US3762155A - Simulated pendulum clock - Google Patents
Simulated pendulum clock Download PDFInfo
- Publication number
- US3762155A US3762155A US00211343A US3762155DA US3762155A US 3762155 A US3762155 A US 3762155A US 00211343 A US00211343 A US 00211343A US 3762155D A US3762155D A US 3762155DA US 3762155 A US3762155 A US 3762155A
- Authority
- US
- United States
- Prior art keywords
- pendulum
- arm
- movement
- clock
- driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims description 5
- 238000010276 construction Methods 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B45/00—Time pieces of which the indicating means or cases provoke special effects, e.g. aesthetic effects
- G04B45/0038—Figures or parts thereof moved by the clockwork
- G04B45/0053—Figures or parts thereof moved by the clockwork with oscillating motion in hanging or standing clockworks such as imitation of a real pendulum
Definitions
- the UNITED STATES PATENTS pendulum is driven by a separate electromagnetic 1,743,231 1/1930 Packard 58/29 movement which applies drive force y Chm to the 3,411,283 11/1963 K l et 1 58/129 X fulcrum of the pendulum so that a long pendulum arm 3,424,960 1/1969 Ross 318/128 and bob may be displayed without viewing the drive 308,731 12/1884 Bailey 58/32 ha i 418,125 12/1889 Hamblet 58/32 1,831,260 11/1931 Poole 58/29 7 Claims, 6 Drawing Figures Pmmmumm 3.762.155
- This invention relates to a direct current pendulum clock, and more particularly, to a pendulum clock wherein a uniquely constructed pendulum is driven by an electromagnet movement which is separate from a timekeeping movement which drives the hands of the clock.
- Most contemporary battery-operated clocks include a low power electronic timekeeping movement which is adequate for driving the hands of a clock, and while such a clock movement is entirely satisfactory for the functional purpose of timekeeping, the timekeeping motor or movement is not capable of driving a relatively large ornamental pendulum.
- Old-fashioned swinging pendulum clocks wherein a pendulum is structurally integrated into the clock mechanism to perform a timekeeping function are still considered by the clock industry to be asthetically appealing to a significant number of people. Accordingly,
- some contemporary prior art pendulum clocks have the appearance and apparent external operation of an oldfashioned swinging pendulum clock, and yet the pendulum does not serve a timekeeping function.
- Most of these contemporary pendulum clocks have included a synchronous electric motor which utilizes the ordinary house wiring as a source of electric power, and all of these prior art simulated pendulum clocks have used the same motor that is used for timekeeping to provide the power to drive the pendulum.
- a simulated swinging pendulum clock in which an electric motor 14 is provided for driving the hands of the clock and also the pendulum of the clock.
- Such a prior art simulated pendulum clock mechanism requires a relatively high torque motor to drive both the hands of the clock and the pendulum.
- the pendulum be in a vertical position and adjusting screws are usually provided for this purpose.
- the length of the pendulum usually requires adjustment. For instance, for an adjustment of 1 minute per week, a 12 inch pendulum must be adjusted to within 0.003 inch of the correct length.
- a timekeeping movement is provided for driving the hands or other time display elements ofa clock, and the pendulum for the clock is positioned below the drive force to the pendulum very close to the fulcrum portion of the pendulum while the lower viewable pendulum arm and bob extend a substantial distance below the electromagnetic pendulum movement.
- the movement for driving the hands of the clock, the movement for driving the pendulum, and the upper pendulum arm may all be located behind the face of the clock so that they cannot be seen by anyone viewing the clock and the pendulum; while the lower pendulum arm and bob may be readily seen as they extend below the face of the clock. It can be appreciated that with this arrangement any number of different lengths and shapes of lower pendulum arms and bobs may be connected to the upper pendulum arm to be driven by the separate and distinct pendulum drive movement.
- the simulated pendulum drive mechanism is not sensitive to the position of the clock, and since the pendulum does not have any relationship to the timekeeping function of the clock it does not require a length adjustment.
- FIG. 1 is a front elevational view of my improved pendulum clock partly broken away to show details of construction
- FIG. 2 is a front elevational view of the battery operated pendulum movement and the pendulum of the clock shown in FIG. 1;
- FIG. 3 is a perspective view of a portion of the pendulum and the electromagnetic movement for driving the pendulum of the pendulum clock shown in FIG. 1;
- FIG. 4 shows an electronic circuit for delivering driving pulses to the pendulum for moving the pendulum
- FIG. 5 is an enlarged fragmentary front elevational view of the upper and lower arms of the pendulum.
