US3740985A - Apparatus and method for continuous extrusion - Google Patents

Apparatus and method for continuous extrusion Download PDF

Info

Publication number
US3740985A
US3740985A US00199542A US3740985DA US3740985A US 3740985 A US3740985 A US 3740985A US 00199542 A US00199542 A US 00199542A US 3740985D A US3740985D A US 3740985DA US 3740985 A US3740985 A US 3740985A
Authority
US
United States
Prior art keywords
elongated
station
deforming agency
deforming
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00199542A
Other languages
English (en)
Inventor
F Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Western Electric Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Electric Co Inc filed Critical Western Electric Co Inc
Application granted granted Critical
Publication of US3740985A publication Critical patent/US3740985A/en
Assigned to AT & T TECHNOLOGIES, INC., reassignment AT & T TECHNOLOGIES, INC., CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE JAN. 3,1984 Assignors: WESTERN ELECTRIC COMPANY, INCORPORATED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
    • B21C1/26Push-bench drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/27Carriages; Drives
    • B21C1/30Drives, e.g. carriage-traversing mechanisms; Driving elements, e.g. drawing chains; Controlling the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/005Continuous extrusion starting from solid state material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/007Hydrostatic extrusion
    • B21C23/008Continuous extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • B21C23/211Press driving devices

