US3773509A - Mordanting process for color printing materials - Google Patents

Mordanting process for color printing materials Download PDF

Info

Publication number
US3773509A
US3773509A US00122520A US3773509DA US3773509A US 3773509 A US3773509 A US 3773509A US 00122520 A US00122520 A US 00122520A US 3773509D A US3773509D A US 3773509DA US 3773509 A US3773509 A US 3773509A
Authority
US
United States
Prior art keywords
poly
acid
dye
complexing
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00122520A
Other languages
English (en)
Inventor
Y Ohyama
S Miyazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Application granted granted Critical
Publication of US3773509A publication Critical patent/US3773509A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/42Structural details
    • G03C8/52Bases or auxiliary layers; Substances therefor
    • G03C8/56Mordant layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/825Photosensitive materials characterised by the base or auxiliary layers characterised by antireflection means or visible-light filtering means, e.g. antihalation
    • G03C1/835Macromolecular substances therefor, e.g. mordants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/28Silver dye bleach processes; Materials therefor; Preparing or processing such materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/142Dye mordant

Definitions

  • a mordanting process for color printing materials which comprises using a dispersion of fine coacervate particles prepared by reacting a polymer having a cationic nitrogen-containing group which acts as a mordant for a dye having an anionic group and diffusible in an aqueous medium and a phthalic acid derivative of gelatin, polyvinyl alcohol or starch in an aqueous binder.
  • polymers having the nitrogencontaining group are poly-Z-vinyl pyridine, methyl p-toluenesulfonate of poly-4-vinyl pyridine, poly-4- vinylbenzyl-trimethyl ammonium chloride, poly-4- vinylbenzyl-triethanol ammonium chloride, benzyl chloride of polymethacrylic acid dimethylamino ethanol ester, acetate of partially amino guanidized polyvinyl methyl ketone, and aminoguanidized dial- 7 Claims, No Drawings MORDANTING PROCESS FOR COLOR PRINTING MATERIALS
  • the present invention relates generally to an improved mordanting process for color printing materials and more particularly it relates to an improved mordanting process for forming on a support such as a paper or a film a fast and sharp dye image having clear colors and excellent resolving power.
  • the process of this invention is generally applicable to any photographic processings for providing dye images. That is, the process of this invention can be used in case of transferring a dye or dyes from a matrix having absorbed therein an acid dye or acid dyes to a dyetransfer paper or a dye receiving paper by a well-known color printing process such as an imbibition process or a dye transfer process or can be also used in case of fixing diffusible dye developer molecules in the transfer layer of a final image-receiving support when a color print is formed by a Polacolor system of International Polaroid Corp. disclosed in, e.g., Japanese Pat. Publication No. 182/59 or 444/63.
  • the process of this invention can be utilized in such color photographic process as disclosed in, e.g., British Pat. No. 840,731 or Japanese Pat. Publication No. 15,745/69 in which diffusible dyes formed by a color development are transferred by diffusion in a transfer layer or also in case of introducing an acid bleaching azo dye in a light sensitive emulsion layer by a photographic process well-known as a silver dye bleaching method.
  • the invention can be utilized in intermediate layers, a filter layer, and an antihalation layer for a multiple layer type color photographic lightsensitive element.
  • the principle of the present invention is common to these any cases as mentioned above. That is, the principle of the present invention is a technique of fixing in a desired photographic emulsion layer a dye or a coloring matter having a so-called acid group capable of endowing the molecule with water solubility or with a diffusing property in an aqueous medium, such as a hydroxyl group, a carboxyl group, or a sulfone group, the technique corresponding to mordanting usually used in the field of dyeing. ln the principle of this invention such property of the aforesaid anionic dye or coloring matter as forming a complex when comes into contact with a cationic nitrogen-containing base.
  • the cationic nitrogen-containing bases have usually been used as mordants for acid dyes in dyeing but such bases are used for the purpose only when they have considerably large molecular weight and a sufficient adsorption power to fibers. If the molecular weights of them are small, the complexes formed from them become, on the contrary, diffusible in an aqueous medium and hence they are used, in such case, as only a decoloring accelerator in discharging.
