to pull out the smooth test pile being less than 30,000 pounds and a total force required to pull out the test pile with 36 indentations being greater than 160,000 pounds, the increase in pull-out resistance was over 5 times greater with the disclosed anchor bumps.
Thus an efficient, high strength, elongated pile is disclosed having increased load carrying capacity and pull-out resistance which is especially critical in sandy soils.
Accordingly, it will be seen that the disclosed methods and swages for practicing the methods for producing more working space internally of two interconnected tubes for connecting two telescopic pipes together, and for increasing the load carrying capability and pull-out resistance of piles operate in a manner which meets each of the objects set forth hereinbefore by the use of various combinations of the disclosed multiple piston and cylinder swage.
While a few methods of the invention and two swages for carrying out the methods have been disclosed, it will be evident that various other methods and modifications are possible in the arrangement and construction of the disclosed methods and swages without departing from the scope of the invention and it is accordingly desired to comprehend within the purview of this invention such modifications as may be considered to fall within the scope of the appended claims.
I claim:
1. A composite steel-concrete pile for resisting freezing water internally thereof comprising,
a. a pile'comprising an upper concrete portion connected to a lower steel portion, and
b. a longitudinal resilient element extending internally of the concrete portion of the pile for the length required to be protected from the formation of ice blocks therein said pile concrete portion.
2. A composite steel-concrete pile as recited in claim 1 wherein,
a. said concrete pile internally mounted longitudinal resilient element is an air filled resilient element.
3.- A tubular member as recited in claim 1 wherein,
a. said concrete pile internally mounted longitudinal resilient element is a multiplicity of interconnected spheres 4. A composite concrete-metal pile for being driven downwardly through the freezing level of the medium surrounding and internally of the pile comprising,
a. a pile lower hollow metallic end portion having a malleable wall for being driven into the ground,
b. a pile upper hollow concrete portion fixedly secured to said pile lower portion and protruding down through the freezing depth of the surrounding medium,
c. deformed anchor bumps in said malleable pile lower hollow end portion protruding outwardly a distance of at least the thickness of said pile malleable wall for increasing the pull-out resistance of the pile, and I d. an elongated resilient element centered in said pile upper hollow concrete portion and extending downwardly from the top of the pile to a distance at least as great as the freezing depth of the medium surrounding and internally of the pile for providing a high load carrying capacity, freeze and crack-proof concrete-metal pile.
5. A concrete-metal pile as recited in claim 4 wherein,
a. said pile centered elongated resilient element is an air filled resilient cylinder.
6. A concrete-metal pile as recited in claim 4 wherein,
. a. said pile centered elongated resilient element is a multiplicity of interconnected spheres.

Claims (6)

1. A composite steel-concrete pile for resisting freezing water internally thereof comprising, a. a pile comprising an upper concrete portion connected to a lower steel portion, and b. a longitudinal resilient element extending internally of the concrete portion of the pile for the length required to be protected from the formation of ice blocks therein said pile concrete portion.
2. A composite steel-concrete pile as recited in claim 1 wherein, a. said concrete pile internally mounted longitudinal resilient element is an air filled resilient element.
3. A tubular member as recited in claim 1 wherein, a. said concrete pile internally mounted longitudinal resilient element is a multiplicity of interconnected spheres
4. A composite concrete-metal pile for being driven downwardly through the freezing level of the medium surrOunding and internally of the pile comprising, a. a pile lower hollow metallic end portion having a malleable wall for being driven into the ground, b. a pile upper hollow concrete portion fixedly secured to said pile lower portion and protruding down through the freezing depth of the surrounding medium, c. deformed anchor bumps in said malleable pile lower hollow end portion protruding outwardly a distance of at least the thickness of said pile malleable wall for increasing the pull-out resistance of the pile, and d. an elongated resilient element centered in said pile upper hollow concrete portion and extending downwardly from the top of the pile to a distance at least as great as the freezing depth of the medium surrounding and internally of the pile for providing a high load carrying capacity, freeze and crack-proof concrete-metal pile.
5. A concrete-metal pile as recited in claim 4 wherein, a. said pile centered elongated resilient element is an air filled resilient cylinder.
6. A concrete-metal pile as recited in claim 4 wherein, a. said pile centered elongated resilient element is a multiplicity of interconnected spheres.
US401778A 1972-04-26 1973-09-28 High load carrying capacity, freeze and crack-proof concrete metal pile Expired - Lifetime US3874181A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US401778A US3874181A (en) 1972-04-26 1973-09-28 High load carrying capacity, freeze and crack-proof concrete metal pile
US05/520,709 US3995438A (en) 1973-09-28 1974-11-04 Method for increasing the load carrying capacity and pull-out resistance of hollow piles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24758472A 1972-04-26 1972-04-26
US401778A US3874181A (en) 1972-04-26 1973-09-28 High load carrying capacity, freeze and crack-proof concrete metal pile

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US24758472A Division 1972-04-26 1972-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/520,709 Division US3995438A (en) 1973-09-28 1974-11-04 Method for increasing the load carrying capacity and pull-out resistance of hollow piles

Publications (1)

Publication Number Publication Date
US3874181A true US3874181A (en) 1975-04-01

Family

ID=26938776

Family Applications (1)

Application Number Title Priority Date Filing Date
US401778A Expired - Lifetime US3874181A (en) 1972-04-26 1973-09-28 High load carrying capacity, freeze and crack-proof concrete metal pile

Country Status (1)

