US3729048A - Continuous metal-casting plant - Google Patents
Continuous metal-casting plant Download PDFInfo
- Publication number
- US3729048A US3729048A US00130413A US3729048DA US3729048A US 3729048 A US3729048 A US 3729048A US 00130413 A US00130413 A US 00130413A US 3729048D A US3729048D A US 3729048DA US 3729048 A US3729048 A US 3729048A
- Authority
- US
- United States
- Prior art keywords
- length
- ingot
- section
- crystallizer
- curvature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005058 metal casting Methods 0.000 title abstract description 10
- 239000007791 liquid phase Substances 0.000 claims abstract description 15
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000005266 casting Methods 0.000 claims description 7
- 238000009827 uniform distribution Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/128—Accessories for subsequent treating or working cast stock in situ for removing
- B22D11/1282—Vertical casting and curving the cast stock to the horizontal
Definitions
- Said guiding devices form consecutively-arranged arc-shaped, curved and straight sections.
- the arc-shaped section has a radius of curvature and its length, including the length of the crystallizer, varies from 0.2 to 0.4 of the overall length of the plant.
- the length of the curved section depending on the central angle included between the horizontal and the straight line drawn through the center of the crystallizer curvature and the junction point between said arc-shaped and curved section is determined by the relation:
- the guiding devices of the curved section are arranged along a curve whose radius of curvature varies with the changes in the length of this section of the thickness of the ingot liquid phase and which is expressed by a natural equation where 11 2 curve constant; 11, thickness of the ingot liquid phase, In; S, present length of the curve arc, m.
- the present invention relates to continuous metalcasting plants and more specifically it relates to continuous metal-casting plants having a radial crystallizer.
- the present invention is used most successfully for continuous casting of steel at a high speed.
- the secondary cooling zone in the known plants is arranged without taking into account the deformation speed of the ingot and the thickness of its liquid phase with the result that these plants do not provide for the optimum conditions of ingot formation and thus fail to produce high-quality ingots at high casting speeds.
- the main object of the invention is to provide a continuous metal-casting plant which produces high-quality ingots at a high casting speed by creating the optimum conditions of ingot formation and deformation.
- a continuous metal-casting plant comprising a radial crystallizer and a secondary cooling zone with guiding devices for the ingot in which zone said ingot is gradually crystallized.
- the guiding devices form an arc-shaped section with a radius which is equal to the radius of curvature of the crystallizer, a curved section with a radius of curvature varying throughout its length, and a straight section, all these sections being arranged in succession.
- Length L, of the arc-shaped section, including the length of the crystallizer is equal to 0.2 0.4 of the overall length L of the plant, length L, of the curved section depends on the central angle [3,, occupied by the arc-shaped section and varies within the limits determined by the relation where B, central angle between the horizontal and the straight line drawn through the center of curvature of the crystallizer and the junction point between the arc-shaped and curved sections, rad. and R, radius of curvature of the crystallizer, m.
- the guiding devices are located on this curved section along the curve whose radius of curvature R depends on the changes in the thickness h of the ingot liquid phase along the length of said section, and which is expressed by a natural equation h R (1 L2 rsI where curve constant; and
- the crust of the ingot passing through the arc shaped section acquires a thickness which allows further deformation of the ingot to proceed without the formation of internal defects while the curve for the installation of the ingot guiding devices on the curved section ensures a lower speed of deformation of the ingot inner layers due to a uniform distribution of deformation of these layers throughout the length of the curved section.
- the continuous metal-casting plant includes a radial crystallizer 1 with a certain radius of curvature R and a secondary cooling zone with guiding devices 2, e.g. rolls for the ingot 3.
- the crystallizer is intended for the primary cooling of molten metal 4 and forming the crust 5 of the ingot 3.
- the zone of secondary cooling serves for further gradual crystallization of the ingot, said zone consisting of the consecutively arranged areshaped section 6, curvedsection 7 and straight section 8.
- the length L, of the arc-shaped section 6, including the length of the crystallizer, is selected so as to ensure crystallization of the ingot to 45 65 percent of its thickness at the end of this section. At such a thickness the crust 5 of the ingot 3 can withstand the simultaneous deformation under the effect of ferrostatic pressure and straightening of the ingot without the formation of internal defects.
- V maximum casting speed m/min
- This length of the arc-shaped section corresponds to the central angle [3,, included between the horizontal and the straight line connecting the center of curvature of the crystallizer with the end of the arc-shaped section.