Definitions

  • Rod of indefinite length coated with shear transmitting medium and extending into the central apertures of the gripping elements, is drawn along the common length of travel by means of shear forces generated in said coating by said gripping elements and transmitted to said rod as viscous drag force along the surface of the rod.
  • Axial and normal stresses are built up in the rod to stress the rod far above its yield strength and increase its ductility, or capacity for deformation without fracture. In this state, the rod is moved through and deformed by the die.
  • a pressure cylinder surrounds the gripping elements along the common length of travel and provides balanced increasing lateral support to the gripping elements as they move toward the die.
  • This invention relates, broadly speaking, to apparatus and method for continuous steady extrusion. More specifically, this invention relates to apparatus and method for continuously applying force along a portion of the surface of a rod of indefinite length to continuously advance the rod through an extrusion die.
  • the present invention represents yet a further improvement in the art of extrusion.
  • One of the objects of this invention is to provide improved apparatus and method for the continuous deformation of an elongated workpiece of indefinite length.
  • Another of the objects of this invention is to provide improved apparatus and method for the continuous and steady extrusion of a rod of indefinite length to produce wire of indefinite length.
  • a further object of this invention is to provide improved apparatus and method for continuously applying force along a portion of the surface of a rod of indefinite length to build up stresses in the rod and to continuously and steadily advance the rod through an extrusion die.
  • each of said paths guiding a train or series of segments, each segment having gear teeth on the outer surface and having an inner configuration corresponding with the configuration of a quarter of the surface of the rod.
  • Each train or series of segments is driven around its respective path by rotating spur gears, the said paths and their respective series of segments converging about the rod at a station upstream of an extrusion die and diverging at a station downstream of the extrusion die.
  • the segments converged about the rod and being driven from the upstream station toward the downstream station apply a motive force along the surface of a shear transmitting medium which has been applied to the surface of the rod upstream of the upstream station and which shear transmitting medium is interposed between the inner surfaces of the segments and the rod surface, which shear transmitting medium in turn exerts viscous drag force along the surface of the rod to propel the rod through the extrusion die.
  • FIG. 1 represents a longitudinal view in elevation of the apparatus of the present invention, partially broken away to show certain internal features of construction, the rod entering the apparatus at the right being shown in phantom and the wire exiting the machine at the left likewise being shown in phantom;
  • FIG. 2 represents a transverse view in elevation of the apparatus of the present invention, taken from the right of FIG. 1;
  • FIG. 3 represents a transverse section taken along the line 33 of FIG. 1;
  • FIG. 4 represents a section taken along the line 44 of FIG. 2 of a portion of that ,end of the apparatus through which the rod enters, the rod being shown in phantom;
  • FIG. 5 represents a longitudinal view, partially in medial section and partially diagrammatic, of the apparatus of the present invention, with all but the last pinions of the several power trains omitted for purposes of simplifying the figure;
  • FIG. 6 represents a section taken along the line 6-6 of FIG. 5, showing certain track details
  • FIG. 7 represents a section taken along the line 7-7 of FIG. 5, showing certain track details
  • FIG. 8 represents a transverse medial section, partially broken away, of the pressure cylinder, showing the relationship of the extrusion die to the gripping elements closed about the rod;
  • FIG. 9 represents a transverse section of the pressure cylinder taken along the line 9-9 of FIG. 8;
  • FIG. 10 represents a perspective diagrammatic view of the paths of the four sets of gripping elements relative to the rod and die, and illustrates the broad principle of operation of the present invention.
  • the paths of the four groups or trains of gripping element quadrants 4 converge about rod 2 at the entrance end 9 of the apparatus 1, four gripping element quadrants 4, one from each group or train, cooperating to form a gripping element encircling a portion of the surface of rod 2 (e.g., a length of rod 2 corresponding to the length of gripping element 10) whereby to move, in a manner to be described hereinafter, rod 2 through pressure cylinder 11 and extrusion die 12, the wire 3 resulting from the extrusion operation appearing at exit end 13 of apparatus 1, and the cooperating gripping element quadrants 4 diverging past (i.e., downstream of) extrusion die 12 and proceeding thence along their respective separate paths 6.
  • gripping elements 10 in series between the entrance end 9 and exit end 13 in effect constitute an endless pressure chamber about the length of rod 2 in the apparatus 1.
  • Gear blocks 14 and 15 are provided with central bores 16 and 17, respectively, and are counterbored slightly in their facing sides to receive the ends of pressure cylinder 11 having a central bore 18.
  • Gear blocks 14 and 15 and pressure cylinder 11 are securely held in assembled relation, with the longitudinal axes of bores 16, 17 and 18 aligned by means of tie rods 19 extending completely through the said gear blocks 14 and 15 and tensioned by means of nuts 20 threaded on the ends of the said tie rods 19 sufficiently to bear on the far sides of gear blocks 14 and 15, as shown in FIG. 1.
  • Fluid motors 21a, 21b, 21c and 21d are mounted to gear block 14, around that portion of gear block 14 adjacent the entrance end 9 of apparatus 1, preferably four fluid motors 21a, 21b, 21c and 21d preferably driven in unison from a common supply of pressurized motive fluid (not shown). Fluid motors 21a, 21b, 21c and 21d are arranged about the four faces of gear block 14 so as to occupy positions 90 removed from each other, when the apparatus 1 is viewed from an end thereof. Each fluid motor 21a, 21b, 21c and 21d drives a gear train 22a, 22b, 22c and 22d, respectively, suitably mounted and arranged within gear block 14 as shown in FIG.
  • each gear train 22a, 22b, 22c and 22d drives a pinion gear 5a, 5b, 5c and 5d, the teeth of which extend into central bore 16 at positions 90 removed from each other as shown in FIG. 3.
  • gear block 14 mounted to gear block 14, around that portion of gear block 14 adjacent pressure cylinder 11, are four fluid motors 23a, 23b, 23c and 23d, preferably driven in unison from a common supply of pressurized fluid (not shown). Fluid motors 23a, 23b, 23c and 23d are arranged about the four faces of gear block 14 so as to occupy positions 90 removed from each other, when the apparatus 1 is viewed from an end thereof.
  • Each fluid motor 23a, 23b, 23c and 23d drives a gear train 24a, 24b, 24c and 24d, respectively, suitably mounted and arranged within gear block 14, in a manner similar to the mounting and arrangement of gear trains 22a, 22b, 22c and 22d shown in FIG. 3.
  • Each gear train 24a, 24b, 24c and 24d drives a pinion gear 25a, 25b, 24c and 25d, the teeth of which extend into central bore 16 at positions 90 removed from each other.
  • Fluid pumps 26a, 26b, 26c and 26d are mounted to gear block 15 so as to occupy positions 90 removed from each other, when the apparatus 1 is viewed from an end thereof.
  • Each fluid pump 26a, 26b, 26c and 26d is driven by a gear train (not shown) suitably mounted and arranged within gear block 15 in a manner similar to the mounting and arrangement of gear trains 22a, 22b, 22c and 22d shown in FIG. 3, each said gear train being driven by a pinion gear 27a, 27b, 27c and 27d, the teeth of which extend into central bore 17 at positions removed from each other.
  • pinion gears 5a, 5b, 5c and 5d and of pinion gears 25a, 25b, 25c and 25d, engaging the teeth of and driving gripping element quadrants 4 in the groups or trains thereof upstream from pressure cylinder 1 1, when operated, preferably in unison, by supplying their respective fluid motors 21a, 21b, 21c and 21d, and their respective fluid motors 23a, 23b, 23c and 23d with pressurized fluid from the source (not shown), to advance the said trains of gripping element quadrants 4 through the pressure cylinder 1 1 from the inlet or upstream end thereof toward the exit or downstream end thereof and thence around the several endless paths 6.
  • pinion gears 27a, 27b, 27c and 27d engaging and being driven by the teeth of advancing gripping element quadrants 4 in the groups or trains thereof downstream from pressure cylinder 11, to act as brakes on the said moving trains of gripping element quadrants, working against pinions 5a, 5b, 5c and 5d, and against pinions 25a, 25b, 25c and 25d, and thereby hold together, in rigid juxtaposition within pressure cylinder 11 between the inlet and exit ends thereof, all gripping element quadrants 4 in the same group or train.
