US3789253A - Crucible for vaporizing chemically active elements method of manufacturing the same and ion source including said crucible - Google Patents
Crucible for vaporizing chemically active elements method of manufacturing the same and ion source including said crucible Download PDFInfo
- Publication number
- US3789253A US3789253A US00265303A US3789253DA US3789253A US 3789253 A US3789253 A US 3789253A US 00265303 A US00265303 A US 00265303A US 3789253D A US3789253D A US 3789253DA US 3789253 A US3789253 A US 3789253A
- Authority
- US
- United States
- Prior art keywords
- crucible
- ionization chamber
- chemically active
- ion source
- lateral wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/08—Ion sources; Ion guns using arc discharge
- H01J27/10—Duoplasmatrons ; Duopigatrons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
- Y10T29/49982—Coating
Definitions
- the invention relates to ion sources having two ionization chambers and more particularly to chemical and heat resistant crucibles foruse with said sources.
- the crucible in accordance with the invention is a hollow box of pyrolytic tungsten having two opposite openings in its lateral wall.
- the crucible is manufactured from a pyrolytic tungsten deposite made on a copper mandrel which is dissolved in an etching bath.
- the second ionization chamber is a metal enclosure which is integral with the first ionization chamber and which contains a reservoir or crucible holding the elements which are to be ionised.
- crucibles are generally made of graphite, quartz or molybdenum. However, in certain cases, these materials are unsuitable and this is particularly so if it is necessary to raise the elements which are to be vaporised, to high temperatures.
- One known solution consists in using crucibles of refractory materials, but the majority of these, in the presence of chemically active elements such as boron, form an eutectic system whose melting point is very much lower than that of the material being used.
- the invention overcomes these drawbacks and its object is a crucible for vaporization of a chemically active elements comprising a hollow box of pyrolytic tungsten said box having a lateral wall and bottom and top walls said lateral wall having two openings aligned along an axis crossing said lateral wall said chemically active elements beingintroduced within said box through one of said openings.
- Another object of this invention is an ion source including a crucible as aforesaid, said source comprising a first ionization chamber containing a gas G a cathode located in said first ionization chamber for emitting electrons, said electrons generating within said first chamber a primary plasma due to the collisions of said electrons with particles of said gas G a second ionization chamber containing said crucible and an extraction system for extracting ions obtained in said second ionization chamber through the interaction of said primary plasma with vaporized-particles of said elements, said vaporized particles being produced with heating means associated with said crucible the axis of said openings being aligned with the mean path of the ion beam emerging from said first ionization chamber.
- FIG. 1 illustrates in section a crucible in accordance with the invention, the crucible being provided with a support.
- FIG. 2 illustrates a crucible attached to a support in a manner differing from that shown in FIG. 1.
- FIGS. 3, 4 and 5 illustrate various stages in the manufacturing of a crucible.
- FIG. 6 illustrates, in section, an ion source comprising a crucible associated with heating means.
- FIG. 1 shows a crucible C formed by a cylindrical hollow box having a lateral wall I and top and bottom walls 2 and 3 made of pyrolytic tungsten, the lateral wall 1 of the box being provided with two openings 4 and 5 arranged opposite one another and having a common axis 6.
- the bottom wall 3 of the crucible C is brazed to a support 7 of sintered tungsten, itself integral with a tantalum tube 9, the brazing being effected through the medium of a refractory metal 8 such for example as niobium. It is possible to replace the support 7 of sintered tungsten by a brazed molybdenum cup 10 as FIG. 2 shows.
- This crucible C can be carried out in the following four stages a. Machining a cylindrical hollow copper mandrel M having external dimensions corresponding to the internal dimensions of the box forming the crucible C, the mandrel M being provided with a protruding lateral support member 11 which is a tubular member in the chosen example, as shown in FIG. 3.
- Hydrogen is then introduced into the quartz tube and the mandrel heated to around 6009C.
