US3730155A - Fuel injection apparatus for spark plug-ignited internal combustion engines - Google Patents
Fuel injection apparatus for spark plug-ignited internal combustion engines Download PDFInfo
- Publication number
- US3730155A US3730155A US00212955A US3730155DA US3730155A US 3730155 A US3730155 A US 3730155A US 00212955 A US00212955 A US 00212955A US 3730155D A US3730155D A US 3730155DA US 3730155 A US3730155 A US 3730155A
- Authority
- US
- United States
- Prior art keywords
- fuel
- air
- temperature
- spring
- control element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 72
- 238000002347 injection Methods 0.000 title claims abstract description 15
- 239000007924 injection Substances 0.000 title claims abstract description 15
- 238000002485 combustion reaction Methods 0.000 title claims description 15
- 239000007788 liquid Substances 0.000 claims description 11
- 230000006872 improvement Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 abstract description 16
- 239000000203 mixture Substances 0.000 abstract description 13
- 239000002826 coolant Substances 0.000 abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 7
- 230000003190 augmentative effect Effects 0.000 abstract description 2
- 239000002828 fuel tank Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 206010036086 Polymenorrhoea Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/16—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
- F02M69/18—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air
- F02M69/22—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air the device comprising a member movably mounted in the air intake conduit and displaced according to the quantity of air admitted to the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/28—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for cutting-out the fuel supply to the engine or to main injectors during certain operating periods, e.g. deceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/30—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
- F02M69/32—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines with an air by-pass around the air throttle valve or with an auxiliary air passage, e.g. with a variably controlled valve therein
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/30—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
- F02M69/36—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages
- F02M69/38—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages using fuel pressure, e.g. by varying fuel pressure in the control chambers of the fuel metering device
- F02M69/386—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages using fuel pressure, e.g. by varying fuel pressure in the control chambers of the fuel metering device variably controlling the pressure of the fuel by-passing the metering valves, e.g. by valves responsive to signals of temperature or oxygen sensors
Definitions
- ABSTRACT In a fuel injection apparatus the air-fuel ratio is controlled by an air sensor which is deflected against a return force by the intake air and which, as a function of the extent of its deflection, controls the output of a fuel metering valve.
- a first temperature-dependent control element which is responsive to the water coolant temperature and, upon the increase of the latter, causes an increase in the bias of a spring augmenting, in turn, said return force to bring about a leaner fuel mixture and a second temperature-dependent control element which is responsive to a separate heater means and which, for a very short period subsequent to the starting of the cold engine, hinders said first temperature-dependent control element to increase said bias.
- This invention relates to a fuel injection apparatus associated with a spark plug-ignited internal combustion engine which operates on fuel continuously injected into the air intake tube.
- a spark plug-ignited internal combustion engine which operates on fuel continuously injected into the air intake tube.
- the air sensor is displaceable by the air flow against a constant return force to an extent proportionate to the throughgoing air quantities.
- the air sensor displaces the fuel rack of a fuel quantity distributor valve disposed in the fuel line for the metering of fuel quantities in proportion to the throughgoingair quantities.
- the aforenoted return force is derived from the pressure of a liquid which is supplied continuously and under constant pressure through a pressure conduit and which affects a control plunger operatively connected to the air sensor.
- the pressure of said liquid is variable by a pressure control valve which is, in turn, responsive to at least one engine variable.
- a temperatureresponsive control element operating a closing member disposed in a bypass channel which circumvents the butterfly valve. Said bypass is closed after the normal operational temperatures of the internal combustion engine are reached.
- a fuel injection apparatus of the aforenoted type the difficulty is encountered that the enriching of the fuel-air mixture for the warm-up operation has to be substantially greater immediately after starting the engine than it is necessary for the subsequent engine run after a certain period.
- the fuel mixture by the time the engine runs at C of coolant water temperature, is enriched approximately twice the extent necessary to keep the engine running immediately after starting and to ensure optimally clean exhaust gases at 0 C of coolant water temperature.
- the reason is the increase in fuel condensation at the cold cylinder walls which are pre-warmed by virtue of the several ignitions, whereas the coolant temperature still remains practically the same.
- An apparatus of the aforenoted type isdescribed inPublished German Application (DOS) 1,960,144.
