US3797240A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
US3797240A
US3797240A US00222900A US3797240DA US3797240A US 3797240 A US3797240 A US 3797240A US 00222900 A US00222900 A US 00222900A US 3797240D A US3797240D A US 3797240DA US 3797240 A US3797240 A US 3797240A
Authority
US
United States
Prior art keywords
vortical
chamber
oxidation reaction
reaction chamber
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00222900A
Other languages
English (en)
Inventor
T Inoue
S Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of US3797240A publication Critical patent/US3797240A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/26Construction of thermal reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/38Arrangements for igniting

Definitions

  • ABSTRACT This invention relates to an exhaust emission control device.
  • a vortical combustion chamber extends into an oxidation reaction chamber so that the exhaust gases introduced into the oxidation reaction chamber through the exhaust manifold may be brought into direct contact with the outer wall surfaces of the vortical combustion chamber.
  • This invention relates to an exhaust emission control device for internal combustion engines for motor vehicles or the like designed to subject unburned noxious components of exhaust gases of such engines to recombustion to removesuch noxious components from the exhaust gases.
  • a supply of secondary fuel is delivered to a cylindrical combustion chamber disposed adjacent the oxidation reaction chamber, and a supply of secondary air is injected into the cylindrical combustion chamber tangentially thereto to produce a forced vortex flow of the air-fuel mixture in a central portion of the cylindrical combustion chamber and natural vortex flows of the air-fuel mixture in outer peripheral portions of the combustion chamber.
  • Flames are produced in cylindrical form by igniting the air-fuel mixture in such forced vortex flows, and blown through an opening or pipe into the oxidation reaction chamber where a mixture of exhaust gases'and excess air is ignited by such flames in cylindrical form to subject the exhaust gases to recombustion, thereby removing unburned noxious components of the exhaust gases before they are vented to the atmosphere.
  • This invention has as its object the provision of a device which is capable of effecting perfect exhaust emission control even if quantities of exhaust gases, particularly of unburned noxious components of exhaust gases therein, undergo large fluctuations as when the internal combustion engine is started or accelerated rapidly.
  • This invention permits effecting exhaust emission control satisfactorily by obviating the aforementioned disadvantages of the prior art by the features as set forth in the claims appended hereto.
  • FIG. 1 is a schematic side view of the exhaust emission control device according to this invention as incorporated in an internal combustion engine of a motor vehicle;
  • FIG. 2 is a vertical sectional view, on an enlarged scale, of the oxidation reaction chamber of the device.
  • FIG. 3 is an enlarged sectional view of the fuel vaporizer of FIG. 2.
  • an exhaust manifold 12 connected at one end to exhaust ports 11 of an internal combustion engine 30 is connected at the other end to an oxidation reaction chamber 10 which is provided with an exhaust pipe 13 for venting purified exhaust gases to the atmosphere.
  • Vortical combustion chamber 20 is mounted at an end of oxidation reaction chamber 10 opposite to the end thereof at which exhaust pipe 13 is provided.
  • Vortical combustion chamber 20 has a portion 17 which extends into the interior of oxidation reaction chamber 10 and which is formed with a flame ejection port 16 in a wall thereof with respect to the interior of oxidation reaction chamber 10.
  • Exhaust manifold 12 opens at an opening 18 thereof in oxidation reaction chamber 10 which is disposed in a position such that the exhaust gases introduced into oxidation reaction chamber 10 through exhaust manifold 12 are brought into direct contact with the portion 17 of vortical combustion chamber 20.
  • an air pump 19 operated by internal combustion engine 30 oran electric motor is connected to exhaust manifold 12 and vortical combustion chamber 20 by air lines 14 and 15 respectively, air line 15 being tangentially connect-ed to a base of vortical combustion chamber 20 through an opening 22 thereof to supply secondary air tangentially to the base of vortical combustion chamber 20.
  • fuel vaporizers 24 and 25 made of a heat resisting porous material, such for example as sintered metal, are provided in a central portion and peripheral portion of a surface of a wall 23 of vortical combustion chamber 20 opposite to the wall in which flame ejection port 16 is formed, and connected through a fuel line 26 and a fuel pump 29 shown in FIG. 1 to a secondary fuel supply source (not shown).
  • An ignition plug 27 is mounted in the central portion of wall 23.
  • air pump 19 and fuel pump 29 are operatedwhen internal combustion engine 30 is started.
  • Secondary air is tangentially supplied through the opening 22 of air line 15 into vortical combustion chamber 20 and formed intov vortex flows in the vortical combustion chamber comprising forced vortex flows in a central portion of the chamber and natural vortex flows in peripheral portions of the chamber.
  • secondary air is supplied through fuel line 26 to fuel vaporizers 24 and 25.which are impregnated with the secondary fuel.
  • the secondary fuel with which vaporizers 24 and 25 are impregnated is vaporized by the flows of the secondary air to produce an airfuel mixture.
