US3740168A - Tubular encased turbo-machine with axially spaced sealing rings for compartmentizing the compressor and turbine components - Google Patents
Tubular encased turbo-machine with axially spaced sealing rings for compartmentizing the compressor and turbine components Download PDFInfo
- Publication number
- US3740168A US3740168A US00198383A US3740168DA US3740168A US 3740168 A US3740168 A US 3740168A US 00198383 A US00198383 A US 00198383A US 3740168D A US3740168D A US 3740168DA US 3740168 A US3740168 A US 3740168A
- Authority
- US
- United States
- Prior art keywords
- turbo
- machine
- casing
- tubular
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/26—Double casings; Measures against temperature strain in casings
- F01D25/265—Vertically split casings; Clamping arrangements therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
Definitions
- a tubular encased turbo-machine structure comprises a tubular concrete reinforced casing in which a turbomachine group is inserted subsequent to its assembly.
- the various machines of the group such as the compressors and turbine are compartmentized within the casing by means of radially displaceable segmented sealing rings located within the casing, these rings being initially in a retracted state with their inner peripheries essentially flush with the inner surface of the casing to facilitate installation of the assembled turbo-machine group in the casing, and the rings thereafter being displaced radially inward so as to establish a sealing contact with the peripheries of the guide blade carrier components of the several machines and thus compartmentize the interior of the tube so that the several machines of the group are separated] each from the other.
- the present invention relates to gaseous fluid operated machines such as turbo-machine groups or the like which are encased in a concrete reinforced tube, and more particularly to an improved constructional arrangement of the machine group within the tube which provides a novel arrangement of axially spaced sealing rings within the tube that establishes separate compartments for respectively receiving the turbine and various stages of the compressor.
- Tubular encased turbo-machine groups are already known in the art and with respect to these, the supply of the operating fluid to the various stages of the compressor and to the turbine has been effected by means of separate supply ducts which enter through the wall of the tube and connect to the inlet ends of the compressors and turbine.
- supply ducts which enter through the wall of the tube and connect to the inlet ends of the compressors and turbine.
- the connections of the supply ducts to the different pressure stages result in considerably high reaction forces which can be compensated out only by highly elaborate measures, such as axially moving bellows.
- a further disadvantage is that extra space is required, since the supply duct connections must be made available for assembly and disassembly and inspection.
- a principal object of the present invention is to provide an improved structural arrangement whereby the prior disadvantages are obviated and in particular ensure that any tube reaction forces have no adverse affects upon the guide blade carriers of the compressor stages and turbine and other fittings which are provided within the encasing tube.
- the tubular casing within which the turbo-machine group is placed is divided into axially separated compartments individual to the various compressor stages and turbine, and these compartments are established by means of axially spaced sealing rings carried by the tubular casing and which are displaced in a radially inward direction after the turbo-machine has been completely assembled and thereafter inserted in the casing so as to sealingly engage at their inner peripheries the surface of the correspondingly positioned guide blade carriers of the compressors and turbine.
- each sealing ring is divided radially into a plurality of segments which are movable radially inwards or outwards.
- the radial joints between adjacent ring segments can also be provided with sealing lips.
- This radial displacement of the ring segments permits the rings to be initially shifted radially outward so that their inner peripheries are essentially flush with the inner surface of the tubular casing, thus simplifying insertion of a completely assembled turbomachine group into the casing, after which the ring segments are then moved radially inward to engage the peripheries of the guide blade carriers of the compressor and turbine and complete the sealing between the various operating sections of the machine group.
- the various ducts for supplying and removing the pressurized fluid medium to and from the compressor stages and turbine can be and are terminated at the corresponding pass-through points in the wall of the casing and hence are not rigidly connected to the fluid inlets and outlets of the compressors and turbine thus eliminating the possibility of creating any undesirable reaction forces at the machine.
- a further advantage of the improved construction, in addition to the previously mentioned simplification in assembly and dis-assembly of the turbo-machine group with respect to its enclosing casing is that there is also considerable savings in the overall space requirements for the installation.
- FIG. 1 is a view in longitudinal central section of a turbo-machine group encased within a concrete reinforced tube, the machine group consisting of several axial flow compressor stages and a turbine stage and wherein radially displaceable sealing rings in accordance with the invention serve to compartmentize the interior of the tube into separate sections each receiving one of the compressor stages and the turbine.
