US3773265A - Electromagnetic fuel injectors - Google Patents
Electromagnetic fuel injectors Download PDFInfo
- Publication number
- US3773265A US3773265A US00171472A US3773265DA US3773265A US 3773265 A US3773265 A US 3773265A US 00171472 A US00171472 A US 00171472A US 3773265D A US3773265D A US 3773265DA US 3773265 A US3773265 A US 3773265A
- Authority
- US
- United States
- Prior art keywords
- injector
- fuel
- plunger
- magnetic field
- saturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 45
- 230000005291 magnetic effect Effects 0.000 claims abstract description 44
- 239000004033 plastic Substances 0.000 claims abstract description 21
- 229920003023 plastic Polymers 0.000 claims abstract description 21
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 14
- 238000004804 winding Methods 0.000 claims abstract description 8
- 230000005294 ferromagnetic effect Effects 0.000 claims description 7
- 239000000696 magnetic material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 5
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- 239000002184 metal Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000005553 drilling Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229920004943 Delrin® Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/165—Filtering elements specially adapted in fuel inlets to injector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0614—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0625—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
- F02M51/0635—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
- F02M51/0642—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
- F02M51/0653—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/08—Injectors peculiar thereto with means directly operating the valve needle specially for low-pressure fuel-injection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S239/00—Fluid sprinkling, spraying, and diffusing
- Y10S239/19—Nozzle materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S239/00—Fluid sprinkling, spraying, and diffusing
- Y10S239/90—Electromagnetically actuated fuel injector having ball and seat type valve
Definitions
- ABSTRACT An electromagnetic fuel injector for a fuel injection system is provided with a solenoid winding which, when fed with electrical operating current, produces a 21 Appl. No.: 171,472
- the valve means may include a plunger having a tip portion of a plastics or rubber-like material to 0 B l b 5 0 B [51] Int. [58] Field of Search
- References Cited engage the valve seat. Methods of attaching the tip UNITED STATES PATENTS portion to the plunger are also described.
- a winding when fed with electrical operating current, produces a saturated magnetic field in at least part of a magnetic circuit, the magnetic field being arranged to produce a force to move a member controlling the flow of fuel from the injector.
- Preferably means are provided for optionally adjusting the force produced on the member by the magnetic field.
- the position of a ferromagnetic saturatable body is adjustable in an aperture in that portion of the magnetic circuit which becomes saturated in operation, whereby to adjust the magnetic field obtained when the portion of the magnetic circuit is saturated.
- the magnetic circuit includes a central core which becomes saturated, the core having an axial bore extending into the saturated portion, and a ferromagnetic rod axially adjustable along the bore.
- a fuel injector in which pressurized fuel is periodically admitted to or cut off from an injector orifice by a valve means includes a seating face against which a plunger is urged to seal the pressurised fuel from the orifice and from which seating face the plunger is withdrawn to admit the pressurised fuel to the orifice, and in which the portion of the plunger which contacts the seating face is of a plastics or rubber-like material.
- the plunger is generally of metal and has a tip portion fast thereto of plastics or rubber-like material for making sealing contact with the seating face.
- the seating face is of hollow conical form.
- the said portion of the plunger which contacts the seating face is of part-spherical form.
- the metal portion of the plunger has an axial bore into which a stem on the plastics or rubberlike tip is fastened.
- the stem is a press fit into the bore.
- the stem is additionally fastened in the bore by a diametral pin passing through the stem and the surrounding metal.
- the tip has a coaxial bore extending through the stem and to a point in the tip adjacent the portion which contacts the seating face.
- the plastics material is an acetal copolymer.
- a method of making a fuel injector of the kind having a plunger of which a metal portion has a bore into which is fastened a stem of a tip of plastics or rubber-like material, said tip being for sealng against a seating face of the fuel injector includes inserting the stem into the bore, loading the tip towards the metal portion with a load at which the tip material just starts to plastic flow, and mechanically securing the stem to the metal portion while so loaded.
- the method includes drilling a diametral bore through the stem and metal portion and inserting a fastening pin therein while the tip is still loaded.
- the method includes subsequently removing the load on the tip, rough shaping the portion of the tip for contacting the seating face, annealing the plunger at an annealing temperature for the plastics or rubber-like material, cooling the plunger and finish shaping the portion of the tip.