  • the air-fuel mixture is ignited by ignition plug 27 such that first the air-fuel mixture in forced vortex flows is ignited, and then the air-fuel mixture in natural vortex flows is ignited till all the air-fuel mixture in vortical combustion chamber 20 is ignited and burns. Thus, combustion of the air-fuel mixture takes place vigorously in vortical combustion chamber 20 and the outer wall surfaces of the chamber are rapidly heated.
  • exhaust gases are introduced through the opening 18 of exhaust manifold 12 into oxidation reaction chamber 10.
  • secondary air supplied through air line 14 is introduced into oxidation reaction chamber together with the exhaust gases.
  • the exhaust gases with or without secondary air are brought into direct contact with the outer wall surfaces of vortical combustion chamber 20, and unburned noxious components thereof at once undergo oxidation reaction and are readily burned by flames in cylindrical form ejected through flame ejection port 16 into oxidation reaction chamber 10.
  • Unburned noxious components of exhaust gases such for example as carbon monoxide, hydrocarbons and the like, are burned completely in this way so that the exhaust gases are rendered innocuous and vented to the atmosphere through exhaust pipe 13.
  • any shape as desired may be given to the vortex flows in vortical combustion chamber 20 by suitably selecting the shape of flame ejection port 16. It is to be understood that the vortical combustion chambermay be of any form as desired so long as its outer wall surfaces can be maintained at elevated temperatures or in a red hot state.
  • the body of the vortical combustion chamber extends into the oxidation reaction chamber.
  • This arrangement permits a high efficiency in exhaust emission control immediately after the internal combustion engine is started, in spite of the fact that the temperature of exhaust gases introduced into the exhaust emission'control device is low because the internal combustion engine, exhaust manifold and oxidation reaction chamber are cool at the time the engine is started.
  • the exhaust gases introduced into the oxidation reaction chamber are immediately warmed and ignited because they are brought into direct contact with the red hot outer wall surface of the vortical combustion chamber.
  • the aforementioned embodiment of this invention also permits complete combustion of unburned noxious components of exhaust gases to take place even in cases where the conventional exhaust emission control device is unable to maintain combustion of exhaust gases in the oxidation reaction chamber because a sudden increase in the quantity of exhaust gases cools off the exhaust gases and reduces the proportions of unburned noxious components in the exhaust gases as when engine speed is rapidly increased.
  • fuel Vaporizers made of a heat resisting porous material are provided in a central and peripheral portion of one wall of the vortical combustion chamber.
  • This arrangement is effective first to positively ignite the air-fuel mixture in forced flows in the central portion of the vortical combustion chamber and'then to ignite the airfuel mixture in natural vortex flows in the peripheral portions thereof. This makes it possible to heat the outer wall surfaces of the vortical combustion chamber to a red hot state in a short interval of time.
  • an exhaust emission control device comprising an oxidation reaction chamber connected to an exhaust manifold of an internal combustion engine to receive exhaust gases therefrom, and a vortical combustion chamber receiving a supply of secondary air and secondary fuel to produce an air-fuel mixture therein which is ignited to burn in flames in vortical form, said flames in vortical form being blown from said vortical combustion chamber into said oxidation reaction chamber so as to subject unburned components of the exhaust gases in the oxidation reaction chamber to recombustion, the improvement in that at least a portion of said vortical combustion chamber extends into said oxidation reaction chamber so that the exhaust gases introduced into said oxidation reaction chamber through said exhaust manifold may be brought into direct contact with outer wall surfaces of the vortical combustion chamber, and wherein fuel Vaporizers made of a heat resisting porous material comprise a central fuel exit portion and peripheral fuel exit portion of one wall of said vortical combustion chamber so as to facilitate vaporization of the secondary fuel in the vortical combustion chamber.
  • An exhaust emission control device comprising:
  • a cylindrical vortical combustion chamber having means for introducing secondary fuel thereto and means for introducing secondary air thereto tangentially to the inner surface of said cylindrical chamber, for producing an air-fuel mixture therein for burning in a vortical flame blown from said vertical chamber through an open end thereof into said oxidation reaction chamber for subjecting unburned components of said exhaust gases to recombustion,
  • said cylindrical vortical combustion chamber extending along the direction of its axis into said oxidation reaction chamber, and the outside surface of said vortical chamber being adjacent an exhaust gas inlet opening in said oxidation reaction chamber, for directly contacting exhaust gases entering said reaction chamber with said outside surface of said vortical chamber, and fuel vaporizer of heat resistant porous material at a closed end of said cylindrical vortical combustion chamber, said vaporizer comprising a central fuel exit portion near the axis of said cylindrical chamber and a peripheral fuel exit portion near the inner surface of said cylindrical chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
US00222900A 1971-06-02 1972-02-02 Exhaust emission control device Expired - Lifetime US3797240A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP46038824A JPS5214373B1 (enrdf_load_stackoverflow) 1971-06-02 1971-06-02