- the curved section 7 must ensure gradual and smooth straightening of the ingot 3 and a reduction in the deformation speed of the ingot internal layers 9, located near the boundary between its solid and liquid phases by uniform distribution of deformation of these layers along the entire length of the curved section.
- the relative deformation E of the ingot layers located at a distance 11/2 from its axial line while said layers are unbent from the radius of curvature to the radius equal to infinity can be determined by the following expression:
- the thickness h of the liquid phase of the ingot is a variable value throughout the length of the curved section.
- the length L, of the curved section will be The plant operates as follows: the molten metal 5 is fed into the crystallizer l where the ingot 3 is formed and covered with crust 5. Then the ingot passes without deformation through the first arc-shaped section 6 in the secondary cooling zone. At the end of the section whose length is determined by the above relation, the crust 5 of the ingot grows to such a thickness which allows further deformation of the ingot without the appearance of internal defects. Then the ingot is transferred to the next curved section 7, where it is gradually straightened from the curvature obtained in the crystallizer to the straight line and where the thickness of its crust is further increased.
- the deformation speed of the ingot internal layers 9 located close to the boundary between the liquid and solid phases of the ingot is brought to a minimum by forming this section in accordance with the relations quoted above. This ensures the production of highquality ingots without internal defects at high casting speeds.
- a continuous ferrous-casting plant comprising: a radial crystallizer and a secondary cooling zone for formation of an ingot with guiding devices for said ingot, in which zone said ingot becomes gradually crystallized, said guiding devices forming three consecutivelyarranged sections comprising an arc-shaped section with a radius equal to the crystallizer radius R, of curvature and a length L including the crystallizer length, varying from 0.2 to 0.4 of the overall length L of the plant; a curved section whose length L depends on the central angle [3,, occupied by said arc-shaped section and is determined by the relation where [3,, central angle between a horizontal line drawn through the center of the crystallizer curvature and a straight line drawn through the junction point between said arc-shaped and curved sections, in radians, and R radius of crystallizer curvature, in meters, said guiding devices of said curved section being located along the curve whose radius R of curvature varies with the changes in the length of this section in the thickness h of the ingot
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU1438559A SU349238A1 (enrdf_load_stackoverflow) | 1970-06-18 | 1970-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3729048A true US3729048A (en) | 1973-04-24 |
Family
ID=20452975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00130413A Expired - Lifetime US3729048A (en) | 1970-06-18 | 1971-04-01 | Continuous metal-casting plant |
Country Status (5)
Country | Link |
---|---|
US (1) | US3729048A (enrdf_load_stackoverflow) |
DE (1) | DE2117110A1 (enrdf_load_stackoverflow) |
FR (1) | FR2095323B1 (enrdf_load_stackoverflow) |
GB (1) | GB1332047A (enrdf_load_stackoverflow) |
SU (1) | SU349238A1 (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3893503A (en) * | 1973-07-24 | 1975-07-08 | Voest Ag | Continuous casting plant |
JPS5257027A (en) * | 1975-11-06 | 1977-05-11 | Ishikawajima Harima Heavy Ind | Method of continuous casting |
US4433717A (en) | 1980-04-02 | 1984-02-28 | Nippon Steel Corporation | Process for bow type continuous casting |
US4465121A (en) * | 1981-04-30 | 1984-08-14 | Concast Service Union Ag | Method and apparatus for bending a strand in a continuous casting installation for metals, especially steel |
US6467533B1 (en) * | 1999-10-28 | 2002-10-22 | Sumitomo Metal Industries, Ltd. | Machine and method for continuous casting of steel |
CN111790893A (zh) * | 2019-04-08 | 2020-10-20 | 上海梅山钢铁股份有限公司 | 一种控制连铸板坯结疤缺陷的工艺方法 |
