US3767282A - Protection of terminal metallurgy during working and reworking of gas discharge display devices - Google Patents
Protection of terminal metallurgy during working and reworking of gas discharge display devices Download PDFInfo
- Publication number
- US3767282A US3767282A US00198953A US3767282DA US3767282A US 3767282 A US3767282 A US 3767282A US 00198953 A US00198953 A US 00198953A US 3767282D A US3767282D A US 3767282DA US 3767282 A US3767282 A US 3767282A
- Authority
- US
- United States
- Prior art keywords
- gas
- filling
- coating
- brazing
- reworking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005272 metallurgy Methods 0.000 title abstract description 27
- 239000011521 glass Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000011248 coating agent Substances 0.000 claims abstract description 26
- 238000000576 coating method Methods 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000011049 filling Methods 0.000 claims abstract description 14
- 238000005219 brazing Methods 0.000 claims abstract description 12
- 238000007789 sealing Methods 0.000 claims abstract description 12
- 230000001681 protective effect Effects 0.000 claims abstract description 9
- 230000003647 oxidation Effects 0.000 claims abstract description 8
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 9
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 7
- 239000000020 Nitrocellulose Substances 0.000 claims description 7
- 238000007499 fusion processing Methods 0.000 claims description 7
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 7
- 229920001220 nitrocellulos Polymers 0.000 claims description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 239000011877 solvent mixture Substances 0.000 claims description 6
- 238000005429 filling process Methods 0.000 claims description 5
- 230000001680 brushing effect Effects 0.000 claims description 4
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000007865 diluting Methods 0.000 claims description 2
- 230000004927 fusion Effects 0.000 claims description 2
- 238000001465 metallisation Methods 0.000 claims description 2
- 230000000712 assembly Effects 0.000 abstract description 6
- 238000000429 assembly Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 238000011112 process operation Methods 0.000 abstract description 2
- 230000002035 prolonged effect Effects 0.000 abstract description 2
- 230000009993 protective function Effects 0.000 abstract description 2
- 238000005476 soldering Methods 0.000 abstract description 2
- 238000009736 wetting Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 19
- 230000002950 deficient Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- JXBFBSYDINUVRE-UHFFFAOYSA-N [Ne].[Ar] Chemical compound [Ne].[Ar] JXBFBSYDINUVRE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
Definitions
- ABSTRACT A water removable material ordinarily used as a brazing stop-off i.e. to restrict the flow of a molten metal and thereby to prevent wetting of an underlying surface in a brazing or soldering process has been found useful presently as a means to prevent oxidation of, or other damage to, terminal metallurgy of metallized glass components during protracted periods of baking, gas-filling and glass sealing processing incidental to fabrication of gas discharge display panel assemblies.
- the subject baking, gas-filling and sealing processing involves hours or even days of variant temperature treatment, which should be distinguished from seconds or at most minutes of brazing treatment.
- the protective function required of the water removable coating during this prolonged processing period is considered unique and eliminates certain application and removal process operations associated with the use of other protective media (e.g. sintered glass frit).
- Assembly of plasma or gaseous discharge display panels, or like devices, from metallized glass components generally involves long periods of process handling at high temperatures under diverse vacuum and gaseous ambient conditions. Naturally this subjects the component metallurgy to severe stress and oxidation. Protection of the component metallurgy during such processing has been accomplished hitherto by coating the entire metallurgy with a n'ot-too-easily removed but highly impervious dielectric protective medium (e.g. sprayed-on and fired glass frit). This coating is subsequently removed from terminal connecting portions of the metallurgy by selective etching, after completion of the cleaning, gas-filling and sealing stagesof processing.
- dielectric protective medium e.g. sprayed-on and fired glass frit
- an object of the present invention is to provide an improved method for protecting terminal metallurgy during working and/or reworking of gas discharge display panels.
- Another object is to prevent oxidation of gas panel metallurgy at external connection sites, during working and/or reworking of the panel assembly, by means of materials which are economical and convenient to apply and remove, and which can be compatibly reapplied to permit high temperature reworking of imperfect devices.