- the method includes raising the assembled injector with the tip subject to its normal working load against the seating face, to a temperature at which the plastics or rubber-like material just starts to plastic flow.
- FIG. 1 is a longitudinal section through a fuel injector
- FIG. 2 is a longitudinal section through a solenoid shown in part of FIG. 1, and
- FIG. 3 shows part of FIG. 1 to an enlarged scale.
- a fuel injector has a tubular metal body 10 into the lower end of which is pressed a metal thimble 11.
- a conical seating face 12 is formed inside the thimble 11 from which a central passage 13 leads to a thin metal disc 14, held by peening into a depression in the end of the thimble 11.
- a very fine hole of carefully selected diameter serves as a metering spray orifice through the centre of the disc 14.
- the fuel injector is located in an unshown injector housing positioned so that fuel issuing from the spray orifice discharges into an inlet duct of an internal combustion engine.
- the injector is located in two concentric bores in the injector housing and is sealed in the bores by two O-rings 15, 16.
- the junction between the injector housing bores forms a step against which a flexible flange 17 seals.
- the space in the injector housing between the O-ring 15 and flexible flange 17 forms a fuel inlet chamber to the injector, and the space between the flexible flange 17 and the O-ring 16 forms a fuel outlet chamber.
- the flexible flange 17 forms an integral part of the nylon filter 18 having a circumferential band of fine integral filter panels above and below the flexible flange 17 so that fuel is filtered before entering the injector and again before leaving it.
- the filtered fuel passes to the interior of the injector body 10 through radial drillings 19. As described below, some fuel passes downwardly and out through the passage 13 and metering orifice in the disc 14. Surplus fuel rises to a chamber 20 and thence passes downwardly through passages 21 and out through the filter 18, as shown by the arrows.
- Passage of fuel through the orifice in the disc 14 is controlled by an axially movable plunger having a tubular metal shaft 22 into the lower end of which is fastened a hemi-spherical ended tip 23 of an acetal copolymer, such as Delrin or other suitable plastics or rubber-like material.
- the metal shaft 22 is guided by guide blocks 24, 25 fast in the injector body 10 and the thimble 11 respectively.
- a precompressed low rate helical spring 26 acts between the guide block 24 and a collar 27, held to the shaft 22 by a spring clip 28, to urge the tip 23 against the conical seating face 12 to cut off the supply of fuel to the passage 13.
- a soft iron mushroom-shaped head 29 having a top face 30 which is accurately normal to the axis of the shaft 22. This accuracy is achieved, without expensively accurate machining of the shaft 22 and head 29, by providing a bore 31 in the head 29 which is a clearance fit on the shaft 22.
- the head 29 and shaft 22 are assembled in an accurate jig, with the face 30 normal to the shaft axis, and
- the gap between the shaft 22 and the bore 31 is filled by a bonding agent which fastens the components together. This may be achieved by induction brazing or by the use of an appropriate adhesive.
- a solenoid unit 32 is held in a counterbore 33 against a shoulder 34 in the injector body 10, by a nut 35.
- the solenoid has electrical terminals 36, and when fed with electrical current, generates a magnetic field which attracts the head 29 and shaft 22 upwards to close a small accurately set gap between the face 30 of the head 29 and the lower opposing face of the solenoid 32.
- the shaft 22 will hold the plastics tip 23 a fixed distance off the conical seating face 12 so that fuel will flow through the orifice in the plate 14 at a constant rate, if the fuel pressure difference across the orifice is constant.
- the design of the tip 23 is shown in greater detail in FIG. 3. It has been found advantageous to form the tip 23 with an oversize head 37 and a stem 38. A bore 40 extends downwards through the stem 38 and to a point in the head 37 adjacent the eventual position of the hemi-spherical end of the tip 23.
- the plunger is assembled by inserting the stem 38 into the shaft 22 and loading the tip axially towards the shaft 22 with a load at which the tip material just starts to plastic flow.
- a load at which the tip material just starts to plastic flow.
- 25 lb. 25 lb. to be a suitable load.
- a diametral drilling is made through the shaft 22 and stem 38 and a pin 39 is pressed therethrough.
