US3761394A - Catalytic cracking of naphtha - Google Patents
Catalytic cracking of naphtha Download PDFInfo
- Publication number
- US3761394A US3761394A US00889714A US3761394DA US3761394A US 3761394 A US3761394 A US 3761394A US 00889714 A US00889714 A US 00889714A US 3761394D A US3761394D A US 3761394DA US 3761394 A US3761394 A US 3761394A
- Authority
- US
- United States
- Prior art keywords
- naphtha
- zeolite
- catalyst
- cracking
- catalytic cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004523 catalytic cracking Methods 0.000 title abstract description 18
- 239000003054 catalyst Substances 0.000 abstract description 44
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 abstract description 32
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 abstract description 29
- 239000010457 zeolite Substances 0.000 abstract description 25
- 229910021536 Zeolite Inorganic materials 0.000 abstract description 22
- 238000009835 boiling Methods 0.000 abstract description 19
- 238000005336 cracking Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 19
- 229910000323 aluminium silicate Inorganic materials 0.000 description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- 238000012360 testing method Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 7
- 238000004231 fluid catalytic cracking Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000001282 iso-butane Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052680 mordenite Inorganic materials 0.000 description 5
- MRMOZBOQVYRSEM-UHFFFAOYSA-N tetraethyllead Chemical compound CC[Pb](CC)(CC)CC MRMOZBOQVYRSEM-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- -1 for example Chemical compound 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 238000004517 catalytic hydrocracking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000001833 catalytic reforming Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000012013 faujasite Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- XLSFVUFTABXNDN-UHFFFAOYSA-N aluminum;oxido(oxo)silicon Chemical compound [Al+3].[O-][Si]=O.[O-][Si]=O.[O-][Si]=O XLSFVUFTABXNDN-UHFFFAOYSA-N 0.000 description 1
- 239000011959 amorphous silica alumina Substances 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 235000013844 butane Nutrition 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical class CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229960001866 silicon dioxide Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
Definitions
- This invention relates to the catalytic cracking of hydrocarbons.
- this invention relates to the fluid catalytic cracking of naphtha having a low octane rating and boiling in the range of 100 to 450 F.
- Gasolines are blended from naphtha stocks whose octane ratings are often increased through catalytic reforming. Both virgin and cracked stocks may be upgraded by reforming operations. Catalytic reformers are usually operated to provide the desired octane improvement with the least conversion of gasoline to butanes and lighter materials.
- the gasoline blending pool is maintained by a variety of operations--isobutane and butenes are charged to alkylation units and light olefins are polymerized to pro vide high octane blending components while the catalytic cracking of gas oil augments the supply of naphtha as well as providing additional feed for the alkylation and polymerization units.
- hydrocracking provides additional quantities of gasoline blending naphthas
- the heavy naphtha from hydrocracking often has a relatively low octane number which may be increased by catalytic reforming.
- Naphtha is a more difiicult stock to crack than gas oil and up to the present time limited success has been obtained in cracking naphtha catalytically.
- Traditional cracking catalyst such as silica-alumina, exhibited relatively poor selectivity and activity when employed to crack naphtha resulting in the formation of relatively large amounts of gas and coke and producing small amounts of desirable olefins and aromatics.
- US. 3,284,341 discloses a process for the catalytic cracking of naphtha with a silica-alumina catalyst to produce substantial quantities of olefins and aromatics by maintaining the space velocity above about 4.5, the pressure between 0 and 20 p.s.i.g. and the reaction temperature between 1000 and 1200 F.
- our invention is directed to the catalytic cracking of hydrocarbons boiling in the gasoline range to increase the octane rating of the naphtha and to yield substantial quantities of lighter materials to serve as feed for petrochemical, polymer and alkylate manufacture.
- Zeolitic cracking catalysts containing type X or type Y aluminosilicates have been found to oifer particular utility in the catalytic cracking of such feed streams.
- Our invention contemplates a process for the fluid catalytic cracking of naphtha which comprises:
- hydrocarbons boiling in the range of 100 to 450 F. comprisethe feedstock for this process.
- Many refinery streams having low economic value may be upgraded by employing the process of our invention.
- Useful feedstocks are usually highly paraffinic and include such light hydrocarbon fractions as low octane naphthas, Udex raffinate, low octane naphthas from thermal cracking or hydrocracking operations and straight run naphthas.
- the term low octane naphtha refers to these useful feedstocks.
- the catalyst employed in the instant invention is a cracking catalyst of the zeolitic type as exemplified by those catalysts wherein the aluminosilicate is dispersed in a siliceous matrix.
- the catalysts which may be usefully employed in the process of our invention are those zeolitic cracking catalysts comprising aluminosilicates of type X or type Y, including both the naturally occuring and synthetic varieties. Because of their extremely high activity these zeolitic materials are composited with a material possessing a substantially lower level of catalytic activity, a siliceous matrix which may be of the synthetic, semisynthetic or natural type.
- the composite crystalline zeolitic catalyst comprises about 1 to 50 wt. percent zeolite, about to 50 wt. percent alumina and the remainder silica.