- a typical-panel under consideration is constructed by sealing together peripheral edges of a pair of glass plate components spaced by glass spacing rods, to form a gas chamber space, and filling the space with a suitable gas.
- the plates e.g. sode-lime silica
- the plates are pre-processed to include crossed array patterns of conductive line electrode metallurgy (e.g. Cr-Cu-Cr) which form discharge conducting electrodes at crossover points.
- the gas discharges emit light and are selected combinationally to form comprehensible display indications.
- the electrode metallurgy In the elevated temperature sealing process and in the gas-filling process the electrode metallurgy must be protected by a coating medium which is suited to the conditions of these successive processes.
- a coating medium which is suited to the conditions of these successive processes.
- One medium known to fulfill such conditions is a film of glass applied as a sprayed frit over the entire component surface containing the electrode metallurgy and subsequently fired.
- the protective film must be removed from edge areas of the metallurgy to which external power and/or signal connections are to be made.
- the fired glass film above is selectively etched with a suitable etch resist mask covering the film parts which are to be retained. Quite obviously the firing of the film, the resist application and removal operations and the etching operation represent significant cost and handling factors in the overall assembly process.
- Our alternative protective medium and method thus offers several advantages; especially in reworking operations.
- Our method consists of a local spray application of specific braze stop-off material described below, over the external connection edge areas of the electrode metallurgy of the glass plate components.
- the remaining metallurgy is simply masked (e.g. by paper or masking tape).
- a spray application of glass frit is placed over the remaining metallurgy with the braze stop-off loosely covered by any convenient and suitably non-adherent masking object (e.g. cardboard).
- any convenient and suitably non-adherent masking object e.g. cardboard
- the stop-off coating preparation is a slurry mixture of Alundum (aluminum oxide), nitrocellulose, butyl alcohol and butyl acetate available in a form readymade for use under the commercial designation Nicrobraz Green. Or else it may be prepared by a procedure described and characterized as providing the equivalent preparation in Handbook of Electron Tube and Vacuum Techniques by F. Rosebury (Addison Wesley, Publisher) Pages 81, 82 and 358.
- the preparation is formed by mixing approximately 0.08 pounds of 1000-sec nitrocellulose (the binder) dissolved in equal parts of butyl alcohol and butyl acetate (about 1 gallon of mixed solvents) to a viscosity of 17.51-0.l centipoises at 74F. To 1,000 cc of the binder add 635 grams of Norton No. 38-900 special acid washed alundum. Then dilute with 705 cc of equal parts of butyl alcohol and butyl acetate and mix thoroughly.
- the preparation is applied over the edge metallurgy of the glass plate components by: spraying, silk screening, brushing on or any other equivalent technique and allowed to dry.
- the Nicrobraz-Green or equivalent coating is removed from the processed assembly by immersion in tap water at 25-80C from faucet, with suitable agitation as: mechanical brushing or rubbing.
- Nicrobraz is reapplied over the exposed edge metallurgy and the filling step and other steps of the assembly process are repeated.
- the reapplied coating is then removed from the reworked assembly baring the edge metallurgy again for connection with test equipment and/or other active electrical sources.
- a method of protecting semi-transparent delicate electrical circuit surface metallurgy of glass based components of a gas discharge assembly in an assembly working or reworking process which is characterized by application of a dielectric protective medium over the metallurgy before assembly processing and removal of a portion of said protective medium after said processing, said method comprising:
- peripheral parts of said component metallurgy selectively with a water removable brazing stop-off preparation to prevent oxidation of said peripheral parts in subsequent handling;
- a method-of working and/or reworking steps of a gas discharge display panel assembly glass fusion sealing process in which a sealed envelope containing a specific gas is formed by gas-filling and heat fusion processing of metallized glass components said metallization centrally encapsulated in a protective permanent dielectric film and including peripheral terminal connection sites requiring exposure to effect connection, said method comprising:
- brazing stopoff preparation is a mixture of aluminum oxide, nitrocellulose, butyl alcohol and butyl acetate formed by mixing equal parts of butyl alcohol and butyl acetate to form a solvent mixture and dissolving in a portion tasrfiaitr qs a qreiis th nitrocellulose per gallon of the solvent mixture portion, yielding a binder mixture and adding to each 1000cc of the binder mixture 635 grams of aluminum oxide and diluting the resultant binder/aluminum oxide mixture with 705cc of the solvent mixture per 1,000cc of binder.