- the axial load is then removed from the tip 23 and it is rough turned to its hemi-spherical shape.
- the plunger is next annealed, conveniently at aroung 60 C. After cooling the tip 23 is formed to its final hemispherical shape.
- the injector After the injector is completely assembled it is preferably raised to a temperature such as 130 C at which the material of the tip 23 just begins to plastic flow, to ensure good sealing of the tip 23 against the seating face 12.
- FIG. 2 shows in more detail one solenoid unit 32 according to the present invention.
- the solenoid unit has a cylindrical body 50 and integral base 51, both of Swedish iron.
- a coaxial Swedish iron core 52 is held in a bore in the base 51 by a ring of braze 53.
- the ring of braze also serves as a magnetic gap causing the lines of magnetic force between the base 51 and core 52 to pass out of the solenoid unit 32 and through the mushroomshaped head 29 which is thereby attracted upward until it contacts the lower face of the solenoid unit 32.
- the terminals 36 are connected to a wire winding 54.
- the upper part of the magnetic circuit is completed by Swedish iron lamina 55 which are a press fit on the core 52 and inside the body 50 to ensure magnetic continuity.
- the solenoid unit 32 is sealed by a plastics capping 56.
- a ferromagnetic rod 57 typically approximately one-sixteenth inch diameter is a sliding fit in an axial bore 58 extending most of the way down the core 52.
- the rod 57 has an enlarged threaded head 59 engaged in a threaded bore in the plastics capping 56, the upper part of the core 52 or in both, whereby a fine adjustment may be made of the axial position of the rod 57 inside the core 52.
- the fuel injector solenoid unit 32 is fed with a stream of electrical pulses, during each of which the fuel is to be injected into the engine. As the voltage of the leading edge of the pulse starts to rise the magnetic flux in the magnetic circuit starts to rise correspondingly producing a rising force on the head 29 of the plunger and corresponding acceleration thereof.
- the acceleration and motion of the plunger depends inter alia on the difference between the simultaneous upwards magnetic force and downwards force due to the spring 26.
- the force pattern would therefore be expected to depend on the value of the voltage of the relatively flat top of the electrical pulse, and variations in this peak voltage will produce some variation in the time pattern of magnetic field and ensuing force and plunger motion.
- This sensitivity of fuel flow to variations in the pulse peak voltage can be reduced by arranging for at least a part of the magnetic circuit of the solenoid unit 32 and head 29 to become magnetically saturated at an electrical input voltage less than the pulse peak voltage. In this way the magnetic field, ensuing force and pattern of plunger movement will be significantly less sensitive to pulse peak voltage.
- Screwing the rod 57 either inward or outward respectively increases or decreases the effective cross-section of the core 52, and this change in effective cross-section alters the value of the voltage at which the core becomes saturated.
- adjustment of the rod 57 either to reduce the voltage and thereby to reduce the maximum force attracting the head 29, or to increase the voltage, thereby increasing the force attracting the head 29.
- An electromagnetic fuel injector including a winding, means for feeding said winding with an electrical operating current to produce a saturated magnetic field in at least part of a magnetic circuit, said magnetic field being arranged to produce a force to move a member controlling the flow of fuel from the injector, and means for adjusting the force produced on the member by the magnetic field.
- An injector as claimed in claim 1 including a ferromagnetic saturatable body whose position is adjustable in an aperture in that portion of the magnetic circuit which becomes saturated in operation, whereby to adjust the magnetic field obtained when the portion of the magnetic circuit is saturated.