  • the cationic nitrogen-containing material as mentioned above is more apt to be aggregated and is difficult to be uniformly mixed when it is mixed with amphoteric polymer such as gelatin owing to the cationic property as well as mixed with polyvinyl alcohol owing to the coaction between the OH group and the nitrogen base.
  • the nitrogen-containing base polymers used in this invention may be known polymers or similar ones and are not limited to specific ones.
  • the typical examples of the polymers used in this invention are poly-2- vinyl pyridine shown by the following formula (I), methyl p-toluenesulfonate of poly-4-vinyl pyridine having the formula (II), poly-4-vinylbenzyl-trimethyl ammonium.chloride having the formula (III), poly-4-vinylbenzyl-triethanol ammonium.chloride having the formula (IV), benzyl chloride of polymethacrylic acid dimethylamino.ethanol ester having the formula (V), the acetate of partially amino-guanidized polyvinyl methyl ketone having the formula (Vl), and aminoguanidized aldehyde starch having the following formula (VII);
  • a phthalic acid derivative of gelatin, polyvinyl alcohol or a starch is caused to react with the cationic nitrogen-containing mordant mentioned above in an aqueous solution containing other watersoluble binder as a protective colloid to form fine coacervate particles having particle size of about 0.1- microns and the stable dispersion thus prepared is utilized.
  • a well-known phenomenon as coacervation is obtainecl by mixing gelatin particularly such gelatin as being prepared by an acid method with gum arabic in a diluted solution thereof and then acidifying the solution with hydrochloric acid or acetic acid and the mechanism for the coacervation is believed to occur by that gum arabic which is an anionic polymer containing a large proportion of carboxylic residual groups is reacted with gelatin which is amphoteric polymer showing cationic property at an acid state in the acidified solution to form a complex and since the water-soluble groups are protected by the complex and the proportion of the water-soluble groups is greatly reduced, undissolved particles are precipitated as oil drops and in this case in order that fine oil drop-like particles are formed without forming large precipitates or aggregates, it is important the balance of the hydrophilic property and the hydrophobic property (or exactly oleophilic property) of the both polymers is in a proper range.
  • one of the reactants is a nitrogen-containing cationic high molecular material and the other is a phthalic acid derivative of gelatin, polyvinyl alcohol, or a starch prepared by acetylating a part or the whole part of the NI-l group or the OH group of the polymer with phthalic acid to form an amide or an ester.
  • the phthalic acid group is introduced into the e-amino group or the lysine or oxylysine group thereof, while in the case of polyvinyl alcohol or a starch the phthalic acid group is introduced into the alcoholic OH group thereof as shown in the below-showing formulas.
  • the polymer has one free carboxyl group per one substituent and the polymer shows anionic property by a large proportion of the carboxyl groups, thus when the anionic polymer is brought into contact with the cationic polymer as mentioned above in an aqueous solution, they form a complex in a wide range of pH.
  • a water-soluble polymer such as gelatin, polyvinyl alcohol or a starch
  • the points that the polymer becomes anionic by the free carboxyl group per one substituent and also the polymer forms a complex when it is brought into contact with a cationic polymer may be same as the case of the phthalic acid derivative but they not always cause coacervation, that is, even if a phase separation may occur, only two separate layers are formed and oil drop-like coacervates having proper size are not generally formed.
  • the phthalic acid derivative of the water-soluble polymer shows specific action, that is, it is considered that by a large number of orthosubstituted benzol nuclei arranges in the molecular chain as shown in the following formulas,.the anionic polymer is endowed with a proper hydrophilic property, the balance of the hydrophilic property and the hydrophobic property of the complex formed is controlled to a proper hydrophobic side, and a phase separation is caused to provide a dispersion of fine oil droplike complex aggregations having a suitable size in an aqueous solution.
  • a stable dispersion as a dispersion formed by dispersing benzene in water with the aid of an anionic surface active agent is obtained.
  • n is an integer
  • the coacervation becomes considerably unstable as the results of losing the action of the hydrophilic groups of the both polymers by the formation of the complex, when the concentration of the system is high, the coacervation does not occur smoothly as in the case of employing gelatin and gum arabic and further in the case of coloring the coacervates thus formed, the coacervates are apt to be broken and aggregated.