- said brazing stopoff preparation is a mixture of aluminum oxide, nitrocellulose, butyl alcohol and butyl acetate formed by mixing equal parts of butyl alcohol and butyl acetate to form a solvent mixture and dissolving in a portion tasrfiaitr qs a qreiis th nitrocellulose per gallon of the solvent mixture portion, yielding a binder mixture
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
- Gas-Filled Discharge Tubes (AREA)
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19895371A | 1971-11-15 | 1971-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3767282A true US3767282A (en) | 1973-10-23 |
Family
ID=22735584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00198953A Expired - Lifetime US3767282A (en) | 1971-11-15 | 1971-11-15 | Protection of terminal metallurgy during working and reworking of gas discharge display devices |
Country Status (7)
Country | Link |
---|---|
US (1) | US3767282A (enrdf_load_stackoverflow) |
JP (1) | JPS5314340B2 (enrdf_load_stackoverflow) |
CA (1) | CA959115A (enrdf_load_stackoverflow) |
DE (1) | DE2243980C3 (enrdf_load_stackoverflow) |
FR (1) | FR2160393B1 (enrdf_load_stackoverflow) |
GB (1) | GB1392756A (enrdf_load_stackoverflow) |
IT (1) | IT970707B (enrdf_load_stackoverflow) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3909094A (en) * | 1974-01-16 | 1975-09-30 | Ibm | Gas panel construction |
US3916515A (en) * | 1974-09-26 | 1975-11-04 | Northern Electric Co | Method of producing printed circuit board in multiple units |
US4371860A (en) * | 1979-06-18 | 1983-02-01 | General Electric Company | Solderable varistor |
US4650110A (en) * | 1985-10-22 | 1987-03-17 | Westinghouse Electric Corp. | Continuous movement brazing process |
US20040043693A1 (en) * | 2002-08-30 | 2004-03-04 | Fujitsu Hitachi Plasma Display Limited | Method of manufacturing a plasma display panel |
US10307851B2 (en) * | 2016-12-14 | 2019-06-04 | Raytheon Company | Techniques for providing stop-offs for brazing materials or other materials on structures being joined |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5751698B2 (enrdf_load_stackoverflow) * | 1973-02-26 | 1982-11-04 | ||
JPS58814B2 (ja) * | 1977-06-14 | 1983-01-08 | 富士通株式会社 | ガス放電パネルの製造法 |
RU2281579C1 (ru) * | 2005-02-14 | 2006-08-10 | Открытое акционерное общество "Научно-исследовательский институт газоразрядных приборов "Плазма" (ОАО "Плазма") | Способ изготовления газоразрядной индикаторной панели переменного тока |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2559969A (en) * | 1950-02-16 | 1951-07-10 | Pittsburgh Plate Glass Co | Method of applying a masking composition to a glass base |
US3110102A (en) * | 1958-10-31 | 1963-11-12 | North American Aviation Inc | Method of fusion joining employing stop-off material |
US3499167A (en) * | 1967-11-24 | 1970-03-03 | Owens Illinois Inc | Gas discharge display memory device and method of operating |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE739303A (enrdf_load_stackoverflow) * | 1968-10-02 | 1970-03-24 |
-
1971
- 1971-11-15 US US00198953A patent/US3767282A/en not_active Expired - Lifetime
-
1972
- 1972-08-23 GB GB3916672A patent/GB1392756A/en not_active Expired
- 1972-09-07 DE DE2243980A patent/DE2243980C3/de not_active Expired
- 1972-09-22 IT IT29532/72A patent/IT970707B/it active
- 1972-10-25 JP JP10634872A patent/JPS5314340B2/ja not_active Expired
- 1972-10-25 FR FR7238490A patent/FR2160393B1/fr not_active Expired
- 1972-11-08 CA CA156,039A patent/CA959115A/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2559969A (en) * | 1950-02-16 | 1951-07-10 | Pittsburgh Plate Glass Co | Method of applying a masking composition to a glass base |