- tungsten hexafluoride WF is for example introduced into the quartz tube, triggering the chemical reaction Fluorhydric acid formed as a consequence, is then condensed out. It is possible to use tungsten chlorides or tungsten oxychlorides as well. It is equally possible to utilise the pyrolytic reaction of an organo-metallic compound. The reaction is halted when the desired thickness of tungsten deposit 12 has been produced on the mandrel M.
- FIG. 6 an ion source of the Triplasmatronf type has been shown whose second ionization chamber 14 is equipped with a crucible C.
- This crucible C is fixed to the tantalum tube 9.
- the openings 4 and 5 in the crucible are located along the mean path of the particle beam issuing from the first ionization chamber 20, said beam being obtained, in operation, by ionizationof the gas G contained in the first chamber, through the-collisions between the electrons emitted by the cathode H and the gas particles G
- the device for heating the crucible C comprises a tungsten filament l5 coiled several times.
- the two ends 16 and 17 of the filament 15 are connected to a direct voltage source which has not been shown in the figure. Thiskind of filament makes it'possible to raise the crucible C to a temperature greater than 2,000 C, by electron bombardment.
- the beam current of 150 A was obtained, essentially composed of B ions (94 percent), the l-le ions making up around 5.5 percent.
- An ion source comprising a first ionization chamber containing a gas G a cathode located in said first ionization chamber for emitting electrons, said electrons generating within said first ionization chamber a primary plasma due to the collisions of said electrons with particles of said gas G a-second ionization chamber; a crucible within said second ionization chamber for vaporization of chemically active elements, said crucible comprising a hollow box of pyrolitic tungsten, said box having a lateral wall and bottom and top walls, said lateral wall having two openings aligned along an axis crossing said lateral wall, said chemically active elements being introduced within said box through'one of said openings and an extraction system for extracting ions obtained in said second ionization chamber through the interaction of said primary plasma with vaporized particle of said elements, said vaporized particles being produced with heating means associated with said crucible the axis of said openings being aligned with the mean path of the ion beam emerging from said
- An ion source comprising a first ionization chamber containing a gas G a cathode located in said first ionization chamber for emitting electrons, said electrons generating within said first chamber a primary plasma due to the collisions of said electrons with particles of said gas G a second ionization chamber; a crucible within said second ionization chamber for vaporization of chemically active elements, said crucible comprising a cylindrical hollow box of pyrolitic tungsten having a revolution axis said box having a lateral wall and bottom and top walls, said lateral wall having two openings aligned along an axis crossing said lateral wall, said chemically active elements being introduced within said cylindrical hollow box through one of said openings and an extraction system for extracting ions obtained in said second ionization chamber through the interaction of said primary plasma with vaporized particles of said elements, said vaporized particles being produced with heating means associated with said cylindrical crucible said axis of said openings formed in the lateral wall of said cylindrical crucible being
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physical Vapour Deposition (AREA)
- Electron Sources, Ion Sources (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7124682A FR2145012A5 (fr) | 1971-07-06 | 1971-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3789253A true US3789253A (en) | 1974-01-29 |
Family
ID=9079898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00265303A Expired - Lifetime US3789253A (en) | 1971-07-06 | 1972-06-22 | Crucible for vaporizing chemically active elements method of manufacturing the same and ion source including said crucible |