- FIG. 6 is an enlarged fragmentary side elevational view of the upper and lower arms of the pendulum similar to FIG. 5 showing the lower arm of the pendulum being connected to the upper arm of the pendulum.
- the clock includes an ornamental casing 10 of a type which is capable of being hung from a wall.
- a conventional hour hand 12, a minute hand 14, and Roman numerals are provided for indicating the hours and minutes.
- the hands of the clock may be driven by any conventional timing mechanism 16, and as shown in FIG. 2, an electronic battery-powered movement is utilized for this purpose.
- the battery-powered movement includes a casing 18 which may be conveniently formed from plastic or other suitable material.
- a battery 20 is positioned in an upper portion of the casing, and an electric motor 22, a mechanical oscillator 24, and an electronic oscillator circuit 26 are positioned in the lower portion of the casing along with drive gearing 28 for the hands of the clock.
- the gearing from the motor 22 is connected to a center stack of concentric shafts 30 and 32 which extend through a front wall of the timing mechanism casing and the front casing 10 of the clock for driving the hour and minute hands 12 and 14, respectively.
- a pendulum and a movement for driving the pendulum may be readily added to the clock mechanism so far described, or any other clock mechanism which includes a low power direct current source of power.
- the usual electronic battery-operated timekeeping movement 16 for driving the hands of a clock is not too large, and yet as shown by the dotted lines it occupies a considerable amount of space behind the front face of the clock. As shown, it extends roughly from the lower portion of Roman numeral I to the upper portion of numeral VII. As shown, I have provided an electronic pendulum movement 34 which may be positioned with a casing 36 which is so small that it does not extend below the outer circumference of the clock casing 10. In this manner, all of the driving mechk anism for my unique pendulum38 may be positioned so that it is not seen. Thus, a person viewing the pendulum clock may readily observe the hands of the clock and what appears to be an old-fashioned swinging pendulum with a relatively long pendulum arm 40 and a large decorative pendulum bob 42. 4
- the battery-powered pendulum movement 34 is separate and distinct from the timekeeping mechanism 22, 24 and 26 for driving the hands of the clock, it can be conveniently housed in a separate plastic casing 36.
- the electrical connections from the battery 20 to the separate pendulum movement 34 may be conveniently made by a pair of electrical wires 48 and 49 which may extend through an aperture 82 which is formed in a top wall of the casing 36.
- the pendulum movement casing 36 may be readily attached to the conventional battery-operated clock timing mechanism by means of a sheet metal plate 50 which may be conveniently secured to the mechanism casing by a nut 52 and a threaded collar 53 which are also required for assembling the timekeeping movement casing 16 to the clock casing 10. As illustrated, the sheet metal plate 50 extends downwardly from the collar 53, and the pendulum movement casing 36 may be readily attached to the plate 50 by any suitable connection means.
- the pendulum 40 is uniquely constructed so that a variety of different ornamental pendulums may be operated and driven by one mass-produced pendulum movement 34, and the pendulum arm which is visible is also uniquely con structed so that it will always hang in a more or less vertical position regardless of slight inaccuracies which might occur in mounting the clock casing I0 on a wall, or similar inaccuracies which could occur with table top type clocks.
- the pendulum 40 is formed in two parts, a lower portion including a relatively long ornamental arm 56 to which a decorative pendulum bob 42 may be attached, and a very short upper portion including a fulcrum portion 60 and a drive arm 58 which is operated by the pendulum drive movement 34.
- the fulcrum portion includes a flexible leaf spring 60 having its upper end clamped between two L-shaped brackets 62 and 63 which may be riveted or otherwise secured to the sheet metal plate 50.
- the fulcrum spring 60 of the pendulum is made quite thin.
- the hinge spring is a piece of hardened steel of a thickness of approximately 0.0015 inch and an active length of one-fourth inch. The spring flexes as the pendulum swings at its characteristic varying angular acceleration. This varying angular acceleration would result in an awkward appearing motion because the loosely hung light-weight pendulum arm 40 would rock in the hanger bracket 74 and it would not stay in alignment with the drive arm 58.
- the bracket 74 to which the lower pendulum arm 40 is hung is provided with a unique support and connecting mechanism to support the weight of the pendulum only at the center of the pendulum shaft.
- the upper drive arm 58 includes a bracket member portion 66 which is provided for supporting the lower arm 56 and also functions as a mounting bracket for supporting a permanent magnet 64 for driving the pendulum.
- the bracket portion 66 is arranged in the same plane as the fulcrum spring 60 and its upper end is readily attached to the fulcrum spring by means of a plate 68 and rivets 70 and 72.