  • the coacervate particles which are fine aggregates by the process as mentioned above are very fine particles that can be observed by only an optical microscope, having usually a grain size of about 0.1-10 microns, the dispersion is an almost transparent milky emulsion or a slightly dense emulsion, and when the dispersion is formed into a thin film and dried, the film becomes completely transparent since the refractive index of the protective colloid becomes same as that of the coacervate particles. Accordingly, when the layer of the fine coacervates is colored or dye-transferred by a diffusible dye, the layer looks by the naked eye as if the layer had been colored uniformly in a non-particle like state.
  • the phthalic acid derivative of gelatin may be prepared by reacting parts by weight of gelatin and 7 parts by weight of phthalic anhydride as disclosed in, e.g., US. Pat. No. 2,525,753 (1950).
  • the reactive amino groups have been almost substituted and even by the substitution degree of such extent, the purpose of this invention can be sufficiently obtained since gelatin itself has a hydrophobic (or oleophilic) property.
  • a highly substituted derivative having, on an average, one substituent per 2 vinyl alcohol units (substituted percentage of 50 percent prepared by reacting 100 parts by weight of polyvinyl alcohol and more than 300 parts by weight of phthalic anhydride is suitable.
  • Such a phthalic acid monoester of polyvinyl alcohol can be easilyprepared by reacting polyvinyl alcohol and phthalic anhydride in glacial acetic acid using anhydrous sodium acetate as the catalyst by an ordinary manner as in the case of producing a phthalic acid ester of cellulose.
  • the derivative having, on an average, one phthalic acid residual group per one glucose unit (substituted percentage of about 33 percent) prepared by reacting l00 parts by weight of a starch having a comparatively small molecular weight, such as water soluble starch or dextrin and about parts of phthalic anhydride at normal temperature in a solvent such as formamide, dimethyl sulfoxide, and the like is suitable.
  • starch itself is not completely dissolved in water and remains as a colloidal dispersion even if it is gelled and also starch is weak soluble in cold water, which makes the handling of it troublesome
  • many derivatives of starch in which a part of the OH groups has been modified to make them soluble in cold water are commercially available, for example, hydroxypropyl starch, hydroxy ethyl starch, carboxymethyl starch and the'like are commercially available and because the degree of the modification of such conventional starch derivatives is generally low
  • the phthalic acid monoester of starch used in this invention may be prepared by using such commercially available starch derivativeas the raw material.
  • the balance of the hydrophilic property and the hydrophobic property of such phthalic acid derivative is different from that of the derivative prepared by using starch itself as the raw material and also carboxymethyl starch has already been endowed with anionic property but by adjusting the extent of the introduction of phthalic acid group in accordance with these differences and also by suitably selecting the cationic polymer to be used together with the phthalic acid derivative, the conditions for forming suitable coacervation can be obtained.
  • the phthalic acid monoester of starch may be prepared by the process described in the specification of Japanese Pat. application No.
  • the optimum degree of substitution by phthalic acid is greatly influenced by the kind of the hydrophilic polymer to be used as the raw material as mentioned above is caused by that the coacervation greatly depends upon the delicate balance of the hydrophilic property and the hydrophobic property of the both polymers to be reacted each other as mentioned above also. Therefore, the optimum condition also relates to the balance of the hydrophilic property and the hydrophobic property of the cationic base molecule which is one component for the reactants of causing coacervation and is also varied by the conditions (temperature, pH, concentration, etc.), for the coacervation.
  • the above-mentioned optimum degree of substitution is a rough estimate and shall not be limited to them or shall be selected experimentally about each case.
  • a mixed derivatives of a dibasic acid and/or monobasic acid can be clearly used.
  • a mixed derivatives of phthalic acid and maleic acid or acetic acid is useful.
  • a mixed derivatives of maleic acid and phthalic acid has such merit that since the derivatives have generally the action of being hardened by causing cross linking by themselves by the presence of the double bond of maleic acid, the derivatives are hardened spontaneously without necessary of hardening the coacervate particles formed by using formalin or the like and hence the tendency of redispersing and aggregating of the coacervate particles is reduced, which increases further the stability of coacervates.