EP2349612B2 (de) † | 2008-11-20 | 2020-11-04 | Primetals Technologies Austria GmbH | Verfahren und stranggiessanlage zum herstellen von dicken brammen |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007032985A1 (de) | 2007-06-13 | 2008-12-18 | Sms Demag Ag | Verfahren und Vorrichtung zum Stranggießen eines Metallstranges |
DE102008027496B4 (de) | 2007-06-13 | 2023-05-25 | Sms Group Gmbh | Verfahren und Vorrichtung zum Stranggießen eines Metallstranges |
DE102015202608A1 (de) * | 2015-02-13 | 2016-08-18 | Sms Group Gmbh | Gießanlage |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3324931A (en) * | 1963-05-03 | 1967-06-13 | Mannesmann Ag | Method of deflecting towards the horizontal a curved continuously cast descending billet |
US3603377A (en) * | 1965-08-09 | 1971-09-07 | Georgy Lukich Khim | Curvilinear mold and secondary cooling system for continuously cast metal |
-
1970
- 1970-06-18 SU SU1438559A patent/SU349238A1/ru active
-
1971
- 1971-04-01 US US00130413A patent/US3729048A/en not_active Expired - Lifetime
- 1971-04-05 FR FR7111939A patent/FR2095323B1/fr not_active Expired
- 1971-04-07 DE DE19712117110 patent/DE2117110A1/de active Pending
- 1971-04-19 GB GB2687871*A patent/GB1332047A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3324931A (en) * | 1963-05-03 | 1967-06-13 | Mannesmann Ag | Method of deflecting towards the horizontal a curved continuously cast descending billet |
US3603377A (en) * | 1965-08-09 | 1971-09-07 | Georgy Lukich Khim | Curvilinear mold and secondary cooling system for continuously cast metal |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3893503A (en) * | 1973-07-24 | 1975-07-08 | Voest Ag | Continuous casting plant |
JPS5257027A (en) * | 1975-11-06 | 1977-05-11 | Ishikawajima Harima Heavy Ind | Method of continuous casting |
US4433717A (en) | 1980-04-02 | 1984-02-28 | Nippon Steel Corporation | Process for bow type continuous casting |
US4465121A (en) * | 1981-04-30 | 1984-08-14 | Concast Service Union Ag | Method and apparatus for bending a strand in a continuous casting installation for metals, especially steel |
US6467533B1 (en) * | 1999-10-28 | 2002-10-22 | Sumitomo Metal Industries, Ltd. | Machine and method for continuous casting of steel |
EP2349612B2 (de) † | 2008-11-20 | 2020-11-04 | Primetals Technologies Austria GmbH | Verfahren und stranggiessanlage zum herstellen von dicken brammen |
CN111790893A (zh) * | 2019-04-08 | 2020-10-20 | 上海梅山钢铁股份有限公司 | 一种控制连铸板坯结疤缺陷的工艺方法 |
Also Published As
Publication number | Publication date |
---|---|
FR2095323A1 (enrdf_load_stackoverflow) | 1972-02-11 |
GB1332047A (en) | 1973-10-03 |
DE2117110A1 (de) | 1971-12-23 |
SU349238A1 (enrdf_load_stackoverflow) | 1974-05-05 |
FR2095323B1 (enrdf_load_stackoverflow) | 1975-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3333624A (en) | Casting wheel cooling method | |
US2698467A (en) | Method and apparatus for the continuous casting of metal | |
US3729048A (en) | Continuous metal-casting plant | |
US3886991A (en) | Method and apparatus for controlling the withdrawal of heat in molds of continuous casting installations | |
US3561240A (en) | Method and apparatus for treating materials | |
US2752648A (en) | Apparatus for the production of tubular metallic objects | |
US4249590A (en) | Method for continuous casting | |
CN105964964B (zh) | 用于连铸机的连铸辊 | |
US3771584A (en) | Method for continuously casting steel billet strands to minimize the porosity and chemical segregation along the center line of the strand | |
US5832984A (en) | Method of producing long steel products | |
US3370641A (en) | Reciprocating mold and coolant-support section continuous casting machine | |
US3478810A (en) | Continuous copper wire-making process | |
US4830087A (en) | Continuous casting of thin slab ingots | |
CN1038605A (zh) | 连续铸造金属产品的冷却方法 | |
JP2970343B2 (ja) | 連続鋳造された丸ビレット鋳片のセンターポロシティ低減方法 | |
US4022369A (en) | Curved roller track for continuously cast ingots | |
RU2229957C2 (ru) | Способ непрерывной разливки металлических заготовок и установка для его осуществления | |
US3698466A (en) | Method for continuous casting of steel | |
US3329199A (en) | Apparatus for the continuous casting of metals | |
JPS5825850A (ja) | 改良された連続鋳造鋼棒およびその製造方法 | |
US3759314A (en) | High capacity continuous casting method | |
GB1174849A (en) | A Method of Producing Continuous Steel Castings | |
SU703227A1 (ru) | Способ непрерывной разливки металлов | |
US3580325A (en) | Continuous casting machine for slabs | |
GB1100976A (en) | Guiding a curved strand in continuous metal casting plant |