- the crystalline aluminosilicate portion of the catalyst composition is a natural or synthetic, type X or type Y, alkali metal, crystalline aluminosilicate which has been treated to replace all or at least a substantial portion of the original alkali metal ions with other ions such as hydrogen and/or a metal or combination of metals such as barium, calcium, magnesium, manganese or rare earth metals, for example, cerium, lanthanum, neodymium, praseodymium, sarnarium and yttrium.
- the crystalline zeolites contemplated above may be represented by the formula where M represents hydrogen or a metal, 11 its valance, x has a value ranging from 2 to and y ranges from 0 to 10, in dehydrated zeolites, y will be substantially 0.
- the crystalline zeolites are either natural or synthetic zeolite X or zeolite Y.
- in is selected from the group consisting of hydrogen, calcium, magnesium and the rare earth metals.
- the operating conditions contemplated herein to catalytically crack naphtha include: a reactor temperature of 700 to 1600 F., preferably 8501200 F., a reactor contact time between 0.5 seconds and minutes, preferably 1 second to 10 minutes and a catalyst to oil ratio between 0.5 and 30, preferably between 2 and 15.
- a reactor temperature of 700 to 1600 F., preferably 8501200 F. a reactor contact time between 0.5 seconds and minutes, preferably 1 second to 10 minutes and a catalyst to oil ratio between 0.5 and 30, preferably between 2 and 15.
- a contact time in the riser of 0.5 to 30 seconds, preferably 5 to seconds and a contact time in the reactor bed of 0 to 15 minutes, preferably 0 to 10 minutes and regenerator temperature of 1000 to 1500 F., particularly 11001350 F.
- any of the catalytic cracking equipment currently employed in the petroleum industry may be utilized to practice our invention including a fixed bed catalyst reactor, a moving bed unit or a fluid catalytic cracking unit of varying types including those employing riser cracking. If a fixed bed reactor is employed, it will be periodically removed from operation for regeneration of the catalyst. In moving bed or fluid catalyst systems the catalyst is continually regenerated.
- the naphtha feed is introduced into the catalyst reactor under the operating conditions described above to effect the desired conversion of the feedstock.
- the efiluent is introduced into conventional recovery equipment which will include distillation equipment for the purpose of separating the vaporous effluent into products including naphtha and hydrocarbons lighter than naphtha whose high content of olefins and isobutane make them particularly useful as alkylate feedstocks and whose general characteristics make them particularly useful as petrochemical and polymer gasoline feeds.
- the silica-alumina catalyst was employed in Runs 1 and 6 while a mixture of hydrogen mordenite and silica alumina was employed in Runs 4 and 8.
- Zeolite No. 1 was Aerocat Triple S-4. This fluid catalytic cracking catalyst contains approximately 3 wt. percent of type Y zeolite composited in a silica-alumina matrix and containing rare earth metal cations;
- Zeolite No. 2 was Davison XZ-25-This zeolitic cracking catalyst contains approximately 11 wt. percent of type X zeolite composited in a silica-alumina matrix and contains cations of rare earth metals;
- Zeolite No. 3 was a high zeolite content catalyst containing approximately 40 wt. percent of type X zeolite composited in a silica-alumina matrix and containing rare earth metal cations. Zeolite No. 1 was employed in Runs 2 and 7; Zeolite No. 2 in Runs 3 and 9 and Zeolite No. 3 in Run 5.
- Runs 1 to 3 were conducted at a temperature of 1025 F. and a space velocity of 3.6. Run 1 demonstrates the prior art and Runs 2 and 3 the process of our invention.
- Run 4 'Runs 4 and 5 were conducted at a temperature of 880 F. and a space velocity of 7.2.
- Run 4 demonstrates the prior art and Run 5 the process of this invention.
- Runs 6 and 7 were conducted at approximately 895 F. and a space 'velocity of 3.6.
- Run 6 exemplifies the prior art;
- Run 7, the process of this invention.
- Runs 8 and 9 were conducted at approximately 910 F. and a space velocity of 3.6.
- Run 8 demonstrates the prior art and Run 9, the process of this invention.
- Each of the catalysts was subjected to an activation step by heating at 1480" F. for 17 hours before a test run was made.
- said aluminosilicate selected from the group consisting of zeolite X and zeolite Y and comprising cations selected from the group consisting of hydrogen, barium, calcium, magnesium, manganese, rare earth metals and mixtures thereof and (b) recovering products boiling below the initial boiling point of the low octane naphtha and a naphtha having an increased octane rating.
- cracking conditions comprise a temperature of 700-1600 F., a catalyst-to-oil ratio between 0.5 and and a content time of 0.5 second to 15 minutes.