  • the polymer having a lower molecular weight is more profitable since the viscosity of the phthalic derivative thereof thus formed is not too high and also the use of incompletely saponificated polymer in which an acetyl group has been left, or theoretically speaking a copolymer of vinyl alcohol and vinyl acetate is more profitable in the point of solubility than the use of a completely saponified polymer.
  • the coacervation of this invention has a possibility of occuring in a wide range of pH different from the case of gelatin and gum arabic but the phthalic acid derivatives have different properties according to the raw materials for them. That is, the phthalic acid derivative of gelatin shows an acid property and tends to be precipitated by losing the water solubility of itself and further the phthalic acid monoester of polyvinyl alcohol is weak soluble in water at acid state and hence it is necessary, in this case, to conduct the coacervation in a neutral or weak alkaline state.
  • the phthalic acid ester of starch is difficult to be precipitated even at an acid state and has a good dispersibility
  • the derivative when the derivative is mixed with the cationic polymer rapidly without using a protective colloid, a good dispersion of the fine coacervates is easily obtained without forming the precipitates of large particles.
  • the phthalic acid derivative of gelatin or polyvinyl alcohol tends to be rapidly aggregated when it is brought into contact with the cationic polymer, the formation of the stable coacervates are generally difficult without use of a protective colloid but stable and fine coacervates are formed when a nonionic water-soluble polymer is employed as the protective colloid.
  • the coacervate particles are dispersed in a colloid as a binder. Therefore, although it is of course necessary to select properly a binder to be used as the protective colloid according to the purpose, the stability of it is concerned with the polymers composing the coacervate particles, the coacervate particles formed by utilizing the phthalic acid derivative of polyvinyl alcohol are gener ally more stable in polyvinyl alcohol than in gelatin, and such a combination shall be considered in this invention.
  • the coacervate particles are mixed with a suitable amounts of a binder and a hardening agent and the mixture is applied to a support to provide a dye'transfer layer or in the case of using them in a silver dye bleaching method or in a filter layer, a suitable acid dye is added to them, the mixture is added, with or without washing by water, to a photographic emulsion, and the mixture is applied as a photographic emulsion layer.
  • the anionic dye molecule diffusible in an aqueous medium comes into contact with the nitrogen-containing polymer molecule at the surface of the coacervate particles, where other complex is formed and deposited thereon and hence becomes undiffusible, whereby the dye is fastly fixed thereto.
  • the mordant in this invention is composed of the coacervate particles and hence the dyes are dyed in particles but because the coacervate particles are dispersed finely and uniformly in a grain size ofO. 1-10 microns, the color tone and the resolving power thereof are almost same as those of the case where dyes are, on an average, dyed in a molecular state. Further, since in such case the dye itself forms a micelle to prevent the dye from being aggregated, the color tone is profitably constant from the high-dense portion to the low dense portion.
  • the invention gives the following remarkable merits when the invention is applied to a transfer layer in a dye-transfer system that the mordant be dispersed in a binder as the form of separated particles. That is, in the case where the diffusible dye present or formed in a matrix or a light-sensitive emulsion layer transfers by diffusion into a binder layer of a transfer layer formed on the surface of a support, the surface of the binder layer having been contacted with the surface of the matrix or the light-sensitive emulsion layer at transferring, the dye diffuses into the inside of the layer by the aid of the density gradient but when the mordant is uniformly dispersed in the binder layer, the dye transfers quickly at the beginning owing to the strong adsorptive property but the diffusion speed of the dye in the inside of the layer is on the contrary reduced.
  • the dye tends to diffuse in the transfer layer through the binder layer (e.g., gelatin or polyvinyl alcohol layer) present amongs the coacervate particles, said binder layer having a weak adsorptive property to the dye, without passing through the coacervate particles having a strong adsorptive property to the dye and hence the dye diffuses deeply in the transfer layer, where the dye is fixed to the surface of the coacervate particle or the mordant in the inside of the transfer layer, that is, the transfer speed is faster.
  • the binder layer e.g., gelatin or polyvinyl alcohol layer