Country Link
US (1) US3874181A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309891A (en) * 1978-02-17 1982-01-12 Texaco Inc. Double action, self-contained swages for joining two small tubes
US4319393A (en) * 1978-02-17 1982-03-16 Texaco Inc. Methods of forming swages for joining two small tubes
US4723876A (en) * 1986-02-25 1988-02-09 Chevron Research Company Method and apparatus for piled foundation improvement with freezing using down-hole refrigeration units
US4836716A (en) * 1986-02-25 1989-06-06 Chevron Research Company Method and apparatus for piled foundation improvement through freezing using surface mounted refrigeration units
KR100450444B1 (en) * 2001-05-22 2004-10-06 (주)청우종합건축사사무소 Construction Method of Complex Pile Consisting Prestressed spun High strength Concrete Pile and Anchor
CN100595397C (en) * 2007-12-10 2010-03-24 山西建筑工程(集团)总公司 Anti-floating construction method by combination of bar-planting and anchoring-bolt
US20140112722A1 (en) * 2012-10-18 2014-04-24 P3 Infrastructure Consulting Inc. Apparatus and system for securing a hollow pile in the ground
US20160319983A1 (en) * 2008-05-01 2016-11-03 Cabot Corporation Manufacturing and Installation of Insulated Pipes or Elements Thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2409304A (en) * 1943-04-01 1946-10-15 Joseph I Morrison Compressible core for cooling pipes
US2629402A (en) * 1949-12-09 1953-02-24 Cook Frank Antiburst tube for pipes
US2948432A (en) * 1957-01-14 1960-08-09 Union Tank Car Co Breather reservoir

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2409304A (en) * 1943-04-01 1946-10-15 Joseph I Morrison Compressible core for cooling pipes
US2629402A (en) * 1949-12-09 1953-02-24 Cook Frank Antiburst tube for pipes
US2948432A (en) * 1957-01-14 1960-08-09 Union Tank Car Co Breather reservoir

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309891A (en) * 1978-02-17 1982-01-12 Texaco Inc. Double action, self-contained swages for joining two small tubes
US4319393A (en) * 1978-02-17 1982-03-16 Texaco Inc. Methods of forming swages for joining two small tubes
US4723876A (en) * 1986-02-25 1988-02-09 Chevron Research Company Method and apparatus for piled foundation improvement with freezing using down-hole refrigeration units
US4836716A (en) * 1986-02-25 1989-06-06 Chevron Research Company Method and apparatus for piled foundation improvement through freezing using surface mounted refrigeration units
KR100450444B1 (en) * 2001-05-22 2004-10-06 (주)청우종합건축사사무소 Construction Method of Complex Pile Consisting Prestressed spun High strength Concrete Pile and Anchor
CN100595397C (en) * 2007-12-10 2010-03-24 山西建筑工程(集团)总公司 Anti-floating construction method by combination of bar-planting and anchoring-bolt
US20160319983A1 (en) * 2008-05-01 2016-11-03 Cabot Corporation Manufacturing and Installation of Insulated Pipes or Elements Thereof
US10132441B2 (en) * 2008-05-01 2018-11-20 Cabot Corporation Manufacturing and installation of insulated pipes or elements thereof
US20140112722A1 (en) * 2012-10-18 2014-04-24 P3 Infrastructure Consulting Inc. Apparatus and system for securing a hollow pile in the ground
US9022695B2 (en) * 2012-10-18 2015-05-05 P3 Infrastructure Consulting Inc. Apparatus and system for securing a hollow pile in the ground

Similar Documents

Publication Publication Date Title
US3885298A (en) Method of sealing two telescopic pipes together
US3877282A (en) Swaging tool for joining two telescopic pipe ends
US3995438A (en) Method for increasing the load carrying capacity and pull-out resistance of hollow piles
US3797259A (en) Method for insitu anchoring piling
US10794158B2 (en) Method for sealing cavities in or adjacent to a cured cement sheath surrounding a well casing
US7243717B2 (en) Apparatus in a drill string
US5348095A (en) Method of creating a wellbore in an underground formation
US7261154B2 (en) Conformable apparatus in a drill string
US7497255B2 (en) High performance expandable tubular system
US6419025B1 (en) Method of selective plastic expansion of sections of a tubing
US4608739A (en) Connector of and sealing of tubular members
US3874181A (en) High load carrying capacity, freeze and crack-proof concrete metal pile
US20050077051A1 (en) Radial expansion of tubular members
CN102264996A (en) Expanding a tubular element in a wellbore
AU7370194A (en) Underground pipe replacement technique
CA2615757A1 (en) Reinforced open-hole zonal isolation packer
US4585374A (en) High energy formed connections
US20140112722A1 (en) Apparatus and system for securing a hollow pile in the ground
US3834012A (en) Method of joining telescoped pipe sections
CN104563954A (en) Steel pipe expansion recovery type external casing packer
DE112014007032T5 (en) Extrusion protection ring for a casing hanger
CN102308058B (en) Expandable casing with enhanced collapse resistance and sealing capabilit
US3795035A (en) Mechanisms for swaging the ends of pipes
JP7295436B2 (en) METHOD FOR MANUFACTURING STEEL PIPE PILE WITH INTERNAL PROJECTS, CONSTRUCTION METHOD OF STEEL PIPE PILE, AND STEEL PIPE PILE WITH INNER PROJECTIONS
CN215718606U (en) Telescopic rubber tube of packer