- an injector as claimed in claim 1 wherein said member includes a plunger having its tip made of a plastics material which is capable of plastic flow, said tip being urged against a valve seating by a spring acting in opposition to the force of the magnetic field.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fuel-Injection Apparatus (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB4001270 | 1970-08-19 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3773265A true US3773265A (en) | 1973-11-20 |
Family
ID=10412717
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00171472A Expired - Lifetime US3773265A (en) | 1970-08-19 | 1971-08-13 | Electromagnetic fuel injectors |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3773265A (enExample) |
| AU (1) | AU450900B2 (enExample) |
| CA (1) | CA953088A (enExample) |
| FR (1) | FR2104496A5 (enExample) |
| GB (1) | GB1328518A (enExample) |
| SE (2) | SE395043B (enExample) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5192048A (en) * | 1992-06-26 | 1993-03-09 | Siemens Automotive L.P. | Fuel injector bearing cartridge |
| WO1993012337A1 (en) * | 1991-12-09 | 1993-06-24 | Siemens Automotive L.P. | Dynamic flow calibration of a fuel injector by selective diversion of magnetic flux from the working gap |
| US5409165A (en) * | 1993-03-19 | 1995-04-25 | Cummins Engine Company, Inc. | Wear resistant fuel injector plunger assembly |
| US5775599A (en) * | 1996-06-12 | 1998-07-07 | Impco Technologies, Inc. | Gaseous fuel injector for internal combustion engine |
| US6173913B1 (en) | 1999-08-25 | 2001-01-16 | Caterpillar Inc. | Ceramic check for a fuel injector |
| US6648249B1 (en) | 2000-08-09 | 2003-11-18 | Siemens Automotive Corporation | Apparatus and method for setting injector lift |
| US20030226914A1 (en) * | 2002-06-07 | 2003-12-11 | Mills John R. | Fuel injector with a coating |
| US6740992B2 (en) | 2002-02-19 | 2004-05-25 | Siemens Vdo Automotive Inc. | Electric motor torsional decoupling |
| US20050006492A1 (en) * | 2003-06-10 | 2005-01-13 | Brooks Harry R. | Modular fuel injector with di-pole magnetic circuit |
| US20060124771A1 (en) * | 2004-12-13 | 2006-06-15 | Catasus-Servia Jordi J | Fuel injector assembly and poppet |
| US20070214286A1 (en) * | 2005-11-10 | 2007-09-13 | Olympus Communication Technology Of America, Inc. | Network access control |
| US7357338B1 (en) * | 2006-11-14 | 2008-04-15 | Ford Global Technologies, Llc | Gaseous fuel injector |
| US20120074071A1 (en) * | 2010-09-23 | 2012-03-29 | Molycorp Minerals, Llc | Process for treating waters and water handling systems to remove scales and reduce the scaling tendency |
| US9975787B2 (en) | 2014-03-07 | 2018-05-22 | Secure Natural Resources Llc | Removal of arsenic from aqueous streams with cerium (IV) oxide compositions |
| EP3623644A1 (fr) * | 2018-09-14 | 2020-03-18 | Frédéric Rivas | Procede de fabrication d'un verin hydraulique et verin obtenu par ledit procede |
| US20240229753A9 (en) * | 2022-10-20 | 2024-07-11 | Cummins Inc. | Fuel injector nozzle and manufacturing method for the same |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4407252A (en) * | 1981-06-04 | 1983-10-04 | Oscar E. Jones | Fuel injection system |
| GB2144201B (en) * | 1983-07-28 | 1986-10-22 | Lucas Ind Plc | Fuel injector valve seat |
| GB8320321D0 (en) * | 1983-07-28 | 1983-09-01 | Lucas Ind Plc | Fuel injector |
| US5392995A (en) * | 1994-03-07 | 1995-02-28 | General Motors Corporation | Fuel injector calibration through directed leakage flux |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1754740A (en) * | 1928-10-06 | 1930-04-15 | Brooks Steam Motors Ltd | Magnetic valve |
| US1879165A (en) * | 1930-08-25 | 1932-09-27 | Louis O French | Electromagnetically-operated valve |