- FIG. 1 is a longitudinal, in part schematic, sectional view of a fuel injection apparatus according to the invention and FIG. 2 is a diagram illustrating the control pressure of the pressurized liquidas a function of temperature.
- FIG. 1 there is shown a fuel injection apparatus in which the intake air flows from an air filter l to one ormore engine cylinders (not shown) through an air intake tube which comprises a portion 3 in which there is disposed an air sensor 4, a hose connection 5 and an intake tube portion 6 in which there is arranged an arbitrarily operable butterfly valve 7.
- the air sensor 4 is formed as a disc which is oriented normal to the direction of air flow and which is movable in the intake tube portion 3 as a substantially linear function of the air quantities flowing through the air intake tube.
- the pressure between the air sensor 4 and the butterfly valve 7 remains substantially constant.
- the air sensor 4 directly controls a metering and fuel distributor valve 8.
- the motion of the air sensor 4 is transmitted to the control plunger 12 of the fuel metering valve 8 by means of a nose portion 11 of a lever 10 which is affixed to the air sensor plate 4 and which is pivotable with low friction about a shaft 9.
- the radial terminal face 13 of the control plunger 12 is exposed to pressurized liquid which serves as the return force for the air sensor 4.
- the supply of fuel is effected by a fuel pump 16 which is driven by an electromotor 17 and which draws fuel from a fuel tank 36 forcing it through a conduit 18 to the fuel metering valve 8. From the conduit 18 the fuel is admitted to a channel 19 disposed in a housing of the fuelmetering valve 8.
- the channel 19 merges into an annular groove 20 from which there extend ports 21 to a cylinder 22 in which the control plunger 12 is reciprocably disposed. In the latter there is provided, by virtue of two spaced lands, an annular circumferential groove 23 which is in continuous communication with the ports 21.
- annular groove 23 overlaps to a greater or lesser extent control slots 24 through which the fuel may flow from the annular groove .23 into channels 25 which, in turn, lead to the individual fuel injection valves (not shown) disposed in the air intake tube of the internal combustion engine.
- One part of the fuel flows from the annular groove 20 into a channel 26 and is admitted to an annular groove 27 wherefrom it flows through ports 28 into a conduit 29.
- the latter is in communication through a damping throttle 30 with the pressure chamber 31 (forming part of the cylinder 22) in which there is disposed the radial work face 13 of the control plunger 12.
- a first pressure control valve 32 which is formed as a flat seat valve including a diaphragm 33 and a stationary valve seat 34.
- the fuel flowing through the control valve 32 is returned in a depressurized condition into the fuel tank 36 through a return conduit 35.
- the diaphragm 33 is loaded by a spring 37, the bias of which is changed as a function of operational variables of the internal combustion engine.
- a three-dimensional cam 38 which is rotatable as a unit with the arbitrarily adjustable butterfly valve 7 and which may be axially displaced as a function of the vacuum prevailing downstream of the butterfly valve 7 in the suction tube.
- the three-dimensional cam 38 is axially slidably held on the shaft 39 which is integral with the butterfly valve 7.
- the rotary motion of the shaft 39 is transmitted by means of a pin 40 to the three-dimensional cam 38 which, at one frontal face, is rotatably secured to a diaphragm 41 bounding a vacuum chamber 42.
- the latter is in communication by means of a conduit 43 with the air intake tube at a location downstream of the butterfly valve 7. If the vacuum is of a sufiiciently large value, the three-dimensional cam 38 is axially displaced by the diaphragm 41 against the force of a return spring 44 disposed in the vacuum chamber 42.
- a follower pin 45 scans the surface of the three-dimensional cam 38 and through a spring seat disc 46, controls the bias of the spring 37 to affect the pressure of the pressurized liquid serving as the resetting force for the air sensor 4.
- a conduit 50 which is connected to a second pressure control valve 53 from which there extends a return conduit 55 to the fuel tank 36.
- the pressure of the pressurized liquid serving as a return force for the air sensor 4 may be controlled as a function of temperature by means of the second pressure control valve 53.
- the latter is formed as a flat seat valve having a stationary valve seat 57 and a diaphragm 58 which is loaded by a spring 59 in the closing direction of the valve 53.