  • the intakes of fluid pumps 26a, 26b, 26c and 26d may be connected by conduits (not shown) to the respective discharge ports of fluid motors 23a, 23b, 23c and 23d, and the discharge ports of fluid pumps 26a, 26b, 26c and 26d may be connected by suitable conduits (not shown) to the source of pressurized fluid serving fluid motors 21a, 21b, 21c, 21d, 23a, 23b, 23c and 23d.
  • the work of operating fluid pumps 26a, 26b, 26c and 26d to pump fluid therethrough will effect the desired braking action on the gripping element quadrants 4 within pressure cylinder 1 1.
  • body portion 29 with quadrant-shaped longitudinal opening 30 receiving gripping element quadrants 4, retainer portion 31 having curved inner face 32 corresponding with the curved toothed exterior surface of gripping element quadrants 4, and threaded bolts 33 holding retainer portion 31 in place in body portion 29.
  • Tracks 8 are of generally similar construction, receiving gripping element quadrants 4 and providing for a smooth transition in the paths 6 between straight sections 7 of track and central bores 16 and 17 of gear blocks 14 and 15.
  • gripping element quadrants 4 from the separate endless paths 6, which have met in that length of travel common to the said four endless paths 6 and therein constitute gripping elements 10, are maintained in closely abutting relation prior to and as they are engaged by pinions 5a, 5b, 5c and 5d, whereby to insure that they are properly engaged by the teeth of said pinions 5a, 5b, 5c and 5d and pass through pressure cylinder 11 without gaps therebetween.
  • means are provided in each endless path 6 to urge the gripping element quadrants 4 in closely abutting relation, toward pinions 5a, 5b, 5c and 5d.
  • Such means may, for example, comprise a transverse passage 29a in track 7 of each endless path 6, for the introduction of pressurized air between adjacent gripping element quadrants 4, thereby urging the gripping element quadrants 4, as they pass downstream of the conduit 29a against the train of gripping element quadrants 4 leading to pinions 5a, 5b, 5c and 5d.
  • a sleeve 34 (FIG. 8) having an outer diameter such as to permit sleeve 34 to fit snugly within the said central bore 18.
  • Sleeve 34 is somewhat longer than pressure cylinder 11 and projects from both ends thereof into the counterbores in the facing sides of gear blocks 14 and 15.
  • the outer surface of sleeve 34 is undercut or reduced in diameter at spaced lengths therealong, as shown in FIG. 8, thereby to provide spaced pairs of seal seats 35 receiving sealing rings 36 except at the ends of sleeve 34 where only single seal seats 35 with sealing rings 36 are provided, and further to provide between the spaced pairs of seal seats 35 (and between the endmost pairs of seal seats 35 and the single seal seats 35 adjacent thereto) annular compartments 37.
  • the center-tocenter distance between spaced pairs of seal seats 35 (and between the endmost pairs of seal seats 35 and the single seal seats 35 adjacent thereto) is, in the preferred embodiment, equal to the length of a gripping element quadrant 4.
  • sleeve quadrants 38a, 38b, 38c and 38d are positioned within sleeve 34 and collectively constitute a second sleeve 39 of outer diameter substantially equal to the inner diameter of sleeve 34 (i.e., the second sleeve 39 closely fits within sleeve 34) and of length equal to the length of sleeve 34.
  • sleeve quadrants 38a, 38b, 38c and 38d are recessed so as to provide, when the sleeve quadrants 38a, 38b, 38c and 38d are assembled, a longitudinal circular recess 40 adapted to receive an elongated heating element (not shown), a seat 41 adapted to receive guide member 42, and a seat 43 adapted to receive a sealing plate 44.
  • guide members 42 extend inwardly of sleeve 39 and are 90 removed from each other.
  • Gripping element quadrants 4 are each provided, on the outer portions of their mating faces, with a slot 45, and guide members 42, extending into the slots 45 between engaged gripping element quadrants 4, as shown in FIG. 9, function to key the gripping element constituted by the said gripping element quadrants 4 to prevent the same from rotating in passing longitudinally through pressure cylinder 11.
  • Means are provided to key the gripping element quadrants 4 as they leave curved tracks 8 and enter central bore 16 of gear block 14 at the entrance end 9 of the apparatus 1. Means are also provided to key the gripping element quadrants 4 as they leave central bore 17 of gear block 15 and enter curved tracks 8 at the exit end 13 of apparatus 1.
  • Such means comprises guide members 46 arranged and secured in radially spaced relation to each other (i.e., at angles to each other) inside central bores 16 and 17 of gear blocks 14 and 15, respectively.
  • Corresponding guide members 46 in central bores 16 and 17 are aligned with each other and with corresponding guide members 42 in pressure cylinder 11, and are suitably oriented with respect to curved tracks 8 so that, as the gripping element quadrants 4 leave curved tracks 8 at the entrance end 9 of apparatus 1, guide members 46 in central bore 16 will register with slots 45 in adjacent gripping element quadrants 4; further, as gripping element quadrants 4 leave central bore 17 to enter curved tracks 8 at the exit end 13 of apparatus 1, slots 45 between adjacent gripping element quadrants 4 will clear guide members 46 and the individual gripping element quadrants 4 will enter their respective curved tracks 8 smoothly.
  • gripping element quadrants 4 are guided aroundthe entire length of their respective endless paths 6 (i.e., through track 7, track 8, central bore 16, pressure cylinder 11, central bore 17, track 8 and back to track 7).
  • Fluid passageways 47a, 47b, 47c and 47d are formed through the ends of sleeve quadrants 38a, 38b, 38c and 38d, respectively, midway between the sides thereof, and communicate with sources of pressurized fluid indicated diagrammatically by the numeral 48 through conduit 49. Fluid passageways 47a, 47b, 47c and 47d communicate, at their innermost ends with radial passageways 50a, 50b, 50c and 50d, respectively. The outer ends of radial passageways 50a, 50b, 50c and 50d communicate, through apertures 51 in sleeve 34, with endmost compartment 37, thereby to pressurize said endmost comparment 37 uniformly thereabout.
  • This pressure is exerted, through sleeve 34 on sleeve quadrants 38a, 38b, 38c and 38d and thence on their respective gripping element quadrants 4, thereby forcing said gripping element quadrants inwardly and tightly about die 12 and die stem 12a.
  • the inner surfaces of sleeve quadrants 38a, 38b, 38c and 38d, opposite each of the pairs of sealing rings 36 and between guide members 42, are recessed at 52a, 52b, 52c and 52d, to provide a fluid passageway between said inner surfaces and teeth 28 of gripping element quadrants 4. Elsewhere, there is a close sliding fit between the inner surfaces of sleeve quadrants 38a, 38b, 38c and 38d and teeth 28.
  • radial passageways 50a, 50b, 50c and 50d communicate with adjacent recesses 52a, 52b, 52c and 52d thereby to introduce pressurized fluid therein, adjacent the downstream (relative to the direction of movement of gripping element quadrants 4) sides of said adjacent recesses 52a, 52b, 52c and 52d.
  • Pressure reducing valves 53a, 53b, 53c and 53d are adapted to vent pressurized fluid from said last mentioned recesses 52a, 52b, 52c and 52d, when the pressure of the fluid therein rises above a predetermined value, to said next compartment 37 at a lower pressure and thereby maintain a predetermined difference in pressure between the higher-pressurized last mentioned recesses 52a, 52b, 52c and 52d and the lower-pressurized next compartment 37.
  • Radial passageways 54a, 54b, 54c and 54d communicate between the upstream side of the last mentioned compartment 37 and the downstream sides of the next recesses 52a, 52b, 52c and 52d, thereby introducing pressurized fluid from said compartment 37 to said recesses 52a, 52b, 52c and 52d. Because of pressure reducing valves 53a, 53b, 53c and 53d, the pressure in said recesses 52a, 52b, 52c and 52d against the exterior surfaces of gripping element quadrants 4 is less than the pressure against the exterior surfaces of those gripping element quadrants 4 immediately downstream.
  • Pressure reducing valves 55a, 55b, 55c and 55d communicate between the upstream sides of said lastmentioned recesses 52a, 52b, 52c and 52d and the next compartment 37, and are adapted to vent pressurized fluid from said recesses 52a, 52b, 52c and 52d, when the pressure of the fluid therein rises above a predetermined value, to said next compartment 37 at a lower pressure and thereby maintain a predetermined difference in pressure between the said higher-pressurized recesses 52a, 52b, 52c and 52d and the lowerpressurized next compartment 37.