| US2910249A (en) * | 1958-03-19 | 1959-10-27 | Bendix Aviat Corp | Solenoid actuated valve for controlling flow to a nozzle |
| US3069099A (en) * | 1960-04-05 | 1962-12-18 | George C Graham | Fuel injection nozzle and spray device |
| US3224677A (en) * | 1964-09-14 | 1965-12-21 | Kelroy Corp | Vaporizing apparatus |
| US3463363A (en) * | 1967-10-12 | 1969-08-26 | Fusion Inc | Applicator gun |
| US3610529A (en) * | 1968-08-28 | 1971-10-05 | Sopromi Soc Proc Modern Inject | Electromagnetic fuel injection spray valve |
-
1970
- 1970-08-19 GB GB4001270A patent/GB1328518A/en not_active Expired
-
1971
- 1971-08-11 AU AU32236/71A patent/AU450900B2/en not_active Expired
- 1971-08-12 CA CA120,361A patent/CA953088A/en not_active Expired
- 1971-08-13 US US00171472A patent/US3773265A/en not_active Expired - Lifetime
- 1971-08-17 SE SE7301940A patent/SE395043B/xx unknown
- 1971-08-17 SE SE10467/71A patent/SE360431B/xx unknown
- 1971-08-18 FR FR7130134A patent/FR2104496A5/fr not_active Expired
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1754740A (en) * | 1928-10-06 | 1930-04-15 | Brooks Steam Motors Ltd | Magnetic valve |
| US1879165A (en) * | 1930-08-25 | 1932-09-27 | Louis O French | Electromagnetically-operated valve |
| US2910249A (en) * | 1958-03-19 | 1959-10-27 | Bendix Aviat Corp | Solenoid actuated valve for controlling flow to a nozzle |
| US3069099A (en) * | 1960-04-05 | 1962-12-18 | George C Graham | Fuel injection nozzle and spray device |
| US3224677A (en) * | 1964-09-14 | 1965-12-21 | Kelroy Corp | Vaporizing apparatus |
| US3463363A (en) * | 1967-10-12 | 1969-08-26 | Fusion Inc | Applicator gun |
| US3610529A (en) * | 1968-08-28 | 1971-10-05 | Sopromi Soc Proc Modern Inject | Electromagnetic fuel injection spray valve |
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1993012337A1 (en) * | 1991-12-09 | 1993-06-24 | Siemens Automotive L.P. | Dynamic flow calibration of a fuel injector by selective diversion of magnetic flux from the working gap |
| JP3307639B2 (ja) | 1991-12-09 | 2002-07-24 | シーメンス オートモーティヴ コーポレイション | 磁束を作業ギャップから選択的にそらすことによる燃料噴射器の動流キャリブレーション |
| US5192048A (en) * | 1992-06-26 | 1993-03-09 | Siemens Automotive L.P. | Fuel injector bearing cartridge |
| US5409165A (en) * | 1993-03-19 | 1995-04-25 | Cummins Engine Company, Inc. | Wear resistant fuel injector plunger assembly |
| US5775599A (en) * | 1996-06-12 | 1998-07-07 | Impco Technologies, Inc. | Gaseous fuel injector for internal combustion engine |
| US6173913B1 (en) | 1999-08-25 | 2001-01-16 | Caterpillar Inc. | Ceramic check for a fuel injector |
| US6978949B2 (en) | 2000-08-09 | 2005-12-27 | Siemens Vdo Automotive Corporation | Apparatus and method for setting injector lift |
| US6648249B1 (en) | 2000-08-09 | 2003-11-18 | Siemens Automotive Corporation | Apparatus and method for setting injector lift |
| US20040056121A1 (en) * | 2000-08-09 | 2004-03-25 | Siemens Automotive Corporation | Apparatus and method for setting injector lift |
| US6740992B2 (en) | 2002-02-19 | 2004-05-25 | Siemens Vdo Automotive Inc. | Electric motor torsional decoupling |
| US7051961B2 (en) * | 2002-06-07 | 2006-05-30 | Synerject, Llc | Fuel injector with a coating |
| EP1511574A4 (en) * | 2002-06-07 | 2010-07-07 | Synerject Llc | FUEL INJECTOR WITH COATING |
| US20030226914A1 (en) * | 2002-06-07 | 2003-12-11 | Mills John R. | Fuel injector with a coating |
| US7086606B2 (en) | 2003-06-10 | 2006-08-08 | Siemens Vdo Automotive Corporation | Modular fuel injector with di-pole magnetic circuit |
| US20050006492A1 (en) * | 2003-06-10 | 2005-01-13 | Brooks Harry R. | Modular fuel injector with di-pole magnetic circuit |
| US20060124771A1 (en) * | 2004-12-13 | 2006-06-15 | Catasus-Servia Jordi J | Fuel injector assembly and poppet |