- the chamber 60 accommodating the spring 59 forms one part of a bypass conduit 61, 62 circumventing the butterfly valve 7 in the suction tube.
- a bypass conduit 61, 62 circumventing the butterfly valve 7 in the suction tube.
- the bypass conduit itself is not shown in FIG. 1, only its connections with the suction tube portion 6 and with the pressure control valve 53 are indicated.
- a plunger piston 64 which controls the flow passage section of the bypass conduit 61, 62 and which also serves as a spring seat disc for the spring 59.
- the displacement of the piston plunger 64 is effected by a first temperature-dependent control element (heat expandable regulator) 63 which, when the internal combustion engine is cold, compresses the spring 59 to a lesser extent and opens the bypass 61, 62 to a greater extent than in case of a warm engine.
- a first temperature-dependent control element heat expandable regulator
- the spring seat disc 65 has at its side remote from the spring 59 an opening 67 into which there extends one end of a bimetal spring 68. The other end of the latter is surrounded by a heater element 69 which, together with the bimetallic spring 68, forms a second temperature-dependent control element 68, 69.
- a rivet 70 attached to the bimetal spring 68 is in engagement with the spring seat disc 65.
- the lever 10 In response to the deflection of the air sensor 4 the lever 10, with its integral nose 11, displaces the control plunger 12 to the left, thus opening the control slots 24 to a greater extent.
- the fuel quantity passing through the metering slots 24 and admitted to the fuel injection valves corresponds to the setting magnitude of the air sensor 4.
- the fuel injection valves (not shown) corresponds to the setting magnitude of the air sensor 4.
- From the annular groove 23 of the control plunger 12 one part of the fuel is admitted through the channel 26 into the pressure chamber 31 where it affects the frontal radial face 13 of the control plunger 12.
- Other parts of the fuel flow from the channel 26 through the conduit 29 to the first pressure control valve 32 and through a conduit 50 to the second pressure control valve 53.
- the direct coupling of the air sensor 4 with the control plunger 12 results in a constant ratio between the air quantities and the fuel quantities insofar as the'
- the measuring magnitudes for load and rpm of an internal combustion engine are the angular position of the butterfly valve and the vacuum in the air intake tube. Consequently, the return force is expediently varied as a function of these two magnitudes. Such variation is brought about by the change in the bias of the spring 37 of the pressure control valve 32 by shifting the spring seat disc 46. The latter shift, in turn, is effected by the rotary and axial motions of the threedimensional cam 38 executed, respectively, in response to the angular position of the butterfly valve 7 and the pressure in the suction tube.
- a highest output that is, a relatively rich air-fuel mixture is desired. Since the bias of the spring 37 of the first pressure control valve 32 determines the pressure of the fuel which affects the radial face 13 of the control plunger 12, the return force affecting the air sensor 4 has to be somewhat reduced to permit the control plunger 12 to be shifted into a position in which the control slots 24 are opened to a greater extent and, accordingly, larger fuel quantities can be injected.
- the threedimensional cam 38 Because of the substantial vacuum in the air intake tube, is displaced against the force of the spring 44 so that the spring 37 of the first pressure control valve 32 will be biased to a greater extent. In this manner the return force exerted on the air sensor 4 is increased so that despite the slight air leakage quantities that may flow through the closed butterfly valve 7, there will be no deflection of the air sensor 4 and thus no fuel quantities will be injected.
- the first temperature-dependent control element 63 which responds to the coolant water temperature, effects a leaner fuel mixture (by compressing the spring 59 and thus increasing the fuel pressure at the radial work face 13 of the control plunger 12) only with a substantial delay. Since, however, already a few moments following the starting of the engine the cylinder walls, because of the preceding ignitions, have been prewarmed and thus a fuel condensation caused by the previously cold cylinder walls occurs to a decreasing degree, it is expedient to simultaneously reduce the enrichment of the air-fuel mixture to such an extent that a clean run of the engine is ensured.
- such a decrease in the fuel enriching is ensured by causing the second temperature-dependent control element 68, 69 to work against the spring 59 for a short period immediately after, starting of the internal combustion engine.
- the heater 69 is energized by, eg closing its electrical circuit simultaneously with turning on the engine ignition.