  • Pressure reducing valves 55a, 55b, 55c and 55d are operative to pass pressurized fluid therethrough at a lower pressure than pressure reducing valves 53a, 53b, 53c and 53d, and therefore the pressure against the exterior surfaces of gripping element quadrants 4 passing by the recesses 52a, 52b 52c and 52d associated with the said pressure reducing valves 55a, 55b, 55c and 55d is less than against the exterior surfaces of those gripping element quadrants immediately downstream.
  • the same arrangement of radial passagewaysand pressure reducing valves is provided for all the compartments 37 and recesses 52a, 52b, 52c and 52d upstream of those just described (i.e., to the right of FIG. 8).
  • the pressure reducing valves are operative to pass pressurized fluid therethrough at lower levels than the immediately downstream pressure reducing valves.
  • the exterior surfaces of gripping element quadrants 4 are subjected to a pressure gradient increasing in steps from the time the gripping element quadrants 4 enter the upstream end of pressure cylinder ll (i.e., the right end thereof as viewed in FIG. 8) until at least the time the gripping element quadrants 4 pass over die 12.
  • Pressurized fluid from the upstream-endmost compartment 37 may be fed back to a suitable pump (not shown) for subsequent recycling to the sources 48 of pressurized fluid.
  • Die stem 12a extends downstream of gear block 15, past the point at which gripping element quadrants 4 enter their respective curved tracks 8 as they leave central bore 17, and extends through die stem support 56 into a counterbore in support plate 57.
  • Die stem support 56 secured to support plate 57, has a tapered nose 58 permitting it to extend closely between the diverging curved tracks 8 (FIG. 5) and thereby give effective lateral support to die stem 12a.
  • Bolts 59 extending through support plate 57 and spacers 60, are threaded into the downstream side of gear block 15. In this manner, die 12 is securely supported against the thrust of rod 2.
  • Apparatus 61 for sizing and coating rod 2 with a shear transmitting medium before the said rod 2 enters apparatus 1 is seen as comprising housing 62 secured by means of threaded bolts 63 to radially spaced brackets 64 which, in turn, are secured to the upstream side of gear block 14 by means of threaded bolts 65.
  • the longitudinal axis of housing 62 registers with the longitudinal axes of central bores 16 and 17 and of pressure cylinder 1 1.
  • Housing 62 is provided with a first bore 66, a second larger bore 67, a third yet larger bore 68, a threaded section 69 and a fourth yet larger bore 70.
  • Scraper 71 is positioned at the downstream side of bore 67, adjacent bore 66, and is secured in position by means of retainer ring 72.
  • a sizing die 73 is mounted within bore 68, and is secured in position by means of threaded retaining ring 74 screwed into threaded section 69.
  • a cover plate 75 having a projecting central portion 76 extending partially into bore is secured to the upstream side of housing 62 by means of threaded bolts 77.
  • Cover plate is provided with counterbore 78 in which is mounted scraper 79 secured in position by means of retainer ring 80.
  • Ring seal 81 is provided around projecting central portion 76 of cover plate 75.
  • Feed conduit 84 communicates between a source (not shown) of shear transmitting medium and first coating chamber 82, thereby to supply said first coating chamber 82 with shear transmitting medium.
  • Drain conduit 85 is provided to withdraw excess shear transmitting medium from first coating chamber 82, and, through a suitable conduit (not shown), the withdrawn shear transmitting medium may be recycled to the source.
  • Feed conduit 86 communicates between a source (not shown) of shear transmitting medium and second coating chamber 83, thereby to supply said second coating chamber 83 with shear transmitting medium.
  • Drain conduit 87 is provided to withdraw excess shear transmitting medium from second coating chamber 83 and, through a suitable conduit (not shown), the withdrawn shear transmitting medium may be recycled to the source.
  • the shear transmitting medium which may be utilized in practicing the present invention will desirably have a high viscosity and shear strength, be capable of lubricating die 12, provide good wetting action on the rod 2, and have minimal viscosity variation with respect to pressure, temperature and shearing rate.
  • a medium may otherwise be known as viscous fluid, and examples of such a suitable medium are beeswax and polyethylene wax.
  • Rod 2 is fed from a source of supply (not shown) through apparatus 61. In passing through scraper 79, dirt and the like are removed from the surface of rod 2.
  • first coating chamber 82 the surface of rod 2 is provided with a coating of shear transmitting medium which medium, beeswax in the preferred embodiment, is capable of lubricating a die.
  • the diameter of rod 2 is sized to a uniform value.
  • second coating chamber 83 the surface of rod 2 is recoated with shear transmitting medium.
  • shear transmitting medium in excess of the desired thickness of coating thereof on the surface of rod 2 is removed. Thereafter, coated rod 2 enters the entrance end 9 of apparatus 1.
  • Fluid motors 2la-2ld and 23a-23d are operated, whereby gripping element quadrants 4 are propelled around their respective endless paths 6, each gripping element quadrant 4 cooperating with a gripping element quadrant 4 from each of the other trains thereof as they enter central bore 16 of gear block 14 until they leave central bore 17 of gear block 15 to form a gripping element 10.
  • gripping element quadrants 4 are propelled around their respective endless paths 6, each gripping element quadrant 4 cooperating with a gripping element quadrant 4 from each of the other trains thereof as they enter central bore 16 of gear block 14 until they leave central bore 17 of gear block 15 to form a gripping element 10.
  • a gripping element 10 closely contacts the entire perimetric surface of a length of shear transmitting medium coating on the surface of rod 2, which length corresponds to the length of the said gripping element 10.
  • the gripping element 10 provides a motive force along the surface of the shear transmitting medium and thereby produces a shear force in the shear transmitting medium, which shear force is applied along the said perimetric surface of rod 2 as a friction or viscous drag force, directed toward the exit end 13 of apparatus 1,
  • Gripping element quadrants 4 constituting gripping elements 10 are supported against, and thereby contain, the pressure in the shear transmitting medium coating on rod 2.
  • lateral support required to be given to the gripping element quadrants 4 is nominal, and this is provided by the wall of central bore 16, gripping element quadrants 4 being able to be moved readily through said central bore 16.
  • the pressure in the shear transmitting medium has risen to the point that substantial lateral support to gripping element quadrants 4 is required, which lateral support requirements will increase in the direction of die 12. It is the function of pressure cylinder 11 to supply this increasing lateral support to the gripping element quadrants in the manner hereinbefore described.
  • the lateral support pressures obtained in pressure cylinder 11 are designed to balance the outward thrust on gripping element quadrants 4 developed by the increasing pressures in the shear transmitting medium and are related to the axial stresses developed in rod 2 in such a manner that 1) sufficient lateral support is given to gripping element quadrants 4 so that at all points along pressure cylinder 11, the normal stress in rod 2 never falls to such a value that the rod axial stress exceeds the rod normal stress by an amount exceeding the yield strength of the rod material (as otherwise the rod 2 would be caused to bulge out or mushroom) and (2) excessive support pressures on gripping element quadrants 4, particularly in the upstream section of pressure cylinder 4 are never produced (as otherwise this may crush gripping element quadrants 4 against rod 2).
  • rod 2 as it advances within pressure cylinder 11 toward die 12 is stressed in compression far above its yield strength to the range at which it exhibits increased ductility, of has an increased capacity for deformation without fracture. In such a state, rod 2 passes into die 12, along with the coating of shear transmitting medium, and is deformed to produce wire 3.
  • Method for continuously deforming an elongated workpiece of indefinite length to produce an elongated product of indefinite length comprising:
  • step (b) cumulating said motive force from said first station toward said deforming agency whereby to produce an axial stress gradient within said elongated workpiece increasing from said first station toward said deforming agency.