- a process according to claim 1 wherein the cracking conditions comprise a temperature of 850-1200 F., a
- a process for catalytic cracking of naphtha which comprises:
- catalyst-to-oil ratio between 2 and 15 and a contact time of 1 second to 10 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88971469A | 1969-12-31 | 1969-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3761394A true US3761394A (en) | 1973-09-25 |
Family
ID=25395654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00889714A Expired - Lifetime US3761394A (en) | 1969-12-31 | 1969-12-31 | Catalytic cracking of naphtha |
Country Status (9)
Country | Link |
---|---|
US (1) | US3761394A (pt) |
AU (1) | AU2379070A (pt) |
BE (1) | BE761080A (pt) |
BR (1) | BR7025026D0 (pt) |
CA (1) | CA945098A (pt) |
ES (1) | ES386941A1 (pt) |
FR (1) | FR2072151B1 (pt) |
NL (1) | NL7018911A (pt) |
ZA (1) | ZA708586B (pt) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3928175A (en) * | 1973-05-24 | 1975-12-23 | Mobil Oil Corp | Upgrading crude oil by combination processing |
US3928172A (en) * | 1973-07-02 | 1975-12-23 | Mobil Oil Corp | Catalytic cracking of FCC gasoline and virgin naphtha |
US4066531A (en) * | 1975-09-26 | 1978-01-03 | Mobil Oil Corporation | Processing heavy reformate feedstock |
US4376038A (en) * | 1979-11-14 | 1983-03-08 | Ashland Oil, Inc. | Use of naphtha as riser diluent in carbo-metallic oil conversion |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1386552A (fr) * | 1962-12-28 | 1965-01-22 | Socony Mobil Oil Co | Reformage catalytique |
US4933280A (en) * | 1984-12-11 | 1990-06-12 | California Biotechnology Inc. | Recombinant DNA sequence encoding Alveolar Surfactant Protein |
-
1969
- 1969-12-31 US US00889714A patent/US3761394A/en not_active Expired - Lifetime
-
1970
- 1970-12-21 ZA ZA708586A patent/ZA708586B/xx unknown
- 1970-12-24 AU AU23790/70A patent/AU2379070A/en not_active Expired
- 1970-12-29 NL NL7018911A patent/NL7018911A/xx unknown
- 1970-12-30 ES ES386941A patent/ES386941A1/es not_active Expired
- 1970-12-30 BR BR225026/70A patent/BR7025026D0/pt unknown
- 1970-12-30 FR FR7047249A patent/FR2072151B1/fr not_active Expired
- 1970-12-30 BE BE761080A patent/BE761080A/xx unknown
- 1970-12-31 CA CA101,863A patent/CA945098A/en not_active Expired
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3928175A (en) * | 1973-05-24 | 1975-12-23 | Mobil Oil Corp | Upgrading crude oil by combination processing |
US3928172A (en) * | 1973-07-02 | 1975-12-23 | Mobil Oil Corp | Catalytic cracking of FCC gasoline and virgin naphtha |
US4066531A (en) * | 1975-09-26 | 1978-01-03 | Mobil Oil Corporation | Processing heavy reformate feedstock |
US4376038A (en) * | 1979-11-14 | 1983-03-08 | Ashland Oil, Inc. | Use of naphtha as riser diluent in carbo-metallic oil conversion |
Also Published As
Publication number | Publication date |
---|---|
FR2072151A1 (pt) | 1971-09-24 |
DE2064195A1 (de) | 1971-07-15 |
ES386941A1 (es) | 1973-04-16 |
BE761080A (fr) | 1971-06-30 |
NL7018911A (pt) | 1971-07-02 |
ZA708586B (en) | 1972-04-26 |
FR2072151B1 (pt) | 1973-12-07 |
CA945098A (en) | 1974-04-09 |
DE2064195B2 (de) | 1973-04-05 |
AU2379070A (en) | 1972-06-29 |
BR7025026D0 (pt) | 1973-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4181599A (en) | Naphtha processing including reforming, isomerization and cracking over a ZSM-5-type catalyst | |
US3784463A (en) | Catalytic cracking of naphtha and gas oil | |
JP2779689B2 (ja) | パラフイン炭化水素からのオレフインの製造方法 | |
US3928174A (en) | Combination process for producing LPG and aromatic rich material from naphtha | |
DE60001168T2 (de) | Olefinenherstellung | |
US4282085A (en) | Petroleum distillate upgrading process | |
US4251348A (en) | Petroleum distillate upgrading process | |
US3776838A (en) | Catalytic cracking of naphthas | |
US4390413A (en) | Hydrocarbon upgrading process | |
JPS6361997B2 (pt) | ||
JPH11246871A (ja) | オレフイン類の製造 | |
EP0347003B1 (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
JPS6245278B2 (pt) | ||
US4190519A (en) | Combination process for upgrading naphtha | |
US5069776A (en) | Process for the conversion of a hydrocarbonaceous feedstock | |
US5152883A (en) | Process for the production of improved octane numbers gasolines | |
CA2290960C (en) | Enhanced olefin yield and catalytic process with diolefins | |
US4067798A (en) | Catalytic cracking process | |
JPH08507564A (ja) | 高級オレフィンを用いるアルキル化によるガソリン中のベンゼンの減少 | |
US3114696A (en) | Upgrading of naphthas | |
DE69419873T2 (de) | Integriertes katalytisches Krack- und Olefinen Herstellungsverfahren | |
US3755141A (en) | Catalytic cracking | |
JPH0572954B2 (pt) | ||
US3758628A (en) | Igh octane gasoline combination cracking process for converting paraffinic naphtha into h | |
US3799864A (en) | Fluid catalytic cracking process |