  • the coacervate-type mordant may be incorporated in a binder separately from the dye but after preliminary dyeing the coacervate particles with the dye in the dispersion state, the particles may be introduced in a photographic layer.
  • the latter system is particularly profitable for the coloring of a sensitive photographic emulsion layer or an adjacent photographic layer in the points that the coacervate dispersion thus dyed are readily purified by water washing, dialysis, or other manner and also harmful impurities or foreign matters in the dye are readily removed.
  • the dispersion when the coacervate particles are formed using gelatin as the protective colloid, the dispersion is coagulated by cooling, cut into needles or cubes, and then washed with water or the dispersion is precipitated in fine particles by adding aqueous magnesium sulfate solution and then after placing them in a net bag, they are washed with water.
  • polyvinyl alcohol is used as the protective colloid, the dispersion is placed in a cellophane bag and then washed with warm water by dialysis.
  • EXAMPLE 1 In 60 ml of water were dissolved 3 g of commercially available gelatin modified by phthalic acid (specific gelatin No. 2567 sold by LINER Co. of the U. K., which is believed to be one prepared by substituting 98 percent of the e-amino group in the gelatin molecule with phthalic acid) and 4 g of photographic gelatin and then the pH of the solution was adjusted to 6.0. To the solution was added a solution of 1.5 g of a benzylchloride salt of polymethacrylic acid dimethylamino-ethanol ester (Compound V shown above) as fine streams followed by stirring, whereby coacervates having a grain size of less than 1 micron were formed to provide a stable suspension.
  • a benzylchloride salt of polymethacrylic acid dimethylamino-ethanol ester Compound V shown above
  • the transfer layer containing the coacervate particles was applied as a neutralizing layer to an under coat formed by dissolving in water a mixture of a copolymer of vinyl methyl ether and maleic anhydride (PVA/MA, GANTREZ AN" sold by GAF Co.
  • EXAMPLE 2 A solution of 3-4 g (the amount had to be controlled since it varied according to the purity and color tone of the commercially available dye) of a decoloring acid azo dye suitable for a silver dye bleaching method (Chicago Blue 68 (CI. 24410) was preferable as blue dye, Diamine Rose (CI. 15080) was suitable as magenta dye, and Brilliant Yellow (CI.
  • EXAMPLE 3 In a three-necked flask equipped with a silica tube, 100 g of polyvinyl alcohol having a polymerization degree of about 500 (Kurare Poval No. 105, trade name, made by Kurare Co.) was dispersed in 1 liter of glacial acetic acid and then after adding 250 g of phthalic anhydride, 100 g of maleic anhydride, and 75 g of anhydrous sodium acetate to the dispersion, the system was reacted for 10 hours at 95C with stirring. The reaction product was poured in 8 liters of acetone to form precipitates, which were recovered by filtration, washed with acetone, and dried to provide 450 g of a pure white powder. It was difficult to determine accurately the esterification degree but it was assumed that the product contained about 50 percent by weight of the phthalic acid monoester and about 10 percent by weight of the maleic acid monoester.
  • the system was then heated to 50C for 10 hours to proceed the cross linkage by the maleic acid residual group, whereby the coacervate particles were sufficiently hardened.
  • the coacervate particles thus obtained were hard to be set different from the case of using gelatin but because molds were less formed and the coacervate particles were not decomposed, the product was profitable for preservation.
  • EXAMPLE 4 A phthalic acid monoester of starch prepared by reacting for one hour 50 g of a commercially available soluble starch and 68 g of phthalic anhydride in 200 ml of formamide using 37.5 g of anhydrous sodium acetate as the catalyst at temperatures of lower than 60C was added to 1.2 liters of acetone to form precipitates, which were recovered and washed with methanol and then acetone to provide about 87 g of a white powder of the product of which about percent of the carboxyl group had been converted into the sodium salt.
  • the substitution percentage of the product was 35 percent (the product contained, on an average, 1.05 phthalic acid residual groups per one glycose unit.
  • the product (5 g) was dissolved in 150 ml of water together with 5 g of gelatin and after adjusting the pH of the solution to 6.5, the solution was heated to 50C.
  • a transfer sheet for imbibition printing was prepared by adding 2 ml of 10 percent formaldehyde solution to 100 ml of the solution prepared above and applying the solution to a baryta-coated paper or a triacetate base with or without the formation on the sheet or the base a neutralizing layer composed of gelatin and a copolymer of vinyl methyl ester and maleic anhydride as shown in Example 1.