- FIG. 2 there is shown the fuel pressure exerted on the control plunger 12 as a function of the coolant water temperature as controlled by the second pressure control valve 53.
- the spring 59 should be designed according to the pressure characteristic curve a. According to the invention, however, the spring 59 is designed to correspond to the pressure characteristic curve b.
- the cold bimetal spring 68 works against the spring 59 at the moment of starting in such a manner that the curve a is obtained for the engine run after starting.
- the heat output of the heater element 69 is determined in advance in such a manner that, dependent upon the starting temperature, the bimetal spring 68 is, after a correspondingly short time, bent away from the spring seat disc 65. Consequently, after this occurrence the spring seat disc 65 and thus the diaphragm 58 are loaded only by the spring 59.
- the transition from the curve a to the curve b occurs, dependent upon the temperature at the starting, along one of the curves c.
- the spring 59 remains biased to a constant extent according to the curve d.
- a fuel injection apparatus serving a spark plugignited internal combustion engine operating on fuel continuously injected into the air intake tube thereof, said apparatus being of the type that has (a) an arbitrarily operable butterfly valve disposed in said air intake tube, (b) an air sensor disposed in said air intake tube spaced from said butterfly valve, said air sensor being displaceable by and as a function of the air quantities passing through said air intake tube, (0) a fuel quantity distributor valve for metering the fuel quantities to be injected, (d) means connecting said air sensor with said fuel quantity distributor valve to effect metering of said fuel as a function of the deflection of said air sensor, (e) means supplying a return force affecting said air sensor in opposition to the force exerted thereon by the flow of intake air, said means supplying said return force includes a control plunger operatively connected to said air sensor and cylinder means accommodating said control plunger and containing liquid under pressure exerting said return force on said control plunger, the improvement comprising A. a pressure control valve hydraulically connected to said cylinder
- a separate heater means operatively coupled to said second temperature-responsive control element for heating the same causing discontinuance of its opposing effect on said first temperatureresponsive control element.
- said second temperature-responsive control element being formed as a bimetal spring being in engagement, when unheated, with said first-named spring and bending away therefrom when heated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Fuel-Injection Apparatus (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19712100935 DE2100935C3 (de) | 1971-01-11 | Kraftstoffeinspritzanlage für gemischverdichtende, fremdgezündete Brennkraftmaschinen mit kontinuierlicher Einspritzung in das Saugrohr |
Publications (1)
Publication Number | Publication Date |
---|---|
US3730155A true US3730155A (en) | 1973-05-01 |
Family
ID=5795532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00212955A Expired - Lifetime US3730155A (en) | 1971-01-11 | 1971-12-28 | Fuel injection apparatus for spark plug-ignited internal combustion engines |
Country Status (10)
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3791359A (en) * | 1971-11-24 | 1974-02-12 | Bosch Gmbh Robert | Fuel injection apparatus for externally ignited internal combustion engines operating on continuously injected fuel |
US3835828A (en) * | 1972-09-07 | 1974-09-17 | Bosch Gmbh Robert | Fuel supply system |
US3894523A (en) * | 1973-05-29 | 1975-07-15 | Bosch Gmbh Robert | Fuel supply system |
DE2403276A1 (de) * | 1974-01-24 | 1975-08-07 | Bosch Gmbh Robert | Kraftstoffeinspritzanlage |