- FIG. 2 is an end view of one of the radially displaceable sealing ring structures
- FIG. 3 is a cross-sectional view of that part of the sealing ring structure denoted within the circle legended A in FIG. 2;
- FIG. 4 is a sectional view taken on line B--B of FIG. 3.
- the tube for enclosing the turbo-machine group is indicated at 1 and the concrete reinforcing sur' rounding the tube is indicated at 15.
- the turbo-machine group within tube 1 is seen to be comprised of several axial flow compressor stages 4, 5 and 6 connected in cascade and a turbine 3, the bladed rotors of all four of which are mounted on a common shaft 2.
- the cylindrical stator components of all four machines which carry the guide blading are indicated at 7 and, in accordance with the invention, radially displaceable sealing rings 8 are provided interiorly of casing 1 in axially spaced relation and these, when moved into sealing engagement with the peripheries of the stator components, i.e., the guide blade carriers 7, serve to compartmentize the interior of the tube 1 into separate sections each receiving one of the compressor stages and the turbine respectively, and its fluid inlet and outlet.
- the sealing rings 8 are supported in circular grooves 14 provided in ring-shaped members 13, the grooves 14 being open in the radially inward direction so as to permit the required radial displacement of the sealing rings inwardly to engage the peripheries of the guide blade carriers 7.
- the radially inward positions of the sealing rings 8 are depicted in FIG. 1 and hence it will be self-evident that these establish a sealed compartment within the tube 1 for compressor stage 4 together with its fluid inlet 9a and outlet 10a; similarly, other sealed compartments are established by others of the sealing rings 8 for compressor stage 5 together with its fluid inlet 9b and outlet 10b, as well as for compressor stage 6 together with its fluid inlet 96 and outlet 10c and for turbine 3 together with its fluid inlet 11 and outlet 12.
- the fluid inlet and outlet ducts 9a9c and l0a-l0c for the compressor stages 4-6 are likewise encased in the concrete 15, and heat insulation liners 17 are provided for the fluid inlet and outlet ducts ll, 12 for turbine 3 in order to protect the concrete from the heat content of the hot combustion gases which flow through the turbine. Since the turbine guide blade carrier 7' likewise is subjected to high temperatures, its interior surface is likewise provided with an insulating liner 16.
- Heat removal and protection against heat can be enhanced by the provision of by-passes, in which event, passages (not shown) extend from the outlet of the highest pressure compressor stage 6 into an annular chamber 33 provided between the outer surface of the guide blade carrier 7 and the encasing tube 1; relatively cool air from compressor stage 6 thus discharges into annular chamber 33 and, having taken up some heat from the turbine structure, discharges through the turbine exhaust outlet 12. Tubes through which a coolant is passed can also be embedded in the concrete 15 as a measure for removing heat from the tube 1.
- the tube 1 is closed at the turbine end by means of a closure plate 34 which is secured to the left end of the guide blade carrier 7 and which is maintained in place by means of a ring 35 which is anchored in the wall of the tube 1.
- a closure plate 34 which is secured to the left end of the guide blade carrier 7 and which is maintained in place by means of a ring 35 which is anchored in the wall of the tube 1.
- the end 36 of shaft 2 passes through a lock opening 37 to a coupling which connects this shaft to the shaft of a generator, not shown, which constitutes the load for the turbomachine group.
- FIG. 2 depicts the sealing ring 8 in the radially inward position, i.e., in contact at its inner periphery with the cylindrical surface of a guide blade carrier 7.
- ring 8 is subdivided circumferentially into six ring segments 19 and the planes of the joints 20 between the adjoining ends of adjacent segments extend in a radial direction.
- this specific construction can be departed from if movement of the ring segments in accordance with a change in ring diameter is allowed for.
- each coupling projection 26 Secured to each coupling projection 26 is a piston rod 22 connected to piston 23 which operates in a cylinder 24 secured partially with the body of the grooved ring member 13 and which also extends radially outward from the latter into a void in the concrete 15 developed by a cylindrical casing 25 secured to the outer periphery of the ring member 13.
- the coupling members 21 are constructed so as not only to provide at least some compensation for manufacturing inequalities but also to transmit a uniform pressure to the ring segments 19.
- a sealing lip can be provided at these joint planes, in a simple manner.
- FIGS. 3 and 4 show at an enlarged scale, the structure within the area of FIG. 2 denoted by circle A.”
- a sealing strip 28 is provided which ensures a gas-tight seal between the ring segments 19 of the sealing rings 8 and the circumferential surface of the guide blade carriers 7. These sealing strips 28 are secured in place on their respective ring segments 19 by means of a clamping segment 27.