  • EXAMPLE 5 The coacervate dispersion (200 ml) prepared by the same manner as Example 4 was coagurated by cooling. The coagurated dispersion was finely cut into needles as photographic emulsion, placed in a net bag of nylon having such coarse mesh as gauze, and then the bag was immersed for l hour at 20C in a solution of 0.75 g of the decoloring yellow acid dye having the following formula,
  • the gel was then washed with running water for 1 hour at C and dissolved.
  • the solution was coated as an intermediate layer of about 90 g/m between the uppermost yellow layer and a magenta color forming layer or a cyan color forming layer on a multiple layertype color photographic light-sensitive element.
  • the intermediate layer acts as a yellow filter layer for removing the specific sensitivities of the light-sensitive emulsion layers disposed under the intermediate layer at exposure and is decolored during the development and fixing processings. Therefore, the yellow layer is useful as a filter layer giving no bad influences on the final dye images.
  • the layer is also useful for color photographic light-sensitive elements for color developing system, silver dye bleaching system and ones having multiple layers of dye-sensitized silver halide emulsion layers.
  • the important merits of this invention are that the dye is fixed stably and fast to the intermediate filter layer during the drying of the multiple layer type color photographic light-sensitive element as well as the preservation of the non-exposed light-sensitive element without diffusing into adjacent layers and also the coloring of the photographic layer by such a kind of dye which is comparatively unstable is practiced easily and very uniform dyeing having no unevenness becomes possible.
  • a mordanting process for color printing materials which comprises using a dispersion of fine coacervate particles suitable for fixing anionic coloring matter onto a surface, said particles having been prepared in the form of a complex by reacting a protective colloid, a monoester of phthalic acid or phthalic anhydride and a water soluble polymer selected from the group consisting of starch and polyvinyl alcohol or a monoamide of phthalic acid or phthalic anhydride and gelatin and complexing the free acid group of said monoester or monoamide with a high molecular weight cationic nitrogen-containing basic vinyl polymer to form a coacervate mordant, said coacervate mordant having particle sizes of from 0.1 to 10 microns.
  • a mordanting process for fixing acid dyes onto a photographic emulsion layer which comprises using the product prepared by complexing in an aqueous medium containing a protective colloid a reaction product obtained by monoamidifying gelatin with phthalic acid and comprising the free acid group with benzyl chloride salt of polymethacrylic acid dimethylaminoethanol ester to form a coacervate polymeric mordant, said coacervate mordant having particle size of from 0.1 to 10 microns.
  • a mordanting process for fixing acid dyes onto a photographic emulsion layer which comprises using the product prepared by complexing in an aqueous medium containing a protective colloid, a reaction product obtained by monoesterifying polyvinyl alcohol with a mixture of phthalic anhydride and maleic anhydride, said complexing monoester modified polyvinyl alcohol with poly-2-vinyl pyridine, said complex having particle sizes of 2-3 microns.
  • a mordanting process for fixing acid dyes onto a photographic emulsion layer which comprises using the coacervate mordant prepared by complexing in an aqueous medium containing a protective colloid, a reaction product obtaining by monoesterifying a soluble starch with phthalic anhydride and complexing the carboxyl groups with aminoguanidized dialdehyde starch, said complex having particle size of from 0.1 to 10 microns.
  • said polymer having the nitrogen-containing group is selected from the group consisting of poly-2-vinyl pyridine, methyl p-toluenesulfonate of poly-4-vinyl pyridine, poly-4-vinylbenzyl-trimethyl ammonium chloride, poly-4-vinylbenzyl-triethanol ammonium chloride, benzyl chloride of polymethacrylic acid dimethylamino ethanol ester or, acetate of partially amino guanidized polyvinyl methyl ketone.
  • a mordanting process for fixing acid dyes onto a photographic emulsion layer which comprises using the product prepared by complexing in an aqueous medium containing a protective colloid, a reaction product obtained by monoesterifying polyvinyl alcohol with phthalic anhydride and complexing said monoester modified polyvinyl alcohol with poly-2-vinyl pyridine, said complex having particle sizes of 2-3 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Glanulating (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
US00122520A 1970-03-10 1971-03-09 Mordanting process for color printing materials Expired - Lifetime US3773509A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45019759A JPS4946418B1 (ja) 1970-03-10 1970-03-10

