US3782101A - Timepieces with torsion resonators - Google Patents
Timepieces with torsion resonators Download PDFInfo
- Publication number
- US3782101A US3782101A US00182085A US3782101DA US3782101A US 3782101 A US3782101 A US 3782101A US 00182085 A US00182085 A US 00182085A US 3782101D A US3782101D A US 3782101DA US 3782101 A US3782101 A US 3782101A
- Authority
- US
- United States
- Prior art keywords
- torsion bar
- bar
- resonator
- torsion
- support member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010355 oscillation Effects 0.000 abstract description 6
- 238000006073 displacement reaction Methods 0.000 abstract description 2
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/10—Oscillators with torsion strips or springs acting in the same manner as torsion strips, e.g. weight oscillating in a horizontal plane
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/08—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
- G04C3/10—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
- G04C3/101—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
- G04C3/102—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the mechanical oscillator or of the coil
Definitions
- torsion resonator comprises an elongated torsion [30] Foreign Application Priority Data bar made in one flat piece with anchor-shaped ends Sept. 29, 1970 Switzerland 14403 70 Supporting masses and an enlarged median Zone at one side of which it is fixed by an elastically deform- 52 vs. c1.
- the present invention relates'to timepieces with torsion resonators which comprise two masses fixed to the ends of a torsion bar parallel to the plane of a supporting frame, and means for fixing the resonator to the frame.
- the fixation means for known torsion resonators is formed by an unilateral or bilateral link attached to the central part of the resonator.
- a bilateral link i.e., a link on both sides of the resonator, has the disadvantage of taking up space in a location which should normally be reserved for the gear train and, moreover, produces a hyperstatic coupling sensible to deformation of the bottom plate and unfavourable to frequency stability.
- An unilateral link i.e., a link attached to only one side of the resonator, eliminates these drawbacks, but it is observed that if the torsion bar is directly connected to a fixation link formed by a transversal flexion bar, a coupling is produced due to deformation of the torsion bar in the vicinity of the link, which deformation produces a torsional couple about an axis perpendicular to the torsional axis of the torsion bar.
- a timepiece comprising in combination a support member defining a supporting plane; a torsion resonator comprising an elongate rectilinear torsion bar having a longitudinal torsional axis, masses fixed at two ends of said bar, and a median zone of said bar having a moment of inertia about said torsional axis substantially greater than the moment of inertia of the rest of said bar about said torsional axis; and fixation means for fixing the resonator to the frame with the resonator substantially parallel to said plane, said fixation means supporting said bar at one side only of said median zone.
- the reaction of the fixation means is diminished by a degree such that its effect on timekeeping can be reduced to less than one second per day.
- the quality factor of the resonator is improved, and is independent of the manner in which the watch, for example, is worn.
- FIG. 1 is a schematic plan view of this timepiece
- FlGsZ is an enlarged scale cross-section along line 2-2 of FIG. 1.
- the timepiece shown in FIG. 1 comprises a bottom plate 1 on which a torsion resonator is fixed parallel to the plane of the plate by a T-shaped fixation foot 2, the branch 3 of which forms an elastic liason element connecting the transversal bar of the T to an enlarged median part 4 of a torsion bar 5.
- Each end of the torsion bar 5 terminates with two arms 6, 6' substantially in the form of an anchor.
- the arms located on one side of the torsional axis of the bar 5 of the resonator each carry a magnetic pot 7, 7' forming part of an electrodynamic transducer and the arms located on the other side of this torsional axis each carry counter-weights 8, 8'.
- Each mass 6, 7, 8 and 6', 7', 8 is arranged so that its center of gravity and one of its principal axes of inertia are located along the torsional axis of the torsion bar 5.
- the torsion bar 5, the T-shaped fixation foot 2 and the anchor-shaped ends of the torsion bar have a uniform thickness and are made in a single piece by stamping.
- the magnetic pots 7, 7' and the counter-weights 8, 8' can be rigidly fixed to the resonator by pinning, screwing, welding or sticking and in this example, the magnetic pots are fixed to the resonator by screws 9, 9'.