- the lower leg portion 74 of the upper drive arm 58 is arranged generally perpendicular to the leg 66 and is uniquely constructed to support the lower ornamental pendulum arm 56 in a vertical position.
- the lower pendulum arm 56 is hung in a vertical position from the upper arm 58 by uniquely constructing the connecting portions of the arms.
- the upper arm 74 includes a slotted portion 76 having an upwardly extending projection 77 for receiving a tab 78 of the lower arm for providing a gravitational point support for the lower pendulum arm 40.
- a hooked tab 78 of the lower arm 40 includes a generally flat surface which is positioned on top of the gravitational point support surface 77 of the upper pendulum arm 58.
- the pendulum bob 42 and the lower pendulum arm 40 will hand in a generally vertical position from the gravitational point support 77 regardless of slight inaccuracies in supporting the clock casing 10 on a wall or other support. Should the clock casing 10 be positioned so that its top is forward of a true vertical position and its bottom portion is rearward from a true vertical position, it can be appreciated that the lower arm 40 and bob 42 would be located somewhat forwardly from the lower portion 06 of the drive arm member 50.
- the pendulum drive movement 34 is inductively coupled to the pendulum magnet 64 and will cause the upper arm 50 of the pendulum to be moved to and fro to the right and left as shown in the drawings about its fulcrum spring 60.
- the pendulum drive movement 34 is essentially an appendage to the battery-operated timekeeping movement ]l6, the available space from the leaf spring fulcrum 60 to the point where the pendulum receives its drive power is very limited and may be less than 1 inch.
- the magnet 64 excursion may be as small as 0.1 to 0.2 inch.
- the magnet 64 fixed to the pendulum arm 58 at this point may be moving with a frequency of only one cycle per second.
- the magnet has been designed to have a very high flux density and is coupled to a large coil having many turns.
- the motor stator magnet core and energizing coil for supplying adequate flux to move the permanent magnet 64 are shown at 1011 and 102, respectively, in FIG. 3 of the drawing, and the drive coil 1102 is also shown in the electronic circuit illustrated in FIG. 4 of the drawing.
- the circuit illustrated in FIG. 4 is essentially a pushpull switching oscillator circuit which is turned on and off by signals generated by the swinging magnet 64 on the upper pendulum arm 58.
- coils 102 and 104 may be wound on the same bobbin for alternately driving magnet 64 and the pendulum.
- the upper pendulum arm 58 is uniquely constructed with respect to the lower pendulum arm 56 for transmitting the drive forces from the permanent magnet 64 to the upper pendulum arm 53, and to the lower pendulum arm 56 and the pendulum bob 42.
- an outwardly extending drive pin 00 is fixed to the lower portion 74 of the drive bracket member for cooperating with an elongated slot 90 which is formed in the lower pendulum arm 56.
- the drive pin 88 exerts an aligning force on the lower pendulum arm 56 and the pendulum bob 42, and it also allows the pendulum arm 40 and the pendulum bob 42 to hang in a more or less true vertical position regardless of the position of the clock casing 10.
- the pin and slot connection 88-90 allows the lower pendulum arm 56 and the pendulum bob 42 to hang away from the lower portion of the driving bracket member 74 starting at the gravitational point support surface 77 where the lower arm 40 of the pendulum arm engages the upper pendulum arm 58.
- the tab portion 78 of the lower pendulum arm 56 is positioned at an angle to the major portion of the lower pendulum arm 56 in order to urge the lower pendulum arm 56 toward the lower leg 74 of the drive bracket.
- the pin 88 extends outwardly from the hanger bracket 74 of the upper pendulum arm into the mating slot in the pendulum shaft.
- it provides a positive alignment of the pendulum arm 56 with the driving bracket 74 so that both the upper and lower pendulum arms 58 and 56, respectively, are forced to swing with the same angular velocity so that no rocking motion can occur.
- the pin 88 engages in the slot 90 in the lower pendulum arm with a 0.001 or 0.002 inch clearance so that the pendulum shaft can hang freely in its gravitational vertical position regardless of whether the clock is mounted in the same or a varying position from the vertical.
- my unique pendulum mechanism may be readily operated as a true pendulum with its pleasing swinging motion.
- the pendulum mechanism is not sensitive to the operating position of the clock, it does not require a length adjustment, and the mechanism may be used with any number of different timekeeping movements and many different pendulums having a number of different pendulum arm lengths without any change to the timekeeping movement or to the pendulum movement.
- the electromagnetic drive for the upper arm of the pendulum is applied so close to the fulcrum portion of the pendulum that the portion of the lower pendulum arm and the pendulum bob may be visible substantially in their entirety and may be made quite long while the relatively small drive mechanism 34 may be conveniently shielded from an observer by a clock cas-
- my unique pendulum construction is particularly suitable to relatively large but light-weight omamental pendulums because the short radius of the applied driving force would require the pendulum arm and bob assembly to be as light in weight as is practical.
