US3769628A - Method and apparatus for electrostatically recording with a closed loop web drive - Google Patents
Method and apparatus for electrostatically recording with a closed loop web drive Download PDFInfo
- Publication number
- US3769628A US3769628A US00240779A US3769628DA US3769628A US 3769628 A US3769628 A US 3769628A US 00240779 A US00240779 A US 00240779A US 3769628D A US3769628D A US 3769628DA US 3769628 A US3769628 A US 3769628A
- Authority
- US
- United States
- Prior art keywords
- recording medium
- stepping motor
- stepping
- pulses
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000004804 winding Methods 0.000 claims description 21
- 241001422033 Thestylus Species 0.000 claims description 12
- 230000003213 activating effect Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 abstract description 6
- 230000001360 synchronised effect Effects 0.000 abstract description 5
- 230000001429 stepping effect Effects 0.000 description 51
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/22—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
- G03G15/32—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
- G03G15/321—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by charge transfer onto the recording material in accordance with the image
- G03G15/325—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by charge transfer onto the recording material in accordance with the image using a stylus or a multi-styli array
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S101/00—Printing
- Y10S101/37—Printing employing electrostatic force
Definitions
- ABSTRACT A charge image is electrostatically recorded on a web through an array of writing electrodes.
- a stepping motor moves the web in response to a digital data source which also selects and activates the writing electrodes.
- the motor stepping and web motion is synchronized with the digital data input to the writing electrodes.
- the stepping motor is provided with a shaft encoder for detecting each step as it is completed and for feeding back this web change-inposition information to the digital data source.
- the digital data source Upon receiving the step completion pulse, the digital data source releases the next raster of digital bits to the writing electrode array. Feedback between the shaft encoder and the digital data source preserves writing integrity on the web during start-up acceleration and subsequent deceleration of the web.
- One-half second of motor acceleration up to full speed operation is about 125 steps, or 12 lines of print. If ra'ster information was processed during start-up, the writing on the web would be unevenly spaced crowded at the slower initial speeds and approaching normal spacing as the stepping motor approached full speed. Second, subsequent accelerations and decelerations of the stepping motor produced undesirable discontinuities of the recording. Momentary increases in friction in the motor'or in the web, or momentary fluctuations or loss of power which exceeded the margin permitted by the safety factor produced line crowding in the recording. Third, stepping motors, unlike synchronous motors, stall after a critical slippage isreached.
- the stepping motor has to be started all over again with a series of progressively decreasing spaced step commands.'At increased stepping rates loss of synchronism may be introduced by a single stray noise pulse pickup by the stepping motor control circui t. These extraneouspulses advance the energization of the stepping motor winding inducing slipping. As the speed is increased, the sensitivity to extraneous pulse increases. At high speeds the stepping motor may be completely stalled by a flourescent lamp or nearby .induction apparatus.
- Writing electrodes 14 is positioned proximate a segmented backplate 16 with a dielectric coated paper or recording medium 18 passing therebetween.
- the styli and backplate segments are selected for writing by a stylus addresser 20 and a backplate addresser 22 in response to an output 24 of a digital data source 26.
- the writing electrodes are activated in groups of eight, about 60 microseconds per group, by stylus driver 28 over a raster period of from about 1200 to about 300 microsecout; b a ai Ttma iiaa; 6.115522; The segments of backplate 16 are activated in synchronism with styli 14 by packplate driver 30. The resulting current flowing between the selected and activated writing electrode and backplate segment pair transfers charge to the charge retentive surface of web 18.
- data source 26 After each digital raster, data source 26 provides a step command at output 32 to a motor logic circuit 34 having three outputs, A, B and C which are amplified by power supply 35.
- a stepping motor 36 is provided having three sets of windings, A,'B and C, which are alternately activated by the three outputs of logic circuit 34. Stepping motor 36 turns one angular step in response to the step command initiated in output 32. Stepping motor 36 turns a shaft 38 which rotates a drive roller 40 to move web 18 o ne linez r step, about 1/80 t h of an inch, placing fresh paper underneath stylus array 12.
- a shaft eneo der 42 is provided on the other end of shaft 38 to detect the completion of each angular step of stepping motor 36. Shaft encoder 42 generates a separate step completion pulse for each of the three windings of motor 36.
- data source 26 provides a step command pulse in output 32 to motor logic circuit 34.
- motor logic circuit 34 provides an energizing pulse to winding A of stepping motor 36 causing the motor to step 10.
- Shaft encoder 42 determines when the step is completed and provides a step completed pulse in one of its three outputs.
- the three outputs of shaft encoder. 42 correspond to the three windings of motor 36.
- a step completion by each winding causes a pulse to appear in the shaft encoder output corresponding thereto.
- the three outputs are combined in motor logic 34 and a single train of step completed pulses appears in feedback loop 44 to data source 26.
- Data source 26 then releases raster pulses'in output 24 to addressers 20 and 22.