- the anchor-shaped ends of the torsion bar 5 ensure that the magnetic pots 7, 7 and the counter-weights 8, 8' are located close to a diameter of the plate 1 perpendicular to the torsional axis of the bar 5. This disposition enables the use of a single maintenance coil 10 common to the two magnetic pots 7, 7' and the location of a supply battery 11 between the two counterweights 8, 8.
- Each magnetic pot 7, 7 comprises two permanent magnets 12, l3, 12, 13' respectively and a soft-iron piece 14, 14 forming a magnetic circuit.
- Two pieces l5, l6, 15, 16 in brass or heavy metal increase the mass of each pot.
- the coil 10 is held in place by a body 17 with a central cavity 18 which can house electrical components (not shown) of a maintenance circuit, such as transistors, resistors, and capacitors, in the form of separate or integrated elements, connected to the coil 10 and to the supply battery 11.
- the flux of the permanent magnets 12, 13, 12', 13' is concentrated in the vicinity of the coil 10 by means of the magnetic circuits formed by pieces 14 and 14.
- the residual magnetization of the magnets produces a field in the direction indicated by arrows F in the region between the polar faces.
- the magnets are acted upon by forces in the directions indicated by arrows F and F
- the frequency of the current feeding the coil 10 is chosen to coincide with the natural frequency of the resonator, which enables maintenance of the oscillations of the resonator, these oscillations involving a substantially vertical movement of the pots 7, 7 in opposite phase.
- the transformation of the oscillations of the resonator into a rotational movement is obtained by means of a pawl and ratchet device comprising a driving pawl 19 fixed to the counter-weight 8' and the free end of which engages with the teeth of a ratchet wheel 20.
- Thepoint of operation-of the driving pawl 19 carries a stone 22 located, seen in plan, approximately mid-way between the point of fixation of the torsion bar 5 and one of its free ends and over the torsional axis or neutral line of the torsion bar 5, but above the plane of the resonator so as to provide a sufficient amplitude of the stone 22.
- the stone 22 moves along an arc, the center of rotation of which is the torsional axis of the bar 5; only the component parallel to the plane of the plate 1 is used to drive the ratchet wheel 20, the component perpendicular to the plate 1 causing friction between the stone 22 of the driving pawl 19 and the teeth of the ratchet wheel 20. However, this friction can be considered as negligible.
- a retaining pawl 21 is fixed on a small plate 23 pivotally mounted about the axis of the ratchet wheel 20 and angularly adjustable by means of an eccentric pin 24.
- the phase between the pawls 19 and 21 can be modified without changing the pressure of the retaining pawl 21 on the ratchet wheel 20.
- the ratchet wheel 20 meshes with a schematically shown reducing gear train including a wheel 25 located at the center of the plate 1.
- the wheel 25 may carry a seconds hand (not shown) on a central shaft.
- the torsion bar 5 is located parallel to and fairly close to a diameter across the substantially circular plate 1, the fixation foot 2 being located on the side of the torsion bar furthest away from this diameter.
- Two pins 26, 26' respectively protrude from the ends of the torsion bar 5 coaxially to its torsional axis. These pins 26, 26' freely pass through two circular apertures 27, 27 concentric to the torsional axis provided in two small plates 28, 28 fixed on the edge of the plate 1 by means of feet and a screw (not shown).
- the radial play between the pins 26, 26' and the edge of the respective apertures 27, 27 is about 0.05mm, which enables limitation of undesired movements of the resonator caused by vibrations or by accelerations to which the timepiece is subjected. ln view of the fact that the limitation means (pins and apertures) are centred on the torsional axis of the torsion bar 5, friction between the edges of the openings and the pins is reduced to a minimum.
- the point to point angular amplitude of the pins 26, 26 is about 1. Parts of the circumferences of the limitation pins can thus only have a very small movement and, in the case of mechanical contact between the pins and the small plates, friction is very low. Because of this, absorbtion of the operating amplitude of the resonator is minimal.
- the described limitation means come into operation for any acceleration or vibration of the resonator perpendicular to the torsional axis.
- the limitation means can be mounted anywhere on the torsion bar. However, mounting at the end of the bar, as described, facilitates observation of the radial play between the pins 26, 26 and the apertures 27, 27' in the small plates 28, 28'. Of course, the pins could be integral with the small plates while the openings could be provided in the ends of the torsion bar 5.