- Hydraulic lines 31 and 32 shown in FIG. 4 serve to supply hydraulic fluid selectively to cylinders 24 on opposite sides of their piston 23 so that the pistons and hence the ring segments 19 can be actuated in a radially inward direction to effect the desired sealing engagement of the rings 8 with the surface of the guide blade carriers 7, or to retract the ring segments 19 to a position substantially flush with the inner surface of the casing 1 so as to enable the assembled turbomachine to be easily installed in casing l or removed therefrom.
- the sealing strips 28 are preferably made from elastomers or plastics if the temperatures of the working gaseous medium are relatively low.
- metal or heat-resistant fabrics can readily and fairly cheaply be utilized for these sealing strips in cases wherein the turbo-machine is of the combustion type wherein the gas temperatures are rather high.
- a turbular encased turbo-machine structure comprising a tubular casing, a turbo-machine group comprising a plurality of axially spaced and shaft-coupled turbo-machine units such as compressors and turbines operating at different pressures and which are inserted as an assembly in said tubular casing, each said turbomachine unit including a guide blade carrier and an associated gaseous fluid inlet and outlet, and a plurality of sealing rings interposed respectively between the outer cylindrical peripheral surfaces of the guide blade carriers and the inner surface of said tubular casing to establish individually sealed compartments within said casing for each of said turbo-machine units, each of said sealing rings being radially divided into a plurality of ring segments, and means for actuating said ring segments in a radially inward direction to engage and effect a sealing engagement with the periphery of the guide blade carrier associated therewith, and also in a radially outward direction to a disengaged position enabling said turbo-machine group to be inserted in or removed from said tubular
- a tubular encased turbo-machine structure as desupporting member also functions as a support for said hydraulic motors.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gasket Seals (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1715570A CH524087A (de) | 1970-11-18 | 1970-11-18 | Zylinderringdichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
US3740168A true US3740168A (en) | 1973-06-19 |
Family
ID=4423171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00198383A Expired - Lifetime US3740168A (en) | 1970-11-18 | 1971-11-12 | Tubular encased turbo-machine with axially spaced sealing rings for compartmentizing the compressor and turbine components |
Country Status (5)
Country | Link |
---|---|
US (1) | US3740168A (de) |
CH (1) | CH524087A (de) |
DE (1) | DE2060496A1 (de) |
FR (1) | FR2114679A5 (de) |
GB (1) | GB1340755A (de) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4204804A (en) * | 1977-03-21 | 1980-05-27 | Bbc Brown Boveri & Company Limited | Turboset support |
US4657479A (en) * | 1984-10-09 | 1987-04-14 | Rolls-Royce Plc | Rotor tip clearance control devices |
US5056988A (en) * | 1990-02-12 | 1991-10-15 | General Electric Company | Blade tip clearance control apparatus using shroud segment position modulation |
US5094588A (en) * | 1989-08-28 | 1992-03-10 | Gec Alsthom Sa | Concrete steam condenser for an axial exhaust turbine and turbine provided with same |
US20090232651A1 (en) * | 2008-03-17 | 2009-09-17 | General Electric Company | Inner Turbine Shell Support Configuration and Methods |
US20120027581A1 (en) * | 2010-08-02 | 2012-02-02 | General Electric Company | Reinforced concrete gas turbine outer case |
WO2015031083A1 (en) | 2013-08-29 | 2015-03-05 | Dresser-Rand Company | Support assembly for a turbomachine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5197856A (en) * | 1991-06-24 | 1993-03-30 | General Electric Company | Compressor stator |
DE102009023061A1 (de) | 2009-05-28 | 2010-12-02 | Mtu Aero Engines Gmbh | Spaltkontrollsystem, Strömungsmaschine und Verfahren zum Einstellen eines Laufspalts zwischen einem Rotor und einer Ummantelung einer Strömungsmaschine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3269677A (en) * | 1963-12-30 | 1966-08-30 | Gen Electric | Self-aligning mounting structure |