Publications (1)

Publication Number Publication Date
US3797240A true US3797240A (en) 1974-03-19

Family

ID=12535980

Family Applications (1)

Application Number Title Priority Date Filing Date
US00222900A Expired - Lifetime US3797240A (en) 1971-06-02 1972-02-02 Exhaust emission control device

Country Status (2)

Country Link
US (1) US3797240A (enrdf_load_stackoverflow)
JP (1) JPS5214373B1 (enrdf_load_stackoverflow)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988421A (en) * 1972-05-10 1976-10-26 Tecnochim S.R.L. Gas cleaning process and equipment
US4055401A (en) * 1975-01-14 1977-10-25 The Ralph M. Parsons Company Reducing gas generator
EP0250829A1 (de) * 1986-06-30 1988-01-07 Robert Bosch Gmbh Vorrichtung zum Verbrennen von Feststoffteilchen im Abgas von Brennkraftmaschinen
DE4218629A1 (de) * 1992-06-05 1993-12-16 Eberspaecher J Brennkammer, insbesondere für die Partikelfilterregenerierung in einer Kraftfahrzeug-Abgasanlage
US5379592A (en) * 1991-10-23 1995-01-10 Waschkuttis; Gerhard Catalytic converter with ignition burner
US20100263359A1 (en) * 2007-07-25 2010-10-21 Heinrich Gillet Gmbh Apparatus for the Aftertreatment of the Exhaust Gases of Diesel Engines
US20120204546A1 (en) * 2009-10-06 2012-08-16 Sk Innovation Co., Ltd. Burner and aftertreating device of exhaust gas
US8938954B2 (en) 2012-04-19 2015-01-27 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US9180407B2 (en) 2008-12-17 2015-11-10 Donaldson Company, Inc. Flow device for an exhaust system
US9410464B2 (en) 2013-08-06 2016-08-09 Tenneco Automotive Operating Company Inc. Perforated mixing pipe with swirler
US9435240B2 (en) 2013-08-06 2016-09-06 Tenneco Automotive Operating Company Inc. Perforated mixing pipe with swirler
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
US9670811B2 (en) 2010-06-22 2017-06-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9707525B2 (en) 2013-02-15 2017-07-18 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9810126B2 (en) 2010-01-12 2017-11-07 Donaldson Company, Inc. Flow device for exhaust treatment system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1847506A (en) * 1927-01-28 1932-03-01 Guy P Long Apparatus for treating internal combustion engine exhausts
US2828609A (en) * 1950-04-03 1958-04-01 Bristol Aero Engines Ltd Combustion chambers including suddenly enlarged chamber portions
US3042499A (en) * 1958-09-29 1962-07-03 John E Morris Burner-muffler
US3311456A (en) * 1963-03-21 1967-03-28 Universal Oil Prod Co Apparatus for incinerating a waste gas stream
US3360927A (en) * 1964-02-04 1968-01-02 Holley Carburetor Co Afterburner system for an automotive vehicle
US3484189A (en) * 1966-07-14 1969-12-16 Universal Oil Prod Co Method and means for thermal incineration of a contaminated air stream
US3577728A (en) * 1969-03-19 1971-05-04 Joe W Von Brimer Exhaust gas processing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1847506A (en) * 1927-01-28 1932-03-01 Guy P Long Apparatus for treating internal combustion engine exhausts
US2828609A (en) * 1950-04-03 1958-04-01 Bristol Aero Engines Ltd Combustion chambers including suddenly enlarged chamber portions
US3042499A (en) * 1958-09-29 1962-07-03 John E Morris Burner-muffler
US3311456A (en) * 1963-03-21 1967-03-28 Universal Oil Prod Co Apparatus for incinerating a waste gas stream
US3360927A (en) * 1964-02-04 1968-01-02 Holley Carburetor Co Afterburner system for an automotive vehicle
US3484189A (en) * 1966-07-14 1969-12-16 Universal Oil Prod Co Method and means for thermal incineration of a contaminated air stream
US3577728A (en) * 1969-03-19 1971-05-04 Joe W Von Brimer Exhaust gas processing system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988421A (en) * 1972-05-10 1976-10-26 Tecnochim S.R.L. Gas cleaning process and equipment
US4055401A (en) * 1975-01-14 1977-10-25 The Ralph M. Parsons Company Reducing gas generator
EP0250829A1 (de) * 1986-06-30 1988-01-07 Robert Bosch Gmbh Vorrichtung zum Verbrennen von Feststoffteilchen im Abgas von Brennkraftmaschinen
US5379592A (en) * 1991-10-23 1995-01-10 Waschkuttis; Gerhard Catalytic converter with ignition burner
DE4218629A1 (de) * 1992-06-05 1993-12-16 Eberspaecher J Brennkammer, insbesondere für die Partikelfilterregenerierung in einer Kraftfahrzeug-Abgasanlage
US9587543B2 (en) 2007-07-25 2017-03-07 Tenneco Gmbh Apparatus for the aftertreatment of the exhaust gases of diesel engines
US20100263359A1 (en) * 2007-07-25 2010-10-21 Heinrich Gillet Gmbh Apparatus for the Aftertreatment of the Exhaust Gases of Diesel Engines
US8899022B2 (en) * 2007-07-25 2014-12-02 Heinrich Gillet Gmbh Apparatus for the aftertreatment of the exhaust gases of diesel engines
US9925502B2 (en) 2008-12-17 2018-03-27 Donaldson Company, Inc. Flow device for an exhaust system
US9180407B2 (en) 2008-12-17 2015-11-10 Donaldson Company, Inc. Flow device for an exhaust system
US20120204546A1 (en) * 2009-10-06 2012-08-16 Sk Innovation Co., Ltd. Burner and aftertreating device of exhaust gas
US9810126B2 (en) 2010-01-12 2017-11-07 Donaldson Company, Inc. Flow device for exhaust treatment system
US10294841B2 (en) 2010-06-22 2019-05-21 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9670811B2 (en) 2010-06-22 2017-06-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10968800B2 (en) 2010-06-22 2021-04-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US11608764B2 (en) 2010-06-22 2023-03-21 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9458750B2 (en) 2012-04-19 2016-10-04 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US8938954B2 (en) 2012-04-19 2015-01-27 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US9707525B2 (en) 2013-02-15 2017-07-18 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10245564B2 (en) 2013-02-15 2019-04-02 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10603642B2 (en) 2013-02-15 2020-03-31 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US11110406B2 (en) 2013-02-15 2021-09-07 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9410464B2 (en) 2013-08-06 2016-08-09 Tenneco Automotive Operating Company Inc. Perforated mixing pipe with swirler
US9435240B2 (en) 2013-08-06 2016-09-06 Tenneco Automotive Operating Company Inc. Perforated mixing pipe with swirler
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system