Publications (1)

Publication Number Publication Date
US3773509A true US3773509A (en) 1973-11-20

Family

ID=12008255

Family Applications (1)

Application Number Title Priority Date Filing Date
US00122520A Expired - Lifetime US3773509A (en) 1970-03-10 1971-03-09 Mordanting process for color printing materials

Country Status (3)

Country Link
US (1) US3773509A (ja)
JP (1) JPS4946418B1 (ja)
DE (1) DE2111506C3 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130430A (en) * 1976-04-20 1978-12-19 Fuji Photo Film Co., Ltd. Silver halide light-sensitive material containing dye
US4229522A (en) * 1977-10-26 1980-10-21 Fuji Photo Film Co., Ltd. Method for forming color images
US4241163A (en) * 1979-03-22 1980-12-23 Eastman Kodak Company Photographic elements containing encapsulated polymers coordinated with metal ions
US4288511A (en) * 1979-03-22 1981-09-08 Eastman Kodak Company Photographic elements containing encapsulated polymers coordinated with metal ions
US4374194A (en) * 1980-12-08 1983-02-15 Eastman Kodak Company Dye imbibition photohardenable imaging material and process for forming positive dye images
US6093447A (en) * 1995-11-03 2000-07-25 Iris Graphics, Inc. Mordanting substrates and agents