  • step (b) simultaneously with step (b), continuously applying pressure on those surfaces of said gripping elements remote from the elongated surface of said elongated workpiece between said first station and said deforming agency whereby to maintain normal stress in said elongated workpiece of magnitude such that the difference between axial stress and normal stress in said elongated workpiece at any point between said first station and the entrance to said deforming agency does not exceed the yield strength of the workpiece material.
  • steps (b) and (d) continuously applying a pressure gradient on those surfaces of said gripping elements remote from the elongated surface of said elongated workpiece between said first station and said deforming agency, said pressure gradient increasing from said first station toward said deforming agency, whereby to maintain a normal stress gradient in said elongated workpiece increasing from said first station toward said deforming agency and of magnitude such that at any point between said first station and the entrance to said deforming agency the difference between axial stress and normal stress in said elongated workpiece does not exceed the yield strength of the workpiece material.
  • Method for continuously deforming an elongated workpiece of indefinite length to produce an elongated product of indefinite length comprising:
  • step (b) cumulating said motive force from said first station toward said deforming agency whereby to produce an axial stress gradient within said elongated workpiece increasing from said first station toward said deforming agency.
  • step (b) continuously applying external pressure on and around the entire perimeter of said endless chamber from said first station to said deforming agency, said external pressure having sufficient magnitude to maintain normal stress in the elongated workpiece of magnitude such that the difi'erence betwen axial stress and normal stress in the elongated workpiece at any point between said first station and the entrance to said deforming agency does not exceed the yield strength of the workpiece material.
  • step (b) and (d) continuously applying an external pressure gradient between said first station and said deforming agency on and around the entire perimeter of said endless chamber increasing from said first station toward said deforming agency, said external pressure gradient maintaining a normal stress gradient in said elongated workpiece increasing from said first station toward said deforming agency and of magnitude such that at any point between said first station and the entrance to said deforming agency the difference between axial stress and normal stress in the elongated workpiece does not exceed the yield strength of the workpiece material.
  • step (a) by:
  • step (a) by:
  • Method for continuously deforming an elongated workpiece to produce an elongated product comprising:
  • said coating of shear transmitting medium is applied to the entire perimeter of the elongated surface of said elongated workpiece.
  • said motive force is applied around the entire perimeter of the surface of said shear transmitting medium.
  • said motive force is applied to said surface of said shear transmitting medium from a first station upstream of said deforming agency
  • said coating of shear transmitting medium is continuously applied around the entire perimeter of the elongated surface of said elongated workpiece at a second station upstream of said first station as said elongated workpiece moves past said second station toward said first station.
  • said motive force is applied around the entire perimeter of the surface of said shear transmitting medium.
  • said shear transmitting medium is a viscous fluid.
  • said viscous fluid is beeswax.
  • said viscous fluid is polyethylene wax.
  • step (b) continuously applying pressure on that surface of said coating of shear transmitting medium remote from the elongated surface of said elongated workpiece between said station and said deforming agency, thereby to maintain normal stress in said elongated workpiece of magnitude such that at any point between the entrance to said deforming agency and said station the difference between axial stress and normal stress in said elongated workpiece does not exceed the yield strength of the workpiece material.
  • Method for continuously deforming an elongated a. applying a coating of shear transmitting medium to the elongated surface of said elongated workpiece;
  • said coating of shear transmitting medium is applied to the entire perimeter of the elongated surface of said elongated workpiece.
  • said motive force is applied around the entire perimeter of the surface of said shear transmitting medium.
  • said coating of shear transmitting medium is continuously applied around the entire perimeter of the elongated surface of said elongated workpiece at a second station upstream of said first mentioned station as said elongated workpiece moves past said second station toward said first mentioned station.
  • said motive force is applied around the entire perimeter of the surface of said shear transmitting medium.
  • said shear transmitting medium is a viscous fluid.
  • said viscous fluid is beeswax.
  • said viscous fluid is polyethylene wax.
  • step (b) simultaneously with step (b), continuously applying pressure between said first mentioned station and said deforming agency on that surface of said coating of shear transmitting medium remote from the elongated surface of said elongated workpiece, said pressure increasing in magnitude from said first mentioned station toward said deforming agency, thereby to maintain normal stress in said elongated workpiece increasing in magnitude from said first mentioned station toward said deforming agency, the difference in magnitude between said axial stress and normal stress in said elongated workpiece at any point upstream of the entrance to said deforming agency not exceeding the yield strength of the workpiece material.
  • Method for continuously deforming an elongated workpiece of indefinite length to produce an elongated product of indefinite length comprising:
  • said apparatus is adapted to cumulate motive force agency to produce an elongated product. from said first station toward said deforming 30.
  • Apparatus as in claim 36 wherein: at a third station upstream of said first station as f. said third means is adapted to continuously apply said elongated workpiece moves past said third stapressure on those surfaces of said gripping eletion toward said first station.
  • V elongated workpiece between said first station and d. said shear transmitting medium is a viscous fluid. said deforming agency whereby to maintain normal 32.
  • stress in said elongated workpiece of magnitude e. said viscous fluid is beeswax. such that the difference between axial stress and 33.
  • normal stress in said elongated workpiece at any e. said viscous fluid is polyethylene wax. point between said first station and the entrance to 34.
  • said deforming agency does not exceed the yield d. continuously applying external pressure on and strength of the workpiece material.
  • said third means is adapted to continuously apply said external pressure having sufficient magnitude a pressure gradient on those surfaces of said gripto maintain normal stress in the elongated workping elements remote from the elongated surface piece of magnitude such that the difference beof said elongated workpiece between said first statween axial stress and normal stress in the elontion and said deforming agency, said pressure gragated workpiece at any point between said first sta- 4O trans increasing from said first station toward said tion and the entrance to said deforming agency deforming agency, whereby to maintain a normal does not exceed the yield strength of the workpiece stress gradient in said elongated workpiece increasmaterial.
  • Method as in claim 29, further comprising: agency and of magnitude such that at any point hed. continuously applying an external pressure graditween said first station and the entrance to said deent between said first station and said deforming forming agency the difference between axial stress agency on and around the entire perimeter of said and normal stress in said elongated workpiece does endless chamber increasing from said first station not exceed the yield strength of the workpiece matoward said deforming agency, said external presterial. sure gradient maintaining a normal stress gradient 40.
  • Apparatus for continuously deforming an elonin said elongated workpiece increasing from said gated workpiece of indefinite length to produce an first station toward said deforming agency and of elongated product of indefinite length, said apparatus magnitude such that at any point between said first comprising: station and the entrance to said deforming agency a. a deforming agency; the difference between axial stress and normal b. a plurality of trains of gripping elements; stress in the elongated workpiece does not exceed c. a plurality of first means, each of said first means the yield strength of the workpiece material. being operatively associated with one train of grip- 36.
  • first means providing an endless path for said train its respective endless path past a first station upof gripping elements, said path including a first station upstream of said deforming agency and a second station downstream of said deforming agency;