US3931803A (en) * | 1974-01-18 | 1976-01-13 | Asoke Chattopadhayay | Fuel quantity manifold for multi-cylinder internal combustion engines |
US3951120A (en) * | 1973-08-10 | 1976-04-20 | Robert Bosch G.M.B.H. | Diaphragm-controlled pressure control valve assembly |
US3951119A (en) * | 1973-06-09 | 1976-04-20 | Robert Bosch G.M.B.H. | Fuel injection system |
US3963005A (en) * | 1973-10-12 | 1976-06-15 | Robert Bosch G.M.B.H. | Fuel supply system |
US3967607A (en) * | 1973-10-03 | 1976-07-06 | Robert Bosch G.M.B.H. | Fuel injection system |
FR2311190A1 (fr) * | 1975-05-15 | 1976-12-10 | Tecalemit Ltd | Installations d'injection de carburant pour moteurs a combustion interne |
US3999527A (en) * | 1974-04-09 | 1976-12-28 | Robert Bosch G.M.B.H. | Fuel injection system |
US4100904A (en) * | 1973-09-28 | 1978-07-18 | Robert Bosch Gmbh | Fuel injection system |
US4132211A (en) * | 1975-10-24 | 1979-01-02 | Robert Bosch Gmbh | Fuel injection system |
US4161934A (en) * | 1976-09-15 | 1979-07-24 | Robert Bosch Gmbh | Apparatus to control the composition of the operating mixture of an internal combustion engine |
US4167167A (en) * | 1975-04-03 | 1979-09-11 | Daimler-Benz Aktiengesellschaft | Internal combustion engine with externally controlled ignition |
US4206735A (en) * | 1978-08-04 | 1980-06-10 | General Motors Corporation | Mechanical throttle body injection apparatus |
US4257375A (en) * | 1977-12-22 | 1981-03-24 | Dr. Ing. H.C.F. Porsch Aktiengesellschaft | Fuel injection system for mixture-compressing internal combustion engines with spark ignition |
US4359031A (en) * | 1979-03-07 | 1982-11-16 | General Motors Corporation | Engine air flow responsive control |
US20110121471A1 (en) * | 2009-11-25 | 2011-05-26 | Satoru Araki | Carburetor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4153018A (en) * | 1975-07-31 | 1979-05-08 | Ntn Toyo Bearing Co. Ltd. | Air flow measuring device for internal combustion engines |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3680535A (en) * | 1969-12-01 | 1972-08-01 | Bosch Gmbh Robert | Fuel injection system for combustion engines |
-
1971
- 1971-12-02 GB GB5589171A patent/GB1363739A/en not_active Expired
- 1971-12-28 US US00212955A patent/US3730155A/en not_active Expired - Lifetime
- 1971-12-30 FR FR7147667A patent/FR2122141A6/fr not_active Expired
- 1971-12-31 CS CS917771A patent/CS157136B4/cs unknown
-
1972
- 1972-01-10 JP JP464472A patent/JPS5440694B1/ja active Pending
- 1972-01-10 BR BR128/72A patent/BR7200128D0/pt unknown
- 1972-01-10 IT IT19186/72A patent/IT1003022B/it active
- 1972-01-10 SE SE00215/72A patent/SE365024B/xx unknown
- 1972-01-10 ES ES398729A patent/ES398729A2/es not_active Expired
- 1972-01-11 SU SU1736337A patent/SU513641A3/ru active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3680535A (en) * | 1969-12-01 | 1972-08-01 | Bosch Gmbh Robert | Fuel injection system for combustion engines |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3791359A (en) * | 1971-11-24 | 1974-02-12 | Bosch Gmbh Robert | Fuel injection apparatus for externally ignited internal combustion engines operating on continuously injected fuel |
US3835828A (en) * | 1972-09-07 | 1974-09-17 | Bosch Gmbh Robert | Fuel supply system |
US3894523A (en) * | 1973-05-29 | 1975-07-15 | Bosch Gmbh Robert | Fuel supply system |
US3951119A (en) * | 1973-06-09 | 1976-04-20 | Robert Bosch G.M.B.H. | Fuel injection system |
US3951120A (en) * | 1973-08-10 | 1976-04-20 | Robert Bosch G.M.B.H. | Diaphragm-controlled pressure control valve assembly |
US4100904A (en) * | 1973-09-28 | 1978-07-18 | Robert Bosch Gmbh | Fuel injection system |
US3967607A (en) * | 1973-10-03 | 1976-07-06 | Robert Bosch G.M.B.H. | Fuel injection system |
US3963005A (en) * | 1973-10-12 | 1976-06-15 | Robert Bosch G.M.B.H. | Fuel supply system |
US3931803A (en) * | 1974-01-18 | 1976-01-13 | Asoke Chattopadhayay | Fuel quantity manifold for multi-cylinder internal combustion engines |