| US7159801B2 (en) | 2004-12-13 | 2007-01-09 | Synerject, Llc | Fuel injector assembly and poppet |
| US20070214286A1 (en) * | 2005-11-10 | 2007-09-13 | Olympus Communication Technology Of America, Inc. | Network access control |
| US7357338B1 (en) * | 2006-11-14 | 2008-04-15 | Ford Global Technologies, Llc | Gaseous fuel injector |
| CN101182927B (zh) * | 2006-11-14 | 2011-01-19 | 福特环球技术公司 | 气体燃料喷射器 |
| US20120074071A1 (en) * | 2010-09-23 | 2012-03-29 | Molycorp Minerals, Llc | Process for treating waters and water handling systems to remove scales and reduce the scaling tendency |
| US9975787B2 (en) | 2014-03-07 | 2018-05-22 | Secure Natural Resources Llc | Removal of arsenic from aqueous streams with cerium (IV) oxide compositions |
| US10577259B2 (en) | 2014-03-07 | 2020-03-03 | Secure Natural Resources Llc | Removal of arsenic from aqueous streams with cerium (IV) oxide compositions |
| EP3623644A1 (fr) * | 2018-09-14 | 2020-03-18 | Frédéric Rivas | Procede de fabrication d'un verin hydraulique et verin obtenu par ledit procede |
| FR3086014A1 (fr) * | 2018-09-14 | 2020-03-20 | Frederic Rivas | Procede de fabrication d’un verin hydraulique et verin obtenu par ledit procede |
| US20240229753A9 (en) * | 2022-10-20 | 2024-07-11 | Cummins Inc. | Fuel injector nozzle and manufacturing method for the same |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2104496A5 (enExample) | 1972-04-14 |
| CA953088A (en) | 1974-08-20 |
| AU450900B2 (en) | 1974-07-05 |
| DE2141264A1 (de) | 1972-02-24 |
| SE360431B (enExample) | 1973-09-24 |
| AU3223671A (en) | 1973-02-15 |
| SE395043B (sv) | 1977-07-25 |
| GB1328518A (en) | 1973-08-30 |
| DE2141264B2 (de) | 1976-03-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3773265A (en) | Electromagnetic fuel injectors | |
| EP0228578B1 (en) | Fuel injection device for internal combustion engines | |
| US5127585A (en) | Electromaagnetic high-pressure injection valve | |
| KR100605479B1 (ko) | 조절가능한 내연기관 연료분사기용 계량밸브 | |
| EP0446214B1 (en) | Electromagnetic fuel injector with diaphragm spring | |
| US5054691A (en) | Fuel oil injector with a floating ball as its valve unit | |
| US5154350A (en) | Electromagnetically actuated fuel injection device for an internal combustion engine | |
| US6499669B2 (en) | Fuel injection valve for internal combustion engines | |
| US4813599A (en) | Electromagnetically actuatable fuel injection valve | |
| EP0647780A2 (en) | Fuel injection nozzle | |
| US2749181A (en) | Fuel injection nozzle and valve assembly | |
| US4454990A (en) | Pressure compensated fuel injector | |
| JPH01290960A (ja) | 電子制御式燃料噴射器 | |
| US5392995A (en) | Fuel injector calibration through directed leakage flux | |
| GB1472264A (en) | Electromagnetic injection valves | |
| US3247833A (en) | Fuel injection valves | |
| KR960010294B1 (ko) | 카트리지 설계에서의 전자기 연료 분사기 | |
| US3820213A (en) | Method of making a fuel injector | |
| US4474332A (en) | Electromagnetic fuel injector having improved response rate | |
| US7828233B2 (en) | Fuel injector and method for its adjustment | |
| JPS6154945B2 (enExample) | ||
| US4917352A (en) | Injector for engine with spark ignition and direct injection | |
| US4832314A (en) | Electromagnetically actuatable fuel injection valve | |
| US4545530A (en) | Fuel injection nozzle for internal combustion engines | |
| US4688723A (en) | Electromagnetically actuatable fuel-injection valve |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: AE PLC CAWSTON HOUSE CAWSTON, RUGBY WARWICKSHIRE E Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BRICO ENGINEERING LIMITED;REEL/FRAME:004297/0057 Owner name: LUCAS INDUSTRIES PUBLIC LIMITED COMPANY, GREAT KIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AE PLC;REEL/FRAME:004297/0061 |