  • each of said plurality of moving trains of gripping elements being adapted to cooperate with each other to form an endless centrally apertured chamber extending between and moving from said first station to said second station;
  • the moving endless chamber receiving the elongated workpiece in the central aperture thereof and being adapted to continuously operative engage the entire perimeter of the elongated surface of the elongated workpiece thereby to continuously apply motive force along the entire perimeter of the elongated surface of the elongated workpiece in the direction of the deforming agency, whereby to continuously advance said elongated workpiece against said deforming agency and produce elongated product.
  • the moving endless chamber is adapted to cumulate motive force from said first station toward said deforming agency whereby to produce an axial stress gradient within said elongated workpiece increasing from said first station toward said deforming agency.
  • third means adapted to continuously apply external pressure on and around the entire perimeter of the endless chamber from said first station to said deforming agency whereby to maintain normal stress in the elongated workpiece between the first station and the deforming agency of magnitude such that at any point between the entrance to said deforming agency and said first station the difference between axial stress and normal stress in said elongated workpiece does not exceed the yield strength of the workpiece material.
  • third means adapted to continuously apply an external pressure gradient on and around the entire perimeter of the endless chamber from said first station to said deforming agency, said pressure gradiant increasing from said first station toward said deforming agency whereby to maintain a normal stress gradient in said elongated workpiece increasing from said first station toward said deforming agency of magnitude such that at any point between the entrance to said deforming agency and said first station the difference between axial stress and normal stress in said elongated workpiece does not exceed the yield strength of the workpiece material.
  • Apparatus for continuously deforming an elongated workpiece to produce an elongated product comprising:
  • said first means is adapted to apply said coating of shear transmitting medium to the entire perimeter of the elongated surface of said elongated workpiece.
  • said second means is adapted to appyly motive force around the entire perimeter of said coating of shear transmitting medium.
  • said first means is adapted to continuously apply said coating of shear transmitting medium around the entire perimeter of the elongated surface of the elongated work-piece as the elongated workpiece moves past said first means toward said second means.
  • said second means is adapted to apply motive force around the entire perimeter of said coating of shear transmitting medium.
  • said shear transmitting medium is a viscous fluid.
  • said viscous fluid is beeswax.
  • said viscous fluid is polyethylene wax.
  • third means to continuously apply pressure on that surface of said coating of shear transmitting medium remote from the elongated surface of said elongated workpiece between said deforming agency and said first means to maintain normal stress in said elongated workpiece of magnitude such that at any point between the entrance to said deforming agency and said first means the difference between axial stress and normal stress in said elongated workpiece does not exceed the yield strength of the workpiece material.
  • Apparatus for continuously deforming an elongated workpiece to produce an elongated product comprising:
  • said first means is adapted to apply said coating of shear transmitting medium to the entire perimeter of the elongated surface of said elongated workpiece.
  • said first means is adapted to continuously apply said coating of shear transmitting medium around the entire perimeter of the elongated surface of said elongated workpiece at a third station up- 55.
  • Apparatus as in claim 54 wherein: stream of said first station as said elongated worke. said second means is adapted to apply motive force piece moves past Said third Station toward said first around the entire perimeter of said coating of shear o n-an itti di 64.
  • said first means is adapted to continuously apply Apparatus as in claim 64, wherein?
  • said coating of shear transmitting medium around said viscous fluid is beeswaxthe entire perimeter of the elongated surface of the Apparatus as in claim 64, wherein! elongated workpiece as the elongated workpiece said viscous fluid is P y y moves past said first means toward said second Apparatus as in claim 62, further comprising: means e. third means to continuously apply external pres- 57 Apparatus as in claim 5 wherein; sure on and around the entire perimeter of said e. said second means is adapted to apply motive force endkfss chamber said fi station to said around the entire perimeter of said coating of shear agency summer? to manual? normal Stress transmitting medium in said elongated workpiece of magnitude such that 58.
  • Apparatus as in claim 53 wherein: the d fference between axial stress and normal d. said shear transmitting medium is a viscous fluid. m the elongated workple. Said first Apparatus as in claim 58, wherein: station and the entrance to said deforming agency said viscous fluid is beeswax. does not exceed the yield strength of the workpiece 60. A aratus as in claim 58 wherein: ma ena saiggiscous fluid is polyefllylene wax 68. Apparatus as in claim 62, further comprising: 61. Apparatus as in claim 53, further comprising: thud means to commuously apply extetnal presd.
  • said endless chamber comprises; mote from the elongated surface of said elongated i a plurality f trains f gripping elements, workpiece; ii. a plurality of third means, each of said third d.
  • said endmeans being operativcly associated with one f less chamber from a first station upstream of said id trains f i i elements and providing an deforming agency to a second station downstream endless path for said train of gripping elements, said deforming agency thereby to continuously iii.
  • said first station and second station and the span apply motive force in the direction of said deforrntherebetwecn b i common to 11 f id l ling agency along said surface of said coating and it f dl th thereby exert drag force along the elongated Suriv.
  • said gripping elements being further adapted to face of said elongated workpiece in the direction of discontinue such cooperation at said second stasaid deforming agency and continuously advance tion.
  • said third means comprises:
  • said third means comprises:
  • each pressure reducing valve being operatively interposed between adjacent pressure chambers, the pressure reducing valves being arranged to provide decreasing fluid pressure in the plurality of pressure chambers toward the upstream end of said cylinder.
  • Method for continuously deforming an elongated workpiece of indefinite length to produce an elongated product of indefinite length comprising:
  • Method for continuously deforming an elongated workpiece of indefinite length to produce an elongated product of indefinite length comprising:
  • Apparatus for continuously deforming an elongated workpiece of indefinite length to produce an elongated product of indefinite length comprising:
  • a train of gripping elements adapted to encircle said elongated workpiece and further adapted to operatively engage the entire perimeter of said elongated workpiece from a first station upstream of said deforming agency to said deforming agency,
  • c. means to continuously move said train of gripping elements from said first station around said deforming agency to a second station downstream of said deforming agency
  • said train of gripping elements is endless.
  • Apparatus for continuously deforming an elongated workpiece of indefinite length to produce an elongated product of indefinite length comprising:
  • a deforming agency b. first means adapted to apply a coating of shear transmitting medium to the entire perimeter of the elongated surface of said elongated workpiece at a first station upstream of said deforming agency,
  • a train of gripping elements adapted to encircle said elongated workpiece and adapted to operatively engage the entire perimeter of that surface of said coating of shear transmitting medium remote from the elongated surface of said elongated workpiece from a second station between said deforming agency and said first station to said deforming agency, said train of gripping elements being fur ther adapted to slidably sealingly engage the perimeter of said deforming agency,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Extrusion Of Metal (AREA)
  • Coating Apparatus (AREA)
US00199542A 1971-11-17 1971-11-17 Apparatus and method for continuous extrusion Expired - Lifetime US3740985A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19954271A 1971-11-17 1971-11-17