DE2403276A1 (de) * | 1974-01-24 | 1975-08-07 | Bosch Gmbh Robert | Kraftstoffeinspritzanlage |
US3974811A (en) * | 1974-01-24 | 1976-08-17 | Robert Bosch G.M.B.H. | Fuel injection system |
US3999527A (en) * | 1974-04-09 | 1976-12-28 | Robert Bosch G.M.B.H. | Fuel injection system |
US4167167A (en) * | 1975-04-03 | 1979-09-11 | Daimler-Benz Aktiengesellschaft | Internal combustion engine with externally controlled ignition |
FR2311190A1 (fr) * | 1975-05-15 | 1976-12-10 | Tecalemit Ltd | Installations d'injection de carburant pour moteurs a combustion interne |
US4050431A (en) * | 1975-05-15 | 1977-09-27 | Tecalemit Limited | Fuel injection systems for internal combustion engines |
US4132211A (en) * | 1975-10-24 | 1979-01-02 | Robert Bosch Gmbh | Fuel injection system |
US4161934A (en) * | 1976-09-15 | 1979-07-24 | Robert Bosch Gmbh | Apparatus to control the composition of the operating mixture of an internal combustion engine |
US4257375A (en) * | 1977-12-22 | 1981-03-24 | Dr. Ing. H.C.F. Porsch Aktiengesellschaft | Fuel injection system for mixture-compressing internal combustion engines with spark ignition |
US4206735A (en) * | 1978-08-04 | 1980-06-10 | General Motors Corporation | Mechanical throttle body injection apparatus |
US4359031A (en) * | 1979-03-07 | 1982-11-16 | General Motors Corporation | Engine air flow responsive control |
US20110121471A1 (en) * | 2009-11-25 | 2011-05-26 | Satoru Araki | Carburetor |
US8613429B2 (en) * | 2009-11-25 | 2013-12-24 | Zama Japan Kabushiki Kaisha | Carburetor |
Also Published As
Publication number | Publication date |
---|---|
BR7200128D0 (pt) | 1973-05-03 |
JPS5440694B1 (enrdf_load_stackoverflow) | 1979-12-05 |
FR2122141A6 (enrdf_load_stackoverflow) | 1972-08-25 |
SU513641A3 (ru) | 1976-05-05 |
DE2100935A1 (de) | 1972-07-20 |
ES398729A2 (es) | 1975-05-16 |
CS157136B4 (enrdf_load_stackoverflow) | 1974-08-23 |
IT1003022B (it) | 1976-06-10 |
DE2100935B2 (de) | 1976-09-16 |
GB1363739A (en) | 1974-08-14 |
SE365024B (enrdf_load_stackoverflow) | 1974-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3730155A (en) | Fuel injection apparatus for spark plug-ignited internal combustion engines | |
US3791359A (en) | Fuel injection apparatus for externally ignited internal combustion engines operating on continuously injected fuel | |
US3727598A (en) | Temperature-responsive system for regulating the fuel mixture in air-cooled internal combustion engines | |
US3983849A (en) | Fuel injection system | |
US4132211A (en) | Fuel injection system | |
US4090487A (en) | Fuel injection system | |
US3983856A (en) | Fuel injection system | |
US3739758A (en) | Regulator mechanism for fuel injection apparatus | |
US3835828A (en) | Fuel supply system | |
US3993034A (en) | Fuel injection system | |
US3974811A (en) | Fuel injection system | |
US3613650A (en) | Fuel injection system for internal combustion engines | |
GB1340934A (en) | Control devices for fuel injection systems for mixture-compres sing internal combustion engines with applied ignition | |
JPH0330700B2 (enrdf_load_stackoverflow) | ||
US4694808A (en) | Method and fuel injection system for fuel supply to a mixture-compressing internal combustion engine having externally supplied ignition | |
US4197823A (en) | Supplementary air valve for a fuel supply apparatus | |
US3999527A (en) | Fuel injection system | |
US3996747A (en) | Compression-ignition internal combustion engine and method of supercharging such engine | |
US4216175A (en) | Carburetor for combustion engines | |
US3765387A (en) | Fuel injection apparatus | |
US4090486A (en) | Fuel injection system | |
US4193384A (en) | Fuel injection system | |
US4401063A (en) | Fuel distribution system for an internal combustion engine | |
US4227502A (en) | Fuel injection system | |
US2860617A (en) | Enrichment device for fuel injection system |