Also Published As

Publication number Publication date
JPS5214373B1 (enrdf_load_stackoverflow) 1977-04-21

Similar Documents

Publication Publication Date Title
US3797240A (en) Exhaust emission control device
US4789331A (en) Liquid fuel burner
KR930003921B1 (ko) 그을음 필터의 정화 처리방법 및 장치
JP2520062B2 (ja) 蒸発式バ―ナ
US3775064A (en) Apparatus for detoxifying exhaust emissions of an internal-combustion engine
US4787349A (en) Ignition device for air-compressing internal combustion engine
US4684341A (en) Fuel vaporization apparatus for combustor
GB1469287A (en) Method and device for reforming the quality of fuel oil in an internal combustion engine
JP2754850B2 (ja) 液体燃料作動式加熱装置
US3804597A (en) Exhaust emission control device for an internal combustion engine
US3666422A (en) Pollution control system
GB2260279A (en) Catalytic converter
US3813879A (en) After-burner for an internal combustion engine
US4120273A (en) Starting aid for internal combustion engines
US3744250A (en) After-burner for an internal combustion engine
JP2520078B2 (ja) 蒸発式バ―ナ
US3724220A (en) Exhaust gas purifying device for internal combustion engines
JPH0524430A (ja) 自動車用の燃焼式ヒータ
US3595015A (en) Exhaust gas treatment means
US3867914A (en) Device for accelerating fuel vaporization in an internal combustion engine
US3059422A (en) Carbon monoxide eliminator with automatic gas burner and volatilizer
JPH0612333Y2 (ja) 車両用熱焼式ヒータの燃焼器
US3446011A (en) Apparatus for cleaning the exhaust gas of an engine
US3921397A (en) Silencer against toxic gases
JPH0473503A (ja) 蒸発式バーナ