Publications (1)

Publication Number Publication Date
US3740985A true US3740985A (en) 1973-06-26

Family

ID=22737973

Family Applications (1)

Application Number Title Priority Date Filing Date
US00199542A Expired - Lifetime US3740985A (en) 1971-11-17 1971-11-17 Apparatus and method for continuous extrusion

Country Status (16)

Country Link
US (1) US3740985A (es)
JP (2) JPS5324902B2 (es)
BE (1) BE790903A (es)
CA (1) CA996502A (es)
CH (1) CH570849A5 (es)
CS (1) CS212735B2 (es)
DE (1) DE2255866C3 (es)
ES (1) ES408935A1 (es)
FR (1) FR2160413B1 (es)
GB (1) GB1400874A (es)
HU (1) HU175863B (es)
IT (1) IT975747B (es)
NL (1) NL158405B (es)
SE (1) SE404882B (es)
SU (1) SU793361A3 (es)
ZA (1) ZA728125B (es)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871201A (en) * 1972-12-16 1975-03-18 Sumitomo Electric Industries Continuous hydrostatic extrusion-drawing apparatus
US3901065A (en) * 1974-11-13 1975-08-26 Western Electric Co Multiple aperture die
US3911705A (en) * 1974-04-01 1975-10-14 Wanskuck Co Extrusion apparatus
US3916669A (en) * 1974-11-13 1975-11-04 Western Electric Co Multiple aperture die
US3922898A (en) * 1974-03-29 1975-12-02 Wanskuck Co Extrusion process
US3924429A (en) * 1974-11-13 1975-12-09 Western Electric Co Method and apparatus for reducing extrusion start-up pressure
US3948079A (en) * 1974-11-13 1976-04-06 Western Electric Company, Inc. Multiple aperture die
US3964283A (en) * 1974-11-13 1976-06-22 Western Electric Company, Inc. Production of multiple elongated products such as wire
US3985011A (en) * 1975-09-12 1976-10-12 Western Electric Company, Inc. Continuous extrusion
US4005596A (en) * 1975-04-07 1977-02-01 Ural Viktor Ivanovich Apparatus for hydraulic pressing of metals
US4027514A (en) * 1975-12-12 1977-06-07 Trefimetaux Device for continuous extrusion
US4027511A (en) * 1974-11-13 1977-06-07 Western Electric Company, Inc. Apparatus for producing multiple elongated products such as wires
US4051705A (en) * 1976-06-24 1977-10-04 Western Electric Co. Die stem heating
US4163377A (en) * 1976-11-10 1979-08-07 Trefimetaux Continuous hydrostatic extrusion process and apparatus
US4177658A (en) * 1978-06-08 1979-12-11 Western Electric Co., Inc. Methods and apparatus for continuous extrusion
US4262513A (en) * 1978-10-27 1981-04-21 Bicc Limited Continuous extrusion of metals
US4283931A (en) * 1978-10-27 1981-08-18 Bicc Limited Continuous extrusion of metals
US4319476A (en) * 1978-07-19 1982-03-16 Western Electric Company, Incorporated Methods and apparatus for extrusion
US5487292A (en) * 1991-12-31 1996-01-30 Fox; Francis J. Method and apparatus for advancing tubing into a draw die
US5568742A (en) * 1994-01-29 1996-10-29 Huber & Bauer Gmbh Apparatus for internal high-pressure forming