US3658438A (en) * | 1970-12-03 | 1972-04-25 | Westinghouse Electric Corp | Segmented seating plates and anchoring means for a turbine power plant |
-
1970
- 1970-11-18 CH CH1715570A patent/CH524087A/de not_active IP Right Cessation
- 1970-12-09 DE DE19702060496 patent/DE2060496A1/de active Pending
-
1971
- 1971-11-12 US US00198383A patent/US3740168A/en not_active Expired - Lifetime
- 1971-11-15 FR FR7140730A patent/FR2114679A5/fr not_active Expired
- 1971-11-16 GB GB5318071A patent/GB1340755A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3269677A (en) * | 1963-12-30 | 1966-08-30 | Gen Electric | Self-aligning mounting structure |
US3658438A (en) * | 1970-12-03 | 1972-04-25 | Westinghouse Electric Corp | Segmented seating plates and anchoring means for a turbine power plant |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4204804A (en) * | 1977-03-21 | 1980-05-27 | Bbc Brown Boveri & Company Limited | Turboset support |
US4657479A (en) * | 1984-10-09 | 1987-04-14 | Rolls-Royce Plc | Rotor tip clearance control devices |
US5094588A (en) * | 1989-08-28 | 1992-03-10 | Gec Alsthom Sa | Concrete steam condenser for an axial exhaust turbine and turbine provided with same |
US5056988A (en) * | 1990-02-12 | 1991-10-15 | General Electric Company | Blade tip clearance control apparatus using shroud segment position modulation |
US8182207B2 (en) * | 2008-03-17 | 2012-05-22 | General Electric Company | Inner turbine shell support configuration and methods |
US20090232651A1 (en) * | 2008-03-17 | 2009-09-17 | General Electric Company | Inner Turbine Shell Support Configuration and Methods |
JP2009222058A (ja) * | 2008-03-17 | 2009-10-01 | General Electric Co <Ge> | 内側タービンシェル支持構成及び方法 |
US20120027581A1 (en) * | 2010-08-02 | 2012-02-02 | General Electric Company | Reinforced concrete gas turbine outer case |
CN102418570A (zh) * | 2010-08-02 | 2012-04-18 | 通用电气公司 | 加强的混凝土涡轮机外壳体 |
WO2015031083A1 (en) | 2013-08-29 | 2015-03-05 | Dresser-Rand Company | Support assembly for a turbomachine |
EP3039267A1 (de) * | 2013-08-29 | 2016-07-06 | Dresser Rand Company | Trägeranordnung für eine turbomaschine |
EP3039267A4 (de) * | 2013-08-29 | 2017-03-29 | Dresser Rand Company | Trägeranordnung für eine turbomaschine |
US10767660B2 (en) | 2013-08-29 | 2020-09-08 | Dresser-Rand Company | Support assembly for a turbomachine |
Also Published As
Publication number | Publication date |
---|---|
FR2114679A5 (de) | 1972-06-30 |
CH524087A (de) | 1972-06-15 |
GB1340755A (en) | 1974-01-30 |
DE2060496A1 (de) | 1972-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2445661A (en) | Axial flow turbine, compressor and the like | |
GB1461965A (en) | Axial flow turbine structure | |
US3647311A (en) | Turbine interstage seal assembly | |
US2080425A (en) | Turbine | |
US4573867A (en) | Housing for turbomachine rotors | |
US3945758A (en) | Cooling system for a gas turbine | |
US6910853B2 (en) | Structures for attaching or sealing a space between components having different coefficients or rates of thermal expansion | |
US3746463A (en) | Multi-casing turbine | |
JP2000193095A (ja) | ガスタ―ビンエンジンのための軸方向ブラシシ―ル及びガスタ―ビンエンジン | |
US2282894A (en) | Elastic fluid turbine | |
US3740168A (en) | Tubular encased turbo-machine with axially spaced sealing rings for compartmentizing the compressor and turbine components | |
US3609968A (en) | Self-adjusting seal structure | |
JP2005282571A (ja) | ターボジェットセクションの内側ケーシングと外側ケーシングとの間のシール | |
US4078812A (en) | Combined seal and guide arrangement for two coaxially arranged machine parts | |
GB1276377A (en) | Gas turbine engine with improved gas seal | |
US2766963A (en) | Turbine stator assembly | |
US3824030A (en) | Diaphragm and labyrinth seal assembly for gas turbines | |
US3552753A (en) | High efficiency static seal assembly | |
US2304994A (en) | Turbine cylinder cooling | |
US3689174A (en) | Axial flow turbine structure | |
US3690785A (en) | Spring plate sealing system | |
US3228190A (en) | Gas turbine plant | |
US2470126A (en) | Turbine construction | |
US3768817A (en) | Static seal for a gas turbine | |
US2410804A (en) | Turbine |