- Normal pendulum clocks have a relatively heavy bob which allows a simple hook attachment means to be satisfactory for connecting the pendulum to its support.
- a low power direct current operated pendulum clock comprising:
- a time display mechanism operatively connected to said timekeeping movement to display time
- a pendulum including an elongated arm and a pendulum bob, said bob being connected to said elongated arm, said elongated arm and bob being positioned below and separated from said timekeeping movement;
- an electromagnetic movement including an oscillator for providing pulses for driving said pendulum, said electromagnetic movement being separate from said timekeeping movement and having no electrical, mechanical or synchronizing driving connection with said timekeeping movement;
- said pendulum arm including an upper pendulum drive arm having a permanent magnet positioned adjacent to said electromagnetic movement for driving said pendulum and a lower pendulum arm removably connected to said upper pendulum arm.
- a pendulum clock as defined in claim 3 wherein a vertical slot is formed in the lower arm of the pendulum, a drive pin is fixed to the upper arm of the pendulum and the pin extends into the generally vertical slot for driving the lower pendulum arm and allowing the lower pendulum arm to hang in a generally vertical position from its tab which is positioned on the gravitational point support surface of the upper pendulum arm.
- a pendulum clock as defined in claim 1 wherein said timekeeping movement is enclosed in a plastic casing, said pendulum movement is enclosed in a plastic casing, and a sheet metal plate is provided for connecting the pendulum movement to the timekeeping movement and to a clock casing.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electric Clocks (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21134371A | 1971-12-23 | 1971-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3762155A true US3762155A (en) | 1973-10-02 |
Family
ID=22786533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00211343A Expired - Lifetime US3762155A (en) | 1971-12-23 | 1971-12-23 | Simulated pendulum clock |
Country Status (5)
Country | Link |
---|---|
US (1) | US3762155A (cs) |
JP (1) | JPS4873177A (cs) |
CH (2) | CH561928A (cs) |
DE (1) | DE2200919A1 (cs) |
FR (1) | FR2164871A1 (cs) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3986336A (en) * | 1973-09-07 | 1976-10-19 | Egon Heim | Improvement in or for a torsion pendulum clock |
US20060126441A1 (en) * | 2004-12-09 | 2006-06-15 | Centre Clock Industry Co., Ltd. | Pendulum box for clock |
USD531915S1 (en) * | 2006-03-14 | 2006-11-14 | Sun Coast Merchandise Corporation | Clock with pendulum |
USD536625S1 (en) * | 2006-03-14 | 2007-02-13 | Sun Coast Merchandise Corporation | Clock with pendulum |
US20080304021A1 (en) * | 2007-06-06 | 2008-12-11 | Young Optics Inc. | Light-shielding module and projection apparatus using the same |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US308731A (en) * | 1884-12-02 | Heney l | ||
US418125A (en) * | 1889-12-24 | Electric synchronizing device for clock-pendulums | ||
US1743231A (en) * | 1920-05-29 | 1930-01-14 | Cutler Hammer Inc | Device for timing and controlling impulses |
US1831260A (en) * | 1927-04-04 | 1931-11-10 | Poole Mfg Co Inc | Electric clock mechanism |
GB596216A (en) * | 1939-04-18 | 1947-12-31 | Clifford Cecil F | Improvements in or relating to escapement mechanism |
US2995005A (en) * | 1959-05-21 | 1961-08-08 | Gen Electric | Simulated swinging pendulum clock |
US3168690A (en) * | 1953-09-17 | 1965-02-02 | Hatot Leon Ets | Clock power-device |
US3403312A (en) * | 1965-01-02 | 1968-09-24 | United States Time Corp | Circuitry for timekeeping instruments |
US3411288A (en) * | 1966-08-11 | 1968-11-19 | Koplar | Self-aligning pendulum mount |
US3424960A (en) * | 1966-02-10 | 1969-01-28 | Ross & Baruzzini Inc | Pendulum drive apparatus |