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094178A (en) * 1976-03-08 1978-06-13 Western Electric Co., Inc. Methods for continuous extrusion
USRE33501E (en) * 1985-05-13 1990-12-25 National Rolling Mills, Inc. Fire-rated beam with expansion relief section
CN112453083B (zh) * 2020-11-02 2022-09-06 河北浩发腾达管道制造有限公司 一种钢管自动送料拉拔延伸生产装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103309A (en) * 1963-09-10 englund
US1321729A (en) * 1919-05-15 1919-11-11 Simmons Co Tube-drawing apparatus.
GB1177223A (en) * 1966-02-04 1970-01-07 Atomic Energy Authority Uk Improvements in Hydrostatic Extrusion Apparatus
US3440849A (en) * 1966-05-13 1969-04-29 Atomic Energy Authority Uk Hydrostatic extrusion apparatus
DE2003356A1 (de) * 1969-01-28 1970-09-24 Western Electric Co Verfahren und Einrichtung fuer den Bewegungsantrieb eines Werkstuecks

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871201A (en) * 1972-12-16 1975-03-18 Sumitomo Electric Industries Continuous hydrostatic extrusion-drawing apparatus
US3922898A (en) * 1974-03-29 1975-12-02 Wanskuck Co Extrusion process
US3911705A (en) * 1974-04-01 1975-10-14 Wanskuck Co Extrusion apparatus
US4027511A (en) * 1974-11-13 1977-06-07 Western Electric Company, Inc. Apparatus for producing multiple elongated products such as wires
US3901065A (en) * 1974-11-13 1975-08-26 Western Electric Co Multiple aperture die
US3916669A (en) * 1974-11-13 1975-11-04 Western Electric Co Multiple aperture die
US3924429A (en) * 1974-11-13 1975-12-09 Western Electric Co Method and apparatus for reducing extrusion start-up pressure
US3948079A (en) * 1974-11-13 1976-04-06 Western Electric Company, Inc. Multiple aperture die
US3964283A (en) * 1974-11-13 1976-06-22 Western Electric Company, Inc. Production of multiple elongated products such as wire
USRE29593E (en) * 1974-11-13 1978-03-28 Western Electric Co., Inc. Production of multiple elongated products such as wire
US4005596A (en) * 1975-04-07 1977-02-01 Ural Viktor Ivanovich Apparatus for hydraulic pressing of metals
DE2640746A1 (de) * 1975-09-12 1977-03-17 Western Electric Co Verfahren und vorrichtung zur kontinuierlichen extrusion
US3985011A (en) * 1975-09-12 1976-10-12 Western Electric Company, Inc. Continuous extrusion
US4027514A (en) * 1975-12-12 1977-06-07 Trefimetaux Device for continuous extrusion
US4051705A (en) * 1976-06-24 1977-10-04 Western Electric Co. Die stem heating
US4163377A (en) * 1976-11-10 1979-08-07 Trefimetaux Continuous hydrostatic extrusion process and apparatus
US4177658A (en) * 1978-06-08 1979-12-11 Western Electric Co., Inc. Methods and apparatus for continuous extrusion
US4319476A (en) * 1978-07-19 1982-03-16 Western Electric Company, Incorporated Methods and apparatus for extrusion
US4262513A (en) * 1978-10-27 1981-04-21 Bicc Limited Continuous extrusion of metals
US4283931A (en) * 1978-10-27 1981-08-18 Bicc Limited Continuous extrusion of metals
US5487292A (en) * 1991-12-31 1996-01-30 Fox; Francis J. Method and apparatus for advancing tubing into a draw die
US5568742A (en) * 1994-01-29 1996-10-29 Huber & Bauer Gmbh Apparatus for internal high-pressure forming

Also Published As

Publication number Publication date
DE2255866A1 (de) 1973-05-24
NL158405B (nl) 1978-11-15
ES408935A1 (es) 1976-04-01
FR2160413B1 (es) 1976-04-23
JPS4862655A (es) 1973-09-01
JPS5324902B2 (es) 1978-07-24
SE404882B (sv) 1978-11-06
JPS52107257A (en) 1977-09-08
AU4885072A (en) 1974-05-16
SU793361A3 (ru) 1980-12-30
DE2255866B2 (de) 1980-07-17
CA996502A (en) 1976-09-07
DE2255866C3 (de) 1981-03-12
BE790903A (fr) 1973-03-01
CS212735B2 (en) 1982-03-26
HU175863B (hu) 1980-10-28
CH570849A5 (es) 1975-12-31
NL7215346A (es) 1973-05-21
GB1400874A (en) 1975-07-16
FR2160413A1 (es) 1973-06-29
ZA728125B (en) 1973-07-25
IT975747B (it) 1974-08-10

Similar Documents

Publication Publication Date Title
US3740985A (en) Apparatus and method for continuous extrusion
US4316373A (en) Method and apparatus for the extrusion of tubes of easily oxidized materials
AU590562B2 (en) Early progressive junction extrusion system
USRE28795E (en) Apparatus and method for continuous extrusion
US6430980B1 (en) Method and device for coating and shaping strand-shaped metallic material by drawing
US2523358A (en) Hydraulic antifriction die set
IE44536B1 (en) Methods of and apparatus for continuously deforming workpieces of extended lenght
JPS6224164B2 (es)
CN1228674A (zh) 改进的涂敷模具
CN1228721A (zh) 用于改进的涂敷模具的密封系统
EP3536479A1 (de) Vorrichtung und verfahren zum expandieren und gleichzeitigen befüllen von behältnissen
US3832877A (en) Impact hydraulic forming equipment
US5865052A (en) Method and device for forming and/or coating wire-shaped metal material
US4633699A (en) Continuous extrusion apparatus
US2827007A (en) Method of making wrought fittings
US3727447A (en) Apparatus for clamping a workpiece
GB1571456A (en) Hydrostatic extrusion process and apparatus
US4687422A (en) Continuous extrusion apparatus
US2661771A (en) Goggle valve
SU1021498A1 (ru) Устройство дл формовки жидкостью деталей типа днищ
DE3230585A1 (de) Stirlingmaschine
SU1346317A1 (ru) Устройство дл смазки штампов
US167076A (en) Improvement in the manufacture of lead traps
USRE9649E (en) Fbedebick n
US1338871A (en) Apparatus for the application of hydraulic pressure to the interior of a tube being shaped by the self-hooping process

Legal Events

Date Code Title Description
AS Assignment

Owner name: AT & T TECHNOLOGIES, INC.,

Free format text: CHANGE OF NAME;ASSIGNOR:WESTERN ELECTRIC COMPANY, INCORPORATED;REEL/FRAME:004251/0868

Effective date: 19831229