Country Status (5)
Country | Link |
---|---|
US (1) | US3789253A (fr) |
DE (1) | DE2233275A1 (fr) |
FR (1) | FR2145012A5 (fr) |
GB (1) | GB1369749A (fr) |
NL (1) | NL7209307A (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4719355A (en) * | 1986-04-10 | 1988-01-12 | Texas Instruments Incorporated | Ion source for an ion implanter |
EP0291341A1 (fr) * | 1987-05-15 | 1988-11-17 | Varian Associates, Inc. | Système de vaporisation pour source d'ions |
US6195980B1 (en) * | 1998-08-06 | 2001-03-06 | Daimlerchrysler Aerospace Ag | Electrostatic propulsion engine with neutralizing ion source |
US6593580B2 (en) * | 2001-04-24 | 2003-07-15 | Nissin Electric Co., Ltd. | Ion source vaporizer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2550681B1 (fr) * | 1983-08-12 | 1985-12-06 | Centre Nat Rech Scient | Source d'ions a au moins deux chambres d'ionisation, en particulier pour la formation de faisceaux d'ions chimiquement reactifs |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3631283A (en) * | 1968-04-09 | 1971-12-28 | Thomson Csf | Device for producing high intensity ion beams |
-
1971
- 1971-07-06 FR FR7124682A patent/FR2145012A5/fr not_active Expired
-
1972
- 1972-06-22 US US00265303A patent/US3789253A/en not_active Expired - Lifetime
- 1972-07-03 NL NL7209307A patent/NL7209307A/xx unknown
- 1972-07-05 GB GB3155072A patent/GB1369749A/en not_active Expired
- 1972-07-06 DE DE2233275A patent/DE2233275A1/de active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3631283A (en) * | 1968-04-09 | 1971-12-28 | Thomson Csf | Device for producing high intensity ion beams |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4719355A (en) * | 1986-04-10 | 1988-01-12 | Texas Instruments Incorporated | Ion source for an ion implanter |
EP0291341A1 (fr) * | 1987-05-15 | 1988-11-17 | Varian Associates, Inc. | Système de vaporisation pour source d'ions |
US6195980B1 (en) * | 1998-08-06 | 2001-03-06 | Daimlerchrysler Aerospace Ag | Electrostatic propulsion engine with neutralizing ion source |
US6593580B2 (en) * | 2001-04-24 | 2003-07-15 | Nissin Electric Co., Ltd. | Ion source vaporizer |
Also Published As
Publication number | Publication date |
---|---|
DE2233275A1 (de) | 1973-01-18 |
NL7209307A (fr) | 1973-01-09 |
GB1369749A (en) | 1974-10-09 |
FR2145012A5 (fr) | 1973-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6103298A (en) | Method for making a low work function electrode | |
Kirchner | Progress in ion source development for on-line separators | |
US5874039A (en) | Low work function electrode | |
KR102531500B1 (ko) | 간접 가열식 캐소드 이온 소스 및 상이한 도펀트들을 이온화하는 방법 | |
US2754259A (en) | Process and apparatus for growing single crystals | |
JP5345953B2 (ja) | 空気中で安定なアルカリまたはアルカリ土類金属供給装置 | |
US3955118A (en) | Cold-cathode ion source | |
US2164595A (en) | Method of coating electrodes | |
US3789253A (en) | Crucible for vaporizing chemically active elements method of manufacturing the same and ion source including said crucible | |
US5861630A (en) | Method for generating a boron vapor | |
US5059292A (en) | Single-chamber apparatus for in-situ generation of dangerous polyatomic gases and radicals from a source material contained within a porous foamed structure | |
US3573098A (en) | Ion beam deposition unit | |
US3240970A (en) | Method and apparatus for replenishing hydrogen in a neutron generator | |
Gow et al. | Development of a compact evacuated pulsed neutron source | |
US3284657A (en) | Grain-oriented thermionic emitter for electron discharge devices | |
US7313226B1 (en) | Sintered wire annode | |
US3265910A (en) | Thermionic converters | |
US4952294A (en) | Apparatus and method for in-situ generation of dangerous polyatomic gases, including polyatomic radicals | |
US3521103A (en) | Fluid cooled electrode with internal baffles for a high pressure discharge lamp | |
EP0234702A2 (fr) | Laser ionique à gaz à double décharge | |
US3327931A (en) | Ion-getter vacuum pump and gauge | |
Husmann | A comparison of the contact ionization of cesium on tungsten with that of molybdenum, tantalum, and rhenium surfaces | |
US3290110A (en) | Processing metal vapor tubes | |
US1273628A (en) | Film conductor and the method of making the same. | |
JPS59160941A (ja) | イオン源 |