US3110102A (en) * | 1958-10-31 | 1963-11-12 | North American Aviation Inc | Method of fusion joining employing stop-off material |
US3499167A (en) * | 1967-11-24 | 1970-03-03 | Owens Illinois Inc | Gas discharge display memory device and method of operating |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3909094A (en) * | 1974-01-16 | 1975-09-30 | Ibm | Gas panel construction |
US3916515A (en) * | 1974-09-26 | 1975-11-04 | Northern Electric Co | Method of producing printed circuit board in multiple units |
US4371860A (en) * | 1979-06-18 | 1983-02-01 | General Electric Company | Solderable varistor |
US4650110A (en) * | 1985-10-22 | 1987-03-17 | Westinghouse Electric Corp. | Continuous movement brazing process |
US20040043693A1 (en) * | 2002-08-30 | 2004-03-04 | Fujitsu Hitachi Plasma Display Limited | Method of manufacturing a plasma display panel |
US20050245166A1 (en) * | 2002-08-30 | 2005-11-03 | Fujitsu Hitachi Plasma Display Limited | Method of manufacturing a plasma display panel |
US7008284B2 (en) * | 2002-08-30 | 2006-03-07 | Fujitsu Hitachi Plasma Display Limited | Method of manufacturing a plasma display panel |
US7230381B2 (en) | 2002-08-30 | 2007-06-12 | Fujitsu Hitachi Plasma Display Limited | Method of manufacturing a plasma display panel |
US10307851B2 (en) * | 2016-12-14 | 2019-06-04 | Raytheon Company | Techniques for providing stop-offs for brazing materials or other materials on structures being joined |
Also Published As
Publication number | Publication date |
---|---|
DE2243980A1 (de) | 1973-05-24 |
DE2243980C3 (de) | 1981-04-23 |
FR2160393B1 (enrdf_load_stackoverflow) | 1974-08-19 |
DE2243980B2 (de) | 1980-08-07 |
IT970707B (it) | 1974-04-20 |
JPS5314340B2 (enrdf_load_stackoverflow) | 1978-05-17 |
CA959115A (en) | 1974-12-10 |
FR2160393A1 (enrdf_load_stackoverflow) | 1973-06-29 |
JPS4859771A (enrdf_load_stackoverflow) | 1973-08-22 |
GB1392756A (en) | 1975-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2503429A (en) | Metallic casing for electrical units | |
US3778127A (en) | Sealing technique for gas panel | |
US3767282A (en) | Protection of terminal metallurgy during working and reworking of gas discharge display devices | |
US3778126A (en) | Gas display panel without exhaust tube structure | |
JP2648320B2 (ja) | ヒューズの製作方法 | |
US3837724A (en) | Gas panel fabrication | |
WO2001029858A1 (en) | Plasma display and method for producing the same | |
US2515337A (en) | Metal to glass seal and method of producing same | |
US3931436A (en) | Segmented gas discharge display panel device and method of manufacturing same | |
US3693005A (en) | Secondary-emissive electrode | |
JP3526650B2 (ja) | Pdpの製造方法 | |
JP2000030618A (ja) | プラズマディスプレイパネル | |
GB1508095A (en) | Electron-multiplying device | |
GB2029084A (en) | Constructing gas discharge displays | |
US2821811A (en) | Method of manufacturing cathode-ray tubes | |
US6152796A (en) | Method for manufacturing an image forming apparatus | |
JPS6360493B2 (enrdf_load_stackoverflow) | ||
US2814165A (en) | Vacuum-tight electrical connections for electron-discharge devices | |
JPS58155624A (ja) | 表示管の製造方法 | |
JPH03171525A (ja) | 榮光表示管の製造方法 | |
US4194643A (en) | Method and apparatus for frit-sealing high temperature CRT faceplate to conventional CRT envelope | |
US3801184A (en) | Closed vessel comprising a digital light deflection system | |
JP3192603B2 (ja) | 放電型サージ吸収素子の製造方法 | |
JP7608883B2 (ja) | サージ防護素子及びその製造方法 | |
US3162780A (en) | Piezo-electrical quartz crystal in evacuated glass housings |