- data source 26 After completion of the digital raster, data source 26 provides step command B in output 32 which'ultima tely energizes winding B in stepping motor 36' causing the stepping motor to rotate another
- completion shaft encoder42 supplies the step completion pulse to data source 26 which releases the next raster of digital information.
- Each raster of digital information is released after the step completion pulse arrivesat data source 26. This ensures that web 18 is properly advanced to maintain writing integrity notwithstanding accelerations and decelerations of stepping motor '36.
- the closed loop web position feedback permits writing during startup of stepping motor 36 because the raster digital information feed rate cannot be faster than the stepping rate of the motor Both the feed rate and the stepping rate increase together untilfull stepping rate is reached.
- the A second of wasted startup time of the prior art' is eliminated. If there is a slowdown in stepping speed due to a temporary increase in turning friction or-a temporary drag on web 18, or operater interference, the raster feed rate is.slowed'down a corresponding amount and. remains synchronized 1 with the web drive speed.
- Recorder 10 operating with web position feedback is so insensitive to irregularities in web "drive speed that the web may be manually pulled out of the recorder past stylus array. 12 with all of the imprecision that one might expect withoutdisturbing the writing integrity.
- the raster rate accommodates the non-uniform tugs and pulls of the operator because the raster pulses are'released by the step completed pulse which is necessarily in synchronism with the web movement. This manual feature is convenient in the event of stepping motorpowe'r supply failure.
- the feedback control is effective in the opposite direction as well. Uneven rasterfeed'rates produce a complimentary change in the web drive.
- the stepping command pulses appearing at th e end of each raster become spaced thu's adjusting the steppingrate and synch'ronization'is maintained.
- synchronization between the raster feed rate and the stepping speed prevents a type: of motor stalling which appears in stepping. motors.
- Step motors proceed from one stable position of minimum reluctance to the adjacent-position of minimum reluctance in response to an energizing pulse on the adjacent windings. Slippage caused by. a stepping command rate faster than the angular stepping rate of the motor does not generate corresponding increase lin torque which increases the speed of the motor and [re-establish synchronization as is the case with conv 'ntional synchronous motors. lnstead, the turning t rque decreases after a critical slippage is reached an the motor stalls completely.
- feedback of the present invention permits a stepping rate of at least 2400 steps per second.
- stalling caused by loss of synchronization is eliminated because motor logic circuit 34 receives feedback as to which winding has just been energized to cause the last step completion. With this information, logic circuit 34 can always provide the proper subsequent winding-energization. Stray pulses cannot effect this controlled loop to destroy synchronization.
- the web position may be determined in other ways besides the shaft encoder.
- the web position may be determined directly from the web motion.
- An electrostatic recording apparatus for forming a charge image on the charge retentive surface of a recording medium in response to input signals, and for maintaining the properspacing of the charge image regardless of variations in the speed of the recording medium'or variations in the pulse rate of the input signals, the combination comprising:
- a stylus array formed by a plurality of writing electrodes mounted proximate the charge retentive surface of the recording medium
- backplate means mounted proximate the other side of the recording medium and spaced from the stylus array to permit passage of the recording medium therebetween;
- data processing means responsive to the input signals for providing rasters of pulses foraddressing and activating the stylus array and the backplate means to cause charge to transfer from selected styli to the charge retentive surface, and also for providing a step command pulse for advancing the recording corresponding linear step increment to move the .recording medium past the stylus array; and vdetection means responsive to the step increment for generating a step completion pulse which is com- I municated to the data processing means to effect synchronization,between theraster rate and the stepping rate for preserving the proper spacing of the charge imageoln the recording medium.
- the'detection means is a shaft encoder responsive to the angular step increments of the stepping motor, the shaft encoder having a plurality of outputs corresponding to the plurality of 'windingsof the stepping motor, and wherein .the shaft encoder provides step completion pulses for each winding which are communicated to the motor logic circuit permitting the motor logic circuit to energize the windings sequentially and maintain stepping synchronism unaffected by externally generated noise pulses.