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187317U (ja) * 1974-12-31 1976-07-13
JPS52170417U (ja) * 1976-06-16 1977-12-24
DE3065341D1 (en) * 1979-03-09 1983-11-24 Ciba Geigy Ag Receiving elements containing a water-permeable binder as dyestuff mordant, and photographic materials containing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548564A (en) * 1946-12-31 1951-04-10 Eastman Kodak Co Photographic silver halide element with mordanted dye layer
US3271147A (en) * 1962-07-19 1966-09-06 Eastman Kodak Co Coacervate mordant dispersions for acid dyes
US3625691A (en) * 1969-05-20 1971-12-07 Mitsubishi Paper Mills Ltd Method for coloring non-diffusibly photographic layers by means of an amino-guanidized dialdehyde starch mordant
US3625694A (en) * 1968-06-06 1971-12-07 Kodak Ltd Polymers polymeric mordants and elements containing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548564A (en) * 1946-12-31 1951-04-10 Eastman Kodak Co Photographic silver halide element with mordanted dye layer
US3271147A (en) * 1962-07-19 1966-09-06 Eastman Kodak Co Coacervate mordant dispersions for acid dyes
US3625694A (en) * 1968-06-06 1971-12-07 Kodak Ltd Polymers polymeric mordants and elements containing same
US3625691A (en) * 1969-05-20 1971-12-07 Mitsubishi Paper Mills Ltd Method for coloring non-diffusibly photographic layers by means of an amino-guanidized dialdehyde starch mordant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130430A (en) * 1976-04-20 1978-12-19 Fuji Photo Film Co., Ltd. Silver halide light-sensitive material containing dye
US4229522A (en) * 1977-10-26 1980-10-21 Fuji Photo Film Co., Ltd. Method for forming color images
US4241163A (en) * 1979-03-22 1980-12-23 Eastman Kodak Company Photographic elements containing encapsulated polymers coordinated with metal ions
US4288511A (en) * 1979-03-22 1981-09-08 Eastman Kodak Company Photographic elements containing encapsulated polymers coordinated with metal ions
US4374194A (en) * 1980-12-08 1983-02-15 Eastman Kodak Company Dye imbibition photohardenable imaging material and process for forming positive dye images
US6093447A (en) * 1995-11-03 2000-07-25 Iris Graphics, Inc. Mordanting substrates and agents

Also Published As

Publication number Publication date
DE2111506C3 (de) 1974-07-11
DE2111506B2 (de) 1973-11-29
DE2111506A1 (de) 1971-09-23
JPS4946418B1 (ja) 1974-12-10

Similar Documents

Publication Publication Date Title
US4766052A (en) Photographic element with polymeric imidazole dye mordant
US3271148A (en) Mordanting of acid dyes
JPH032289B2 (ja)
US3773509A (en) Mordanting process for color printing materials
US4266044A (en) Novel polymeric mordanting agents for anionic compounds
US4820619A (en) Photosensitive resin composition and method of manufacturing color filter using the same
JPH0423257B2 (ja)
GB2054886A (en) Colour-diffusion-transfer photographic elements containing a polymeric mordant layer
US4942103A (en) Solid state color imaging sensor having a color filter array
US2397864A (en) Color yielding photographic elements
US2893867A (en) Compositions for use in the manufacture of light-sensitive photographic materials
US2548575A (en) Mordanted imbibition dye-printing blank
US3625691A (en) Method for coloring non-diffusibly photographic layers by means of an amino-guanidized dialdehyde starch mordant
US3624229A (en) Fixation of anions in hydrophilic colloid media
DE3215442A1 (de) Photographisches element
US3573907A (en) Process for making etching resists and photographic stripping film for use in such process
US4119463A (en) Photographic binder comprising isobutylene-maleic anhydride copolymer
EP0154377B1 (en) Photographic product for silver transfer images
JP2936012B2 (ja) 拡散転写写真および熱写真フィルム製品のための画像受像要素
JP2892840B2 (ja) 拡散転写写真フィルムユニット
US3234025A (en) Prevention of dye-diffusion in photographic image bearing colloid layers
JPH08504970A (ja) 拡散転写式写真フイルム製品用受像エレメント
US3806347A (en) Silver halide photographic materials containing anionic couplers or scavengers
EP0610522A1 (en) Silver halide photographic material comprising monodispersed polymer particles and process for the production thereof
US3598585A (en) Azido photohardenable colloid containing an immobile dye and process of using