- the resonator When the resonator oscillates, its two anchor-shaped ends 6, 6' oscillate about the torsional axis of the torsion bar 5 in opposite phase. This oscillation of the resonator is maintained by the transducer formed of the magnetic pots 7, 7, the coil 10 and the maintenance circuit in the central cavity 18 of the body 17, as previously described.
- the enlarged median part 4 of the torsion bar 5 enables diminution of the coupling between the resonator and the plate 1.
- the polar moment of inertia of the part 4 is about fifty times greater than the moment of inertia of the elastic part of the torsion bar 5.
- the median part 4 undergoes virtually no deformation when the resonator oscillates and in this manner the T-shaped fixation foot 2 is not deformed and does not transmit energy to the plate 1.
- the reaction of the support is thus strongly diminished which considerably increases the precision of the timepiece.
- the elastic liason provided by the bar 3 of the fixation foot 2 and the thickened median part 4 of the torsion bar 5 enables reduction of the disequilibrium effect of the resonator.
- the purpose of this elastic liason is to absorb the effect of any slight asymmetry between the two parts of the resonator.
- a timepiece comprising in combination a support member defining a supporting plane; a torsion resonator comprising an elongate rectilinear torsion bar having a longitudinal torsional axis, masses fixed at two ends of said bar, and a median zone of said bar having a moment of inertia about said torsional axis substantially greater than the moment of inertia of the rest of said bar about said torsional axis; and fixation means for fixing the resonator to the support member with the resonator substantially parallel to said plane, said fixation means supporting said bar at one side only of said median zone.
- said fixation means comprises a first part substantially parallel to said torsion bar, means for fixing said first part to said support member, and an elastically deformable second part joining said median zone to said first part.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electric Clocks (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1440370A CH524167A (fr) | 1970-09-29 | 1970-09-29 | Pièce d'horlogerie électrique à résonateur de torsion |
Publications (1)
Publication Number | Publication Date |
---|---|
US3782101A true US3782101A (en) | 1974-01-01 |
Family
ID=4400550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00182085A Expired - Lifetime US3782101A (en) | 1970-09-29 | 1971-09-20 | Timepieces with torsion resonators |
Country Status (7)
Country | Link |
---|---|
US (1) | US3782101A (enrdf_load_stackoverflow) |
BE (1) | BE772339A (enrdf_load_stackoverflow) |
CA (1) | CA940719A (enrdf_load_stackoverflow) |
CH (2) | CH524167A (enrdf_load_stackoverflow) |
DE (1) | DE2146929C3 (enrdf_load_stackoverflow) |
FR (1) | FR2108050B1 (enrdf_load_stackoverflow) |
NL (1) | NL7113188A (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4645356A (en) * | 1974-04-09 | 1987-02-24 | Seiko Instruments & Electronics Ltd. | Wristwatch |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US25328A (en) * | 1859-09-06 | Foam-collector for steam-boilers | ||
US3316708A (en) * | 1964-07-31 | 1967-05-02 | Ct Electronique Horloger | Mechanical resonator for normal frequency oscillators in time measuring device |
GB1108028A (en) * | 1966-11-11 | 1968-03-27 | Centre Electron Horloger | Electro-mechanical watch |
US3595007A (en) * | 1969-08-29 | 1971-07-27 | Hb Eng Corp | Resonator-driven timepiece |
US3599420A (en) * | 1967-06-27 | 1971-08-17 | Centre Electron Horloger | Electromechanical timepiece |
US3613350A (en) * | 1969-03-14 | 1971-10-19 | Suwa Seikosha Kk | Electric timepiece |
US3616636A (en) * | 1969-03-17 | 1971-11-02 | Ebauches Sa | Electric timepiece |