- the data processing means consists of a data source, and addressing means for the stylus array and the backplate, and driving means for the styli and backplate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Handling Of Sheets (AREA)
- Recording Measured Values (AREA)
- Combination Of More Than One Step In Electrophotography (AREA)
- Facsimiles In General (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24077972A | 1972-04-03 | 1972-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3769628A true US3769628A (en) | 1973-10-30 |
Family
ID=22907910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00240779A Expired - Lifetime US3769628A (en) | 1972-04-03 | 1972-04-03 | Method and apparatus for electrostatically recording with a closed loop web drive |
Country Status (2)
Country | Link |
---|---|
US (1) | US3769628A (enrdf_load_html_response) |
JP (1) | JPS4936216A (enrdf_load_html_response) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945019A (en) * | 1973-03-31 | 1976-03-16 | Kabushiki Kaisha Seikosha | Apparatus and method for recording characters so as to enable reading thereof in a feed direction of a recording sheet therefor |
US4100551A (en) * | 1975-09-09 | 1978-07-11 | Sci Systems, Inc. | Rotary electrical printer and method |
US4148042A (en) * | 1977-11-11 | 1979-04-03 | Tektronix, Inc. | Electrographic copier with one-piece belt and styli |
US4149192A (en) * | 1976-06-15 | 1979-04-10 | Matsushita Graphic Communication Systems, Inc. | Transmission of encoded facsimile signals at variable intervals commensurate with recording time |
US4281334A (en) * | 1979-10-22 | 1981-07-28 | Markem Corp | Electrostatic label printing system |
US4281335A (en) * | 1979-10-22 | 1981-07-28 | Markem Corporation | Electrostatic label printing system |
US4326458A (en) * | 1979-07-19 | 1982-04-27 | Sign Electronics Limited | Printing apparatus |
US4347525A (en) * | 1979-10-22 | 1982-08-31 | Markem Corporation | Electrostatic label printing system |
EP0031137A3 (en) * | 1979-12-21 | 1983-01-19 | Siemens Aktiengesellschaft | Device for determining the side margins of record sheets in typewriters or the like |
USRE31238E (en) * | 1977-11-11 | 1983-05-10 | Tektronix, Inc. | Electrographic copier with one-piece belt and styli |
US4419679A (en) * | 1980-06-03 | 1983-12-06 | Benson, Inc. | Guadrascan styli for use in staggered recording head |
-
1972
- 1972-04-03 US US00240779A patent/US3769628A/en not_active Expired - Lifetime
-
1973
- 1973-04-03 JP JP48038198A patent/JPS4936216A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945019A (en) * | 1973-03-31 | 1976-03-16 | Kabushiki Kaisha Seikosha | Apparatus and method for recording characters so as to enable reading thereof in a feed direction of a recording sheet therefor |
US4100551A (en) * | 1975-09-09 | 1978-07-11 | Sci Systems, Inc. | Rotary electrical printer and method |
US4149192A (en) * | 1976-06-15 | 1979-04-10 | Matsushita Graphic Communication Systems, Inc. | Transmission of encoded facsimile signals at variable intervals commensurate with recording time |
US4148042A (en) * | 1977-11-11 | 1979-04-03 | Tektronix, Inc. | Electrographic copier with one-piece belt and styli |
USRE31238E (en) * | 1977-11-11 | 1983-05-10 | Tektronix, Inc. | Electrographic copier with one-piece belt and styli |
US4326458A (en) * | 1979-07-19 | 1982-04-27 | Sign Electronics Limited | Printing apparatus |
US4281334A (en) * | 1979-10-22 | 1981-07-28 | Markem Corp | Electrostatic label printing system |
US4281335A (en) * | 1979-10-22 | 1981-07-28 | Markem Corporation | Electrostatic label printing system |
US4347525A (en) * | 1979-10-22 | 1982-08-31 | Markem Corporation | Electrostatic label printing system |
EP0031137A3 (en) * | 1979-12-21 | 1983-01-19 | Siemens Aktiengesellschaft | Device for determining the side margins of record sheets in typewriters or the like |
US4419679A (en) * | 1980-06-03 | 1983-12-06 | Benson, Inc. | Guadrascan styli for use in staggered recording head |
Also Published As
Publication number | Publication date |
---|---|
JPS4936216A (enrdf_load_html_response) | 1974-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3769628A (en) | Method and apparatus for electrostatically recording with a closed loop web drive | |
US3737751A (en) | Servomechanism stop control | |
EP0031487B1 (en) | Facsimile apparatus and method for restarting a facsimile machine | |
US4739230A (en) | Control device for controlling motor speed without hunting | |
US3644806A (en) | High-speed printer-paper feed engine | |
US3713606A (en) | Magnetic tape unit capstan and reel motor control apparatus | |
GB1581657A (en) | Facsimile receiver | |
JPH0213377B2 (enrdf_load_html_response) | ||
US3137767A (en) | Tape transport mechanism for magnetic recording and/or reproducing apparatus | |
GB1017458A (en) | Improvements in or relating to tape driving systems | |
US4669897A (en) | Dot matrix printer capable of varying character size | |
US3706020A (en) | Capstan motor control system | |
US3694725A (en) | Stepping motor control system using pulse injection | |
US3482229A (en) | Tape system with extended speed range | |
JPH02231999A (ja) | モータ駆動装置 | |
JPS5812839B2 (ja) | 静電複写装置 | |
US3196421A (en) | Tape apparatus speed control | |
EP0316814A2 (en) | Method of and apparatus for preventing scanning line deviation in a process scanner of a separated drum type | |
JPS6056632B2 (ja) | プリンタの印字位置制御方法 | |
CN1170689A (zh) | 透明软片、识别透明软片打印表面的方法和装置 | |
US3514536A (en) | Recording method and device | |
JPS54130032A (en) | Electrostatic recorder | |
GB1263775A (en) | Improvements in or relating to document handling apparatus | |
JPS60165270A (ja) | サ−マルプリンタ | |
JPS63209498A (ja) | 電動機の制御装置 |