US3546874A (en) * | 1968-11-06 | 1970-12-15 | Spartus Corp | Pendulum clock |
-
1971
- 1971-12-23 US US00211343A patent/US3762155A/en not_active Expired - Lifetime
-
1972
- 1972-01-10 DE DE19722200919 patent/DE2200919A1/de active Pending
- 1972-01-12 JP JP47006118A patent/JPS4873177A/ja active Pending
- 1972-01-14 CH CH56072A patent/CH561928A/xx unknown
- 1972-01-14 CH CH56072D patent/CH56072A4/xx unknown
- 1972-12-22 FR FR7245894A patent/FR2164871A1/fr not_active Withdrawn
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US308731A (en) * | 1884-12-02 | Heney l | ||
US418125A (en) * | 1889-12-24 | Electric synchronizing device for clock-pendulums | ||
US1743231A (en) * | 1920-05-29 | 1930-01-14 | Cutler Hammer Inc | Device for timing and controlling impulses |
US1831260A (en) * | 1927-04-04 | 1931-11-10 | Poole Mfg Co Inc | Electric clock mechanism |
GB596216A (en) * | 1939-04-18 | 1947-12-31 | Clifford Cecil F | Improvements in or relating to escapement mechanism |
US3168690A (en) * | 1953-09-17 | 1965-02-02 | Hatot Leon Ets | Clock power-device |
US2995005A (en) * | 1959-05-21 | 1961-08-08 | Gen Electric | Simulated swinging pendulum clock |
US3403312A (en) * | 1965-01-02 | 1968-09-24 | United States Time Corp | Circuitry for timekeeping instruments |
US3424960A (en) * | 1966-02-10 | 1969-01-28 | Ross & Baruzzini Inc | Pendulum drive apparatus |
US3411288A (en) * | 1966-08-11 | 1968-11-19 | Koplar | Self-aligning pendulum mount |
US3546874A (en) * | 1968-11-06 | 1970-12-15 | Spartus Corp | Pendulum clock |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3986336A (en) * | 1973-09-07 | 1976-10-19 | Egon Heim | Improvement in or for a torsion pendulum clock |
US20060126441A1 (en) * | 2004-12-09 | 2006-06-15 | Centre Clock Industry Co., Ltd. | Pendulum box for clock |
US7229209B2 (en) * | 2004-12-09 | 2007-06-12 | Centre Clock Industry Co., Ltd | Pendulum box for clock |
USD531915S1 (en) * | 2006-03-14 | 2006-11-14 | Sun Coast Merchandise Corporation | Clock with pendulum |
USD536625S1 (en) * | 2006-03-14 | 2007-02-13 | Sun Coast Merchandise Corporation | Clock with pendulum |
US20080304021A1 (en) * | 2007-06-06 | 2008-12-11 | Young Optics Inc. | Light-shielding module and projection apparatus using the same |
Also Published As
Publication number | Publication date |
---|---|
CH56072A4 (cs) | 1974-12-13 |
CH561928A (cs) | 1975-05-15 |
FR2164871A1 (cs) | 1973-08-03 |
JPS4873177A (cs) | 1973-10-02 |
DE2200919A1 (de) | 1973-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005106830A (ja) | 電子調整器と連結した機械式ムーブメントを有する時計 | |
JP2005106829A (ja) | 電子調整器と連結した機械式ムーブメントを有する時計 | |
US3762155A (en) | Simulated pendulum clock | |
US3898789A (en) | Electric clock | |
US3762154A (en) | Simulate pendulum clock | |
US3469389A (en) | Electromechanical vibrator assembly for a timepiece | |
US3990226A (en) | Electromechanical clock | |
US2900786A (en) | Timepiece arrangement | |
US3472020A (en) | Electrically powered timepiece | |
US3161813A (en) | Magnetic oscillator controlled motor | |
US3559396A (en) | Variable loudness alarm mechanism | |
US3641761A (en) | Watch transducer | |
JP2988423B2 (ja) | 小型時計 | |
US5822277A (en) | Long period pendulum apparatus | |
US3440814A (en) | Electric clock alarm system | |
US2041342A (en) | Time indicating mechanism | |
JPS628549Y2 (cs) | ||
US3750386A (en) | Pendulum controlled electrodynamic clockwork | |
JP2020034332A (ja) | 振り子駆動装置、振り子ユニット及び振り子付き時計 | |
US2242655A (en) | Impulse timepiece | |
KR820001558Y1 (ko) | 전자시계의 전자자동 진자(振子)장치 | |
JPH04142491A (ja) | 小型時計 | |
JPH0436470Y2 (cs) | ||
JPH019030Y2 (cs) | ||
US2237673A (en) | Electric clock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BLACK & DECKER, INC., 1423 KIRKWOOD HIGHWAY NEWARK Free format text: ASSIGNS AS OF APRIL 27, 1984 THE ENTIRE INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY A NY CORP.;REEL/FRAME:004349/0275 Effective date: 19840824 |
|
STCK | Information on status: patent revival |
Free format text: ABANDONED - RESTORED |