US3628324A (en) * | 1969-03-17 | 1971-12-21 | Ebauches Sa | Electric timepiece |
US3642344A (en) * | 1970-11-27 | 1972-02-15 | Honeywell Inc | Optical scanner having high-frequency torsional oscillator |
-
1970
- 1970-09-29 CH CH1440370A patent/CH524167A/fr not_active IP Right Cessation
- 1970-09-29 CH CH1440370D patent/CH1440370A4/xx unknown
-
1971
- 1971-09-08 FR FR7132428A patent/FR2108050B1/fr not_active Expired
- 1971-09-08 BE BE772339A patent/BE772339A/xx unknown
- 1971-09-10 CA CA122,543A patent/CA940719A/en not_active Expired
- 1971-09-20 DE DE2146929A patent/DE2146929C3/de not_active Expired
- 1971-09-20 US US00182085A patent/US3782101A/en not_active Expired - Lifetime
- 1971-09-24 NL NL7113188A patent/NL7113188A/xx unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US25328A (en) * | 1859-09-06 | Foam-collector for steam-boilers | ||
US3316708A (en) * | 1964-07-31 | 1967-05-02 | Ct Electronique Horloger | Mechanical resonator for normal frequency oscillators in time measuring device |
GB1108028A (en) * | 1966-11-11 | 1968-03-27 | Centre Electron Horloger | Electro-mechanical watch |
US3599420A (en) * | 1967-06-27 | 1971-08-17 | Centre Electron Horloger | Electromechanical timepiece |
US3613350A (en) * | 1969-03-14 | 1971-10-19 | Suwa Seikosha Kk | Electric timepiece |
US3616636A (en) * | 1969-03-17 | 1971-11-02 | Ebauches Sa | Electric timepiece |
US3628324A (en) * | 1969-03-17 | 1971-12-21 | Ebauches Sa | Electric timepiece |
US3595007A (en) * | 1969-08-29 | 1971-07-27 | Hb Eng Corp | Resonator-driven timepiece |
US3642344A (en) * | 1970-11-27 | 1972-02-15 | Honeywell Inc | Optical scanner having high-frequency torsional oscillator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4645356A (en) * | 1974-04-09 | 1987-02-24 | Seiko Instruments & Electronics Ltd. | Wristwatch |
Also Published As
Publication number | Publication date |
---|---|
DE2146929C3 (de) | 1973-10-25 |
DE2146929B2 (de) | 1973-03-29 |
NL7113188A (enrdf_load_stackoverflow) | 1972-04-04 |
DE2146929A1 (de) | 1972-03-30 |
CH524167A (fr) | 1972-02-29 |
CH1440370A4 (enrdf_load_stackoverflow) | 1972-02-29 |
BE772339A (fr) | 1972-01-17 |
FR2108050B1 (enrdf_load_stackoverflow) | 1974-05-10 |
CA940719A (en) | 1974-01-29 |
FR2108050A1 (enrdf_load_stackoverflow) | 1972-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8794823B2 (en) | Magnetic resonator for a mechanical timepiece | |
JP5171821B2 (ja) | 電気機械式逃がし止め装置とそのような装置を利用する時計部品 | |
US20180181072A2 (en) | Regulating system for a mechanical watch | |
US3540206A (en) | Motion transforming device for electronic timepieces and the like | |
US3676993A (en) | Electronic watch | |
US2690646A (en) | Escapement mechanism | |
US3316708A (en) | Mechanical resonator for normal frequency oscillators in time measuring device | |
US3782101A (en) | Timepieces with torsion resonators | |
US3360704A (en) | Spring-type electromechanical oscillator | |
US3469389A (en) | Electromechanical vibrator assembly for a timepiece | |
US3201932A (en) | Vibratory frequency standard for a timekeeping device | |
US3641761A (en) | Watch transducer | |
US3604202A (en) | Electric timepiece | |
US3447311A (en) | Electronic timepiece | |
US3683613A (en) | Miniaturized movement for an electronic timepiece | |
US3808792A (en) | Drive mechanism of an electric timepiece | |
US3286453A (en) | Magnetostrictive horological drive systems | |
US3805511A (en) | Electric timepiece assembly | |
US3343365A (en) | Oscillator for time-pieces | |
US3555810A (en) | Horological indexing device | |
US3599420A (en) | Electromechanical timepiece | |
US3408808A (en) | Watch vibrator | |
US3766729A (en) | Quartz controlled chronometer | |
US3838299A (en) | System for generating periodical mechanical vibrations | |
US3449904A